
ANNALS OF PHYSICS: 66, 758-783 (1971) 

Properties of the Breaking of Hadronic Internal Symmetry 

LOUIS MICHEL 

lnstitut des Hautes hdes Scientifiques, 91 - Bures-sur-Yvette, France 

AND 

LUIGI A. RADICATI 

Scuola Normale Superiore, Pisa, Italy 

Received October 1, 1970 

The directions of breaking of the hadronic internal symmetry by the electromagnetic, 
semileptonic-and nonleptonic-weak and CP violating interactions are characterized 
by remarkable mathematical properties. These directions correspond to idempotents 
or nilpotents of an algebra and they are critical, i.e., every invariant function for the 
symmetry group, e.g., (SU(3) x SU(3)) x (1, P, C, PC) has an extremum on these 
directions. 

I. INTRODUCTION 

In the last ten years, several internal symmetry groups have been considered 
for hadronic physics. We will limit here our study to SU(3) x SU(3), some of 
its extensions by discrete operations (C, P, CP), and some of their subgroups. 
The symbol G will denote any of them. We will be more specially interested in the 
subgroups belonging to the following inclusion scheme: 

c/ 
SU(3) 

c\ 
U,(2) SU(3) x SU(3), (1) 

c c, 
SU,(2) x W,(2) x Uyd(l) 

where SU(3) is the diagonal subgroup and U,(2) contains the isotopic spin group 
and the hypercharge phase transformations. When G is larger than U(2), electro- 
magnetic, weak, and strong interactions violate the corresponding symmetry, 
but these violations follow, to a good approximation, well-defined selection rules. 
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HADRONIC INTERNAL SYMMETRY 759 

This can be explained by the assumption that the corresponding interaction terms 
in the total Hamiltonian define some special directions in the representation spaces 
of the symmetry group G. 

The physical characterization of the directions of breaking of the G-symmetry 
has been discussed by several authors. In this paper, we shall instead analyze their 
mathematical characterization. It seems to us that the remarkable mathematical 
properties of these directions constitute an interesting empirical fact which probably 
cannot be ignored if one wants to understand the breaking of hadronic symmetry. 

We give only the essential results in the text, and we confine in the appendices 
the definition of the mathematical concepts not familiar to the majority of high 
energy physicists and the explicit realization of the mathematical objects defined 
and used. This paper contains no proof of the essential results. Some of the proofs 
are already contained in previous publications [I, 21 and the others will be published 
subsequently. 

II. THE INTERNAL SYMMETRY OF HADRONS 

Let 2 be the Hilbert space of the physical states which is used to describe 
nuclear and subnuclear phenomena. This space is the tensor product 

where the three terms in the right side are the Hilbert spaces of hadronic, photonic, 
and leptonic states, respectively. The internal symmetry group SU(3) x SU(3) 
acts trivially on XT and 8L and acts on ZH through a unitary representation. 
Therefore, the action of G on Z’ is also a unitary representation 

G 3 g - U(g) = (U(g)-Y* (3) 

which is a function of time. This time-dependence reflects the fact that 
SU(3) x SU(3) (and its subgroups) is an approximate symmetry. 

Equation (3) defines also an action of G on Z(X), the vector space of the 
linear operators on Z, 

Jqsq 3 A - U(g) AU(g)* = U(g) AU(g)-1. (4) 

This is a linear representation equivalent to U @ U = U @ (U-l)T, the tensor 
product of U(g) and its complex conjugate. 

If we assume that the representation U(g) is infinitely differentiable, we can 
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derive from it a representation (up to a factor i) of the Lie algebra ‘32 of G by self- 
adjoint operators on 2: 

%3a-F(u) (5) 

[F(u), F(b)] = iqu A b) (6) 

where A denotes the Lie algebra law. 
Let d be a vector space, D a linear differentiable representation of G on d and 

L the corresponding representation of 8. 
A G-equivariantl operator T between two representation spaces ~5~ and C$ is 

a vector space homomorphism G; -+ & which commutes with the group action 
on each space: 

Vg E G : TD,( g) = D,(g) T. 

This is equivalent to 

TL,(u) = L,(a) T. (8) 

If Tl and T2 are G-equivariant operators, so are AT, and Tl + T2 . Hence the 
equivariant operators between G; and & form a vector space whose dimension2 
will be denoted by ~(8~ , 8J = ~(8~ , ~9~). 

In the physics literature, an b-tensor operator for G on Z? is a G-equivariant 
operator 8 -+ 9’(Z). Explicitely, 

%eG, VIII E d : U(g) T(m) U(g)-l = T(D(g) m). (9) 

This implies 

[F(u), T(m)] = iT(L(u) m). (10) 

Equation (6) is a special case of Eq. (10) for d = 9, the vector space of 9, 
and T = 8’. If D is an irreducible representation, T will be called an irreducible 
tensor operator. It is important to note that the values T(m) of T are operators 
on Z, but T itself is not. When all values of T are self-adjoint operators on 2, 
the representation space d is real, and the representation D of G on d is a real 
orthogonal representation. We denote by (m, , mJ the Euclidean scalar product 
that it leaves invariant. 

The linearity of the dependence of Ton m is essential even though in the physical 

1 A rarer synonym of “equivariant” in the mathematical literature is “intertwining.” 
* Sometimes called the intertwining number. 
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applications we will consider the values T(m) of T only for vectors m normalized 
to one.3 

We will denote (when it does not lead to ambiguities) the irreducible representa- 
tions of SU(3) by their dimension: for example, (l), (3), (3), (8) are, respectively, the 
trivial, the fundamental representation, its complex conjugate, and the adjoint repre- 
sentation, whose space we shall also call the octet space. The irreducible representa- 
tions of SU(3) x SU(3) are the tensor product of two irreducible representations 
of SU(3). We will denote them by a pair (m, n), where (VI) and (n) are the irreducible 
representations of the two SU(3) factors which are called the SU(3) chiral groups. 
The adjoint representation (1.8) @ (8,l) of SU(3) x SU(3) is reducible. The 
representation (3,5) @ (3, 3) is reducible on the complex but is irreducible as 
a real representation. 

We use latin letters a, b,... for the elements of the octet space. The elements of 
the Lie algebra space of SU(3) x SU(3) will instead be denoted by d = a, @ a- 
where a, and a- are, respectively, elements of the first and second octet spaces 
with opposite chirality. 

A vector (2 belongs to the Lie algebra of the diagonal subgroup SU(3)d if 
at = a- = a, i.e., if rZ = a @ a. 

The usefulness of considering the action of SU(3) x SU(3) on S is due to the 
fact that, at each instant t, the observable operators on SF can be approximately 
considered as the values of SU(3) x SU(3) tensor operators. Here, we only list 
the assumptions that are commonly made about the most important operators. 

(i) The hadronic electromagnetic current j&(x) and the charged vector and 
axial vector weak current ZQ~(X) and u*“(x) are the values of a (8, 1) @ (1, 8) 
tensor operator h‘(x) for different vectors of &I6 , the space of the representation 
(8, 1) @ (1, 8). Precisely, 

,&(x) = - d\/o &(x; 4”), (11) 
L’*U(X) = pzqx; c+ @ c*), (12) 

u*qx> = yzqx; c+ @ -c*), (13) 

& IL - UfU = /iqx; Q, (14) 
where 

(1% 

3 For example, for the rotation group, J(n) = niJi , also denoted J . n, is the angular momentum 
operator in the direction n when n2 = I but it has no name for n2 = (n . n) # 1. 
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and q, c1 , c2 are normalized real vectors of the octet; thus 4, ZI , Z2 are normalized 
real vectors of 4F16 . 

(ii) The representation of the SU(3) x SU(3) Lie algebra on 2 is given at 
each time t by the space integral of the time component of the tensor operator 
hu(x) : 

F(Z) = 1 d3x hO(x, t; 2). (17) 

The operators F(u) would be time-independent if for all C’s 

a,h”(x; 2) = 0. (18) 

The operator 

QH = -x’j j d3x hO(x; q) = 1 d3x jzm(x) = - v’$F(q) (19) 

represents the hadronic electric charge (in units of the proton charge). QH is 
conserved in all but the weak semileptonic transitions. 

The hypercharge operator Y is of the same form 

where 

and y and q are two normalized octet vectors on the same SU(3) orbit. 

(iii) The component He, = Jd3xj&(x) A,(x) of the total energy H which 
arises from the interaction of the hadrons with the electromagnetic field is the 
value at 4” of a (8,l) @ (1,8) tensor operator. 

Similarly, the component 

which arises from the interaction with the charged leptonic currents is the value 
of the direct sum of two (8,l) 0 (1,8)-tensor operators taken, respectively, at 
E+ and Z- . 

Assumptions (i), (ii), and (iii) appear to be well verified by experiment. Somewhat 
more uncertain and still in need of precise verification are the following assump- 
tions: 
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(iv) The component Hs of the total energy operator which arises from the 
strong interactions is the sum of two terms H, = Ho + H(m), where the first 
term is an invariant operator and the second is the value at m E c!& of a 
(3,3) @ (3, 3)-tensor operator. 

(v) The nonleptonic Hamiltonian H NL when expanded in terms of irreducible 
SU(3) x SU(3) tensor operators contains predominantly a (8, 1) @ (1, 8) com- 
ponent in a direction I = 0 oz. This assumption is the simplest generalization 
of the assumption that HNL transforms like an octet for the diagonal SU(3) [3]. 
Actually this, in turn, is the simplest explanation, in the frame of SU(3) invariance, 
of the experimentally observed selection rules for isospin and hypercharge: 
dT=lorO,dY=OanddT=&,dY=l. 

With these assumptions, the total hadronic Hamiltonian can be written as 

H = Ho + H,(m) + H,,(4) + c H&i) + &.&). (23) 
i=1.2 

H-H,, is thus the value of a reducible tensor operator for the vector 

i = m @ q @ Tl @ Z2 @ 2 E d = cF18 0 El6 0 c& 0 &I;6 @ f& (24) 

(see Appendix 1 for the direct sum of irreducible tensor operators). If also H,(m) 
is, like the other terms, the integral over space of a scalar (under the Lorentz 
group) energy density, we can write H in the form 

H = H, + s d3x !?j(x; y^), (25) 

where only the second term in the right hand side contributes to the time depend- 
ence of the operators F(d). Equation (18) then becomes 

aJz$Y; n) = sj(L(iq i), (26) 

where r^ E d is defined in (24) and L is the representation of the Lie algebra on 
this space. Equation (26) is a generalization of the equations considered by 
Veltman [4]. 

III. G-INVARIANT ALGEBRAS 

Let d be the space of the finite-dimensional representation D of G. The tensor 
product D @ D is the representation of G on d 0 b. An algebra CZ on d is a 
homomorphism 

G@dS&. (27) 
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If QZ is a G-equivariant mapping, G is an automorphism group of the algebra OZ. 
We will call such an algebra a G-invariant algebra. If ~(6 @ 8, S) = 1, this 
algebra is uniquely defined up to a dilation (x + Xx). The decomposition of the 
tensor product d @ d into symmetrical and antisymmetrical components 

d @ d = (B & a> + (& & a> (28) 

is compatible with the group action. 
Let G be SU(n) or U(n) or the direct product of several such groups. If d is the 

space of the adjoint representation, ~(8 @ b, 8) = 1 and the corresponding 
G-invariant algebra is the Lie algebra. For IE > 2, ~(8 OS &,a) = 1. The corre- 
sponding G-invariant algebra will be called the symmetric algebra. For SU(3) 
we denote its law by v. 

We use the same symbol v for the law of the SU(3) x SU(3) invariant symmetric 
algebra on the space of the adjoint representation 

a,b = (a+,b+) 0 (a-vu (29) 

For the space 8r8 of the representation (3,3) @ (7, 3), we have 

(30) 

This defines uniquely a W(3) x SU(3)-invariant symmetric algebra on &IS whose 
law will be denoted by T. In Appendix 2 we give an explicit realization of these 
algebras. 

The hadronic physical quantities are at each time tensor operators for 
SU(3) x SU(3). The invariance of hadronic physics under this group is expressed 
by the covariance of the equations satisfied by these tensors. A covariant relation 
between the values of tensor operators implies a geometrical equation for their 
arguments. If the arguments of these tensor operators belong to the same represen- 
tation space 8, the covariant equations are expressed in terms of the invariant 
algebra laws on 8. The simplest equation for one variable on 8’;, or C$~ are, respec- 
tively, of the type 

Z,f-AhR =o, (31) 

XTX - Ax = 0, (32) 

where X is an invariant which can be a function of the corresponding vector of x. 
Due to the unicity of these symmetric algebras all covariant quadratic equations 
among GIB or &IS tensor operators depending on the same argument, give rise to 
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Eq. (31) or (32). The covariance of these equations implies that when a vector is 
a solution, all the vectors on the same SU(3) x SU(3) orbit* are solutions. 

It is a remarkable fact that all the vectors of 81;6 which we have introduced in 
(i), (ii), (iii), (v), are solutions of Eq. (31). 

In Table I we list all the solutions of Eq. (31), of Eq. (32) and of the corre- 
sponding equation on 8. for the two cases of real and complex algebras. We 
remark that 8s) cF’& , C& are spaces of real representations, so the corresponding 
G-invariant algebras are real. However, these spaces and their algebras can be 
complexified; solutions of Eqs. (31) and (32) for the real algebra are also solutions 
for the complex algebra, but the converse is not necessarily true. 

Equation (32) has two types of solutions (for either the real or complex algebra). 
We give explicitly in Appendix 2 one example for each type of solutions satisfying 

n,n = 2/g n; YTY = 0. (33) 

These vectors would be good candidates for m, the direction of H,(m) (see iv), 
if SUd(3) or SU,(2) x SU,(2) x U,(l)d were exact symmetries of the strong 
interaction Hamiltonian (the second case corresponds to vanishing n-meson 
mass). According to Gell-Mann, Oakes and Renner [5], m is a linear combination 
of the two vectors (33): 

( 1 
m = y cos w - -= sin 0 + 2/$ n sin w 

d/2 1 (34) 

with 
2/2 - 1.25 

tg UJ = 1 + (1.25) XC! 
= .058 (35) 

In this model, therefore, m is much closer to n than to y. 
A number of other G-invariant relations exist among the physical directions of 

the octet and r& spaces. 
In the octet space, the vectors that we have defined so far are: 

y, the direction of the hypercharge, Eq. (21) 
q, the direction of the electric charge, Eq. (15) 

z, defined in (v), that we can call as the direction of the weak hypercharge 

c, , the directions of the weak currents, Eq. (16). 

4 The orbit C(m) of a point m of a space is the set of all the transformed of m by the group G. 
The little group G, of m is the set of transformations g E G which leave m invariant. All points 
of the same orbit have conjugated little groups i.e. G ~~ = gG,g-‘. The nature of an orbit is 
completely characterized by the little group of one of its points. 
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They satisfy the following equations: 

YVY +v =o; 4v4 + 4 = 0; Z”Z + z = 0; 

C +vc+ = 0 = c-“C- ; 

and the relations 

where 

z = 2c +vc- = qvc, = c2vc2 = c3vc3, 

and 

czk = &Cl It icz), c3 = ClAC2 3 

qAci = fi s c+ 2 . 

(36) 

(37) 

(38) 

(3% 

(40) 

The Cabibbo angle 0 is defined by 

(y, z) = 1 - $ sin2 0. (41) 

It is remarkable that when sin 0 # 0, the direction of the electric charge q is 
uniquely given by the hypercharge and the weak currents. Indeed, 

2u - (Y, 4) 9 + 2YvZ + Y + z = 0. (42) 

The fact that y and q or q and z are directions of commuting charges: 

Yn9 = 0, qr,z = 0 (43) 
is equivalent to 

(Y, 4) = -if = ts, 4 (9 
or 

yvq=q+y; q,z = z + 4 (45) 

On C6 , Eqs. (361, (37), (381, (391, (431, are still valid when one replaces y, q, z, c+ , 
c- by 9, q, I, Z+ , i . Besides, one has 

(9, 8) = - + ; (y,.Z) = -$(l - +sin2 8), (46) 

and 

(47) 
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IV. EXTENSION BY THE DISCRETE SYMMETRIES C,P,CP 

Strong and electromagnetic interactions are invariant under C, the charge 
conjugation which exchanges particle and antiparticle. Thus C should be included 
in the internal symmetry group G, and since C2 = 1, charge conjugation generates 
the two element subgroup Z,(C) of G. 

An interesting feature of chiral internal symmetry, i.e., SU(3) x SU(3) or 
SU(2) x SU(2), is its connection with relativistic invariance through the space 
symmetry P which is both an outer automorphism of the connected Poincare 
group and of SU(3) x SU(3). Its action on the latter is to exchange the two SU(3) 
factors. 

By definition, C commutes with every Poincare transformation including P: 

CP = PC (48) 
and 

c2 = P2 = I = (CP)Z. (49) 

Thus C, P generate the group 2, x Z, whose elements induce, on SU(3) x SU(3), 
the following outer automorphisms: 

(u+ 7 UJ -5 (ii- ) ii+), (50) 

(u+ 7 u-1 ----L (u- > u+), (51) 

(u+ 3 UJ CL (U+ ) Ir-), (52) 

where (u+ , U-) is an element of SU(3) x SU(3). 
From the theory of group extensions [6], it follows that there is a unique exten- 

sion of SU(3) x SU(3) which satisfies (48) and (49) namely, the semidirect product 

G = (SU(3) x SU(3)) El (Z,(P) x Z,(C)). (53) 

Similarly, it can be proved that the only extension of SU(3) x SU(3) by Z,(X), 
where X = C, P, CP, is the semidirect product 

Gcx’ = (W(3) x W(3)) q Z,(X). (54) 

Letgw D(g) be the representation of a group G, , and X an automorphism of GO ; 
then g -+ D(X(g)) is a representation of G, that we denote as Dx. When 
G, = SU(3) x SU(3), and X is C, P, CP, we find 

(m, n)C = (ii, rn), 
cm, 4’ = (4 4, (55) 

(m, n)” = (m, ii). 
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Thus, the representations (1, 8) @ (8, 1) and (3 @ 3) @ (3, 3) are invariant (up 
to an equivalence) by C, P, CP. 

The method to build the representations of an extended group G from those of 
G, is well-known [7]. When we apply it to G, equal to SL1(3) or SLT(3) x SL1(3), 
we find, using (55) for the latter group, 

(i) The octet space can carry four inequivalent representations of the group 
SU(3) 0 (Z,(P) x Z,(C)) which we denote by 

XV with c2=p2=1. (56) 

(ii) Each space &I;6 and &1s carries two representations of the full group G 
[Eq. (53)]. We denote them by 

(0>8> 0 (8, I))“, 3 = 1, ((323) 0 (7 3)Y, 72 = 1. (57) 

Under C, the vector currents are odd and the axial vector currents are even. 
The time component of a vector is invariant under P while that of an axial vector 
changes sign. From this we deduce that the F(d)‘s of Eq. (17) are odd under CP 
and that F(a @ a) is the value of a -8+ tensor operator for SU(3) 0 (Z,(P) x Z,(C)), 
F(a @ -a) is the value of a +8- tensor operator for SU(3) 0 (Z,(P) x Z,(C)), 
and the F(‘(d)‘s are the values of a ((1, 8) @ (8, I))- tensor operator for 
(SU(3) x SU(3)) 0 (Z,(P) x Z,(C)). Since strong interactions preserve P, C, PC, 
with Eq. (7) we find, for the direction m of the strong Hamiltonian H,(m), 

D(P)m = m 2 D(C) m = m. (58) 

This requires that D be the ((3, 3) @ (3, 3))+ representation. 
We remark that neither the group nor the irreducible representations (up to 

an equivalence) are changed if we conjugate the automorphism P, Eq. (51), of G, 
by an inner automorphism. Physically, this means the possibility to “redefine” 
parity in the internal symmetry space (see Ref. [lb]). 

V. THE ACTION OF THE INTERNAL SYMMETRY GROUP ON THE UNIT SPHERES OF 
THEIR REPRESENTATION SPACES 

In Section III, we have seen that the physical directions are the solutions of 
simple algebraic equations covariant under the internal symmetry group 
SU(3) x SU(3). We will show in this section that for the physical models which 
blend a variational principle with the invariance under a compact group G, these 
directions are the positions of extrema which depend only on the geometry of 

595/w2-24 
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the group action and are independent of the function which is varied, i.e., they 
are independent of the details of the dynamical model5 

We begin by recalling some properties of the differentiable action of a compact 
Lie group G on an infinitely differentiable manifold M. This action is given by 
a smooth (=infinitely differentiable) mapping 

satisfying 

@(g11 @ks Y ml) = @k,g, T 4. (59) 

We will often denote @(g, m) simply by g.m. We call M, with the action @ of G, 
a G-manifold and we denote it by (G, M, @). 

An equivariant smooth map (G, M, @) % (G, M’, @‘) is a smooth map A4 z M’ 
commuting with the action of G: 

vg E G, YrnEM, d@k 4) = @‘k dm)). (60) 

If y is bijective (i.e., one to one, onto) and if r,o and y-l are smooth, then the 
two G-manifolds M and M’ are said to be equivalent. 

The orbits of G on M are closed smooth submanifolds. Two orbits are iso- 
morphic G-manifolds iff (=if and only if) the little groups of their points are all 
conjugated. 

We call a stratum the set of all points of M with conjugated little groups and 
we denote by S(m) the stratum of m. The stratum S(m) is the union of all orbits 
isomorphic to G(m); it is a submanifold of M. 

Consider a real smooth functionf defined on M and invariant by G : f(g . m) = 
f(m), i.e., constant on the orbits of G. Let df be its differential. We have conjectured 
the following theorem (which has been proved by one of us [8]). 

THEOREM 1. Let G be a compact Lie group acting smoothly on the real manifold 
M and let m E M. The two properties (a), (b) are equivalent. 

(a) The orbit G(m) is critical, i.e., the d$erential dfn, of every smooth real 
G-invariant function f on A4 vanishes for m’ E G(m). 

(b) The orbit G(m) is isolated in its stratum, i.e., there exists a neighborhood 
V, of m such that if p $ G(m), p E V, , then G, is not conjugated to G, .6 

Other useful mathematical properties of G-manifolds are given in Appendix 3. 

5 References for such models are given in our previous papers, ref. 1. 
6 This theorem is a generalization of the remark that for every smooth even function on the 

real: f(x) =f(-x), L&/&(O) = 0. 
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Let us call {G,} the set of little groups, up to a conjugation, which appear in 
(G, M, @). It is known that if G,,, is maximal in {G,}, then S(m) is closed. We also 
proved [8] 

THEOREM 2. [f S(m) is closed, either S(m) has one orbit (which is then isolated 
in S(m)) or, for every invariant smooth real function ,f on M, df vanishes on at least 
two orbits of S(m). 

Thus there are always extrema for “maximal” little groups,i but the positions 
of these extrema may depend on the function. 

In the physical applications that we study here, G is either SU(3) or 
SU(3) x SU(3) or one of their extensions by C, P, CP; @ is the linear action on 
4 or q6 or 6s, and M is the sphere of the unit vectors of these real spaces. Let 
x, y be points of one of these spaces and xv y be the product for the G-invariant 
symmetric real algebra introduced in Section III. Let f be a smooth function on 
the real, and f’ be its derivative; then f(x, xv x)) is a G-invariant function on the 
unit sphere, (x, x) - 1 = 0 of b. Using the Lagrange multiplier X, we find that 
the extrema off on the sphere are given by 

grad(f + h(1 - (x, x)) = 3x, xi’(x) - 2Xx = 0. (61) 

i.e., x is an idempotent or nilpotent of the symmetric algebra (if X or f’(x) # 0). 
It is convenient to introduce the orbit space M/G which is the set of orbits of 

(G, M, 0) with the quotient topology. For instance, one orbit G(m) isolated in 
its stratum is in M/G, a point which forms a connected component of &S(m)), 
the image of the strata of m. Also S(m) is closed iff F(S(m)) is closed. 

In all the examples that we shall study, M is compact, and therefore the number 
of stratum is finite. Moreover, there is a stratum which is open and dense which 
we will call the generic stratum. 

EXAMPLE 1. G = SU(3), M = S, , the unit sphere of the octet space &s . The 
orbit space is the set of values of the invariant (x,x, x). It is the closed interval 
A’A of Fig. 1: 

-1 < (x,x,x) < 1. (62) 

There are two strata. The generic one is represented by the interior 4(A’A) of A’A. 
The other stratum contains two orbits A and A’ which are therefore critical. 

A’ 0 A 
. . 

FIG. 1. Orbit space of S,/SU(3). 

’ A trivial example, when it exists, is G, = G, the little group of the (closed) stratum of fixed 
points. 
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EXAMPLE 2. G = (W(3) q Z,(C)) x Z,(P); M = S, the unit sphere of the 
c(S)P representation with c + p + cp = -1 (i.e., +(S)+ is excluded). 

This example applies to both octets of vector and axial vector currents. P changes 
x into px; so it changes (xvx, x) into p(x, x, x), and C changes (xvx, x) into 
c(xVx, x). So M/G is the interval OA (see Fig. 1): 

0 < (X”& 4 < 1, (63) 

and there are three strata. The generic one is 9(OA), and the two others have each 
one orbit which therefore is critical. These two orbits are: 

A, whose little group is U(2) x Z,(P), 
0, with little group (U, x U, x Z,(P)) 0 Z,(C). 

The physical vectors y, q, z and c1 , c2 belong, respectively, to the orbits A and 0. 
This example is summarized in Table II. 

EXAMPLE 3. G = SU(3) x 5’173); Mis S1,, the unit sphere of the (1,8) 0 (8, 1) 
{= a?$,) representation space &I;6 . The points of S,, are 2 = x+ @ x- such that 
4, f x+ 3 x,) + (x- , x-) = 1. A complete set of linearly independent invari- 

ants is: 

a! = (x, 7 x+)7 e+ = (x+vx+ 2 x+)7 e- = (x-l/x- ) x-). (64) 

FIG. 2. Orbit space of S&W(3) x W(3)). 
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Strata on 

Group Manifold Stratum S NCCvS NS 

S, in the 9@4 
SW3)O(Z,(C) x-am representation 0 

space of -(8)+ A FIG. 1 

Fig. 2 Interior axes/4 
Interior of faces/4 
(X(A V,)U$( VID) + 3 symmetric)/4 
(Y(AK) + 3 symmetric)/4 

S,, in the X(0 VaJf@ VA/2 
representation 9(OA,)uI(OA,)/2 

NJ3 XSW3)O(Z,(P) x Z,(C)) space of 4(OJ)UY(OK)/2 
((1, g)O(g, I))- A+B+C+U4 

VI + v2/2 
&+A,/2 
K+ J/2 
0 FIG. 2 

Fig. 3 Interior/Z 
(Surface-ABB’)/2 

S,, in the 4(ABB’) 
(SU(3) xSU(3))o(Z,(P) x Z,(C)) representation Y(AB)uS(BB’)uY(AB’) 

space of r--B--B’/2 
((3, %@, 3))+ B+B 

A FIG. 3 

1 
1 
1 

1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
2 
1 

if 
M 

g 

M 
M 
M 
M 
M 

g 

M 
M 

This table resumes the information obtained on the examples which correspond to the full physical 
of the image p(S) of the stratum in the orbit space; NS = nature of stratum; g = generic; M = closed 
dim y(S) = dimension of the image of the stratum in the orbit space; dim 0 = dimension of orbit = 

In a rectangular coordinate system 

cf = 1 - 2lX, 77 = e,i&, 5 = e-ldi - a, (65) 

the orbit space is the tetrahedron ABCD (of Fig. 2) whose vertex coordinates are 

41, 0, l), a, 0, -11, W-1, --1,O>, D(-1, l,O). (66) 

There are 8 strata: the interior 4(ABCD) is the generic stratum; two other strata 
are the interior of the pair of opposite faces; the interior of the edges form three 
strata, 

9(AB) u 9(AD) u J(CB) u J(CD), 9(AC), $(BD); (67) 
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TABLE II 

Little Group dim S dim v(S) dim 0 c Physical Example 

7 
6 
4 

15 
12 
9 
5 

13 
13 
13 
4 
8 
8 
6 

12 

17 
14 
16 
13 
9 
8 
9 

1 
0 
0 

3 
2 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

3 
2 
2 
1 
1 
0 
0 

6 
6 c Cl 7 c2 
4 c 4,Y. z 

12 
10 
8 
4 

12 
12 
12 
4 c z” 
8 c 49 
8 c? 
6 I - c Cl 9 c2 

12 c? 

14 
12 
14 
12 
8 
8 c fm(w=tan-l vT)=n 
9 c m(o=O)=y 

situation (examples 2,4,6). Abbreviations for the columns: NC&S = number of connected components 
stratum because the little group is maximal in the set of little groups; dim S = dimension of stratum; 
dimension of the group minus that of the little group = dim S-dim q(S); c = critical orbit. 

the vertices form two strata (A, C} and {B, D> each containing 2 orbits which are 
the onIy critical ones. 

EXAMPLE 4. G = (SU(3) x SU(3)). (Z,(P) x Z,(C)), M = S,, the unit sphere 
of 46 9 the space of the representation ((1, 8) @ (8, l))- which is that of the 
hadronic currents. Figure 2 still represents the orbit space when the points repre- 
senting the same orbits of the complete group are identified. 

Indeed, P acts on the orbit space ABCD of SU(3) x SU(3) as a rotation by T 
around the axis V, V, (V, is the middle point of AD, Vz the middle point of BC); 
C acts as a rotation of TT around the axis A,, A, (A, is the middle point of AB, 
A2 the middle point of CD) and CP acts as a rotation by T around the axis JK 
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(K is the middle point of AC, J the middle point of BD). Therefore, for the orbit 
space we are studying,we have to identify the points of Fig. 2 which are symmetric 
with respect to the axes A,A,, V,V, , JK. In the general case, four orbits of 
SU(3) x SU(3) form one orbit of G, the extended group, and the little group is 
unchanged. Except for the point 0, the representatives of orbits of SU(3) x N(3) 
on the symmetry axes V,V, or A,& or JK have only one distinct symmetric point 
with respect to these 3 orthogonal axes and this point is the symmetric with respect 
to 0. These two symmetrical points form one orbit of the extended group G and 
the little group is doubled (i.e., extended by a Z,). 

Table III gives the action of P, C, PC on the points A, B, C, D, VI , Vz , A, , 
A, , I, J. From it one deduces immediately the action on the edges and faces. 

TABLE III 

Action of the Group {I, P, C, PC: on the Points of Fig. 2 

Group 
element 

I 
P 
c 

PC 

Points of the tetrahedron ABCD 
.- 

A B C D VI V2 A, A, J K 
D C B A V* V, A, A, K J 
B A D C I’* V, A, A, K J 
C D A 13 V, VI A2 A, J K 

There are twelve strata: The generic stratum is the interior of ABCD minus the 
axis V,V, , A,A, , JK, and each orbit is represented by 4 points; the interior of the 
faces form one stratum (4 points, one on each face, represent one orbit); the 
interior of the edges form two strata; the interior of each axis forms a different 
stratum (indeed Z,(P), Z,(C), Z,(CP) are not conjugated in G); finally, there are 
five strata of one orbit each (which is therefore critical): 

A + B + C + D, V, + V,, A, + A,, J + K, 0 

Table II lists the strata of this example. 

EXAMPLE 5. G is SU(3) x SU(3), M is S,, , the unit sphere of the real repre- 
sentation (3,3) @ (3, 3). 

As we have already said in Section II, this representation is reducible on the 
complex but irreducible on the real; thus there is not only an invariant scalar 
product (x, y) but also an antisymmetrical invariant bilinear form which is repre- 
sented by the real matrix A = -AT which we normalize to A2 = -I. With the 
help of the symmetric algebra (see Section III and Appendix 2), we can write a 
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complete list of linearly independent invariants for the unit vectors ((x, x) = 1) 
of s,, : 

p = (x,x, qx); Cl = (x,x,x); u2 = (x,x, Ax). (68) 

We choose a system of orthogonal coordinates 6, 7, 5, defined by 

h’= q2 + 02 2 = 5 X(4 - 4h + x2 - p), 

x = P + q2, 1 3 0, 

m = Ull~‘, rllh = u2/x, 

p = 3(4 + 4h - 3P - 1;“). 

The orbit space is defined by 

0<5<2, 

and 
5 

( 1 - - 1 2 2 - ; ((2 + 7j2) > 0. 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

The orbit space is a part of a circular cone whose vertex is &O, 0, 2) and whose 
basis is the circle r : 5 = 0, 6” + q2 = 4/9 (see Fig. 3). 

There are four strata: The inside is the generic one (little group (U, x U#); 
the surface of the cone is another stratum (little group U(2)d); the circle I’ is a 
closed stratum (little group SU(3)); the vertex A is a stratum made of one (critical) 
orbit with little group SU(2) x SU(2) x U(l)d. 

E 
FIG. 3. Orbit space of &/(SU(3) x W(3)). 
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EXAMPLE 6. G is (SU(3) x SU(3))D(Z,(P) x Z,(C)) and A4 is S,, , the unit 
sphere of &I8 , the space of the ((3,7) @ (5, 3))+ representation. 

P acts on the orbit space of SU(3) x SU(3) on S,, as a symmetry with respect 
to a plane which contains the cone axis; with a suitable definition of P (which 
exchanges the two SU(3) factors) this is the plane q = 0. C has the same action 
as P, so CP acts trivially on the cone. 

In the general case, orbits of the enlarged groups are pairs of orbits (symmetric 
with respect to the plane ABLY) of SU(3) x SU(3) and their little group is extended 
by Z,(CP). Instead the orbits of SU(3) x SU(3) in the plane ABB’ are also orbits of 
the enlarged group, and the little group is extended by Z, x Z, . To the four strata 
of the previous example, one must add two others: Y(AB) u 9(BB’) u 9(B’A) 
and {B, B’} a stratum which contains two (critical) orbits. 

This example is also tabulated in Table II. 

VI. FINAL REMARKS 

The directions of the Hermitian weak currents and of the electric charge, 
hypercharge and weak hypercharge c1 , c2 , q, y, z and c”1 , & , ij, g, I are on critical 
orbits. In &I8 , n (with SU(3) symmetry) and y (SUU(2) x N,(2) x U,(l)d sym- 
metry) belong to critical orbits; this is not the case for the vector m, the direction 
of the strong hamiltonian Hs(m), which is invariant only under U(2)d 0 (Z,(P) x 
Z,(C)). The vector m belongs to the fourth listed stratum of Example 6 whose 
orbits are parametrized by q~ (defined module 2~) and w, with 0 < w < ~12, 
o # tan-l 42. In Eq. (34) we gave the value of w = .058 radians in the model 
of Ref. [5]. The value of v is related to the arbitrariness in the definition of the P 
operator on the internal symmetry space. We have chosen y = 0. 

One cannot expect to deduce the actual value of w from pure geometrical 
considerations. This value probably depends, as that of 6, the Cabibbo angle, 
upon the details of the dynamics. It is tempting to assume that w and 0 satisfy 
some relation which, for instance, could explain why both are small. This relation 
should be built in terms of the invariants of SU(3) x SU(3) if the dynamics 
correspond to a spontaneous breaking of this symmetry. 

There is no invariant linear in both vectors f and m. Those linear in 2, quadratic 
in m are (use Eq. (89)) 

(m, D(Z) m) = 0, 

,f = (m, AD(5) m) = - -& (1 - 4 sin2 0) (1 - s sin2 w). 

Many higher degree invariants are function of those of lower degree. 
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For example, 

(D(Z) m, D(2) m) = y$ (d/3 -f). 

We note that in &1, all but two critical orbits contain physical vectors. We have 
suggested earlier [9] that the CP violating term in the total Hamiltonian might 
be along a direction belonging to an unused critical orbit. 

To conclude, it seems to us that the remarkable mathematical properties of the 
direction of symmetry breaking constitute an interesting empirical fact which 
probably cannot be ignored if one wants to understand the breaking of hadronic 
symmetry. In particular, we have established that the physical directions are 

(i) idempotents or nilpotents of a real symmetric algebra 02, which has the 
compact symmetry group G as automorphism group; 

(ii) idempotents or nilpotents of the complex algebra GZ’, the complexified 
of C72. Then G’, the complexified of G, is a group of automorphisms of GY’. 

(iii) on critical orbits of G acting on the unit sphere of the vector space of a. 

We have shown that (i) can be deduced from (iii) but we do not yet know the 
connection between (ii) and (iii). 

APPENDIX 1: TENSOR OPERATORS 

In this Appendix, we consider a group G and different tensor operators valued 
on a given Hilbert space Z. In the physics literature, one generally uses an 
orthonormal basis (ei , eJ = aij on the k-dimensional representation space 8; 
the value T(e,) of the tensor operator Tat ei is often denoted by Tik’ and is called 
the i-th component of T. If x = tiei (summation over repeated indices is always 
implied), we can thus write 

T(x) = &T!” z z * (75) 

Let Tl , T, .‘. be &I , ~2~ ... tensor operators; then T,(a,) + T,(a,) is the value at 
a, @ a2 of a &I @ & tensor operator that we will denote by Tl @ T, . The product 
of operators T,(a,) T,(a,) is the value at a, @ a2 of a ~5~ @ C$ tensor operator that 
we denote by Tl @ T, . This is true when &I and C& are either different or equivalent 
representation spaces of G. In the latter case, 

T&4 + T&9 (the same a E 8) 

is the value for a of a 8 tensor operator that we denote by Tl + T, . 

(76) 
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APPENDIX 2: REALIZATION OF THE OCTET SPACE, THE (1,8)@(8,1) AND 
(3,3) @(3,3) REPRESENTATION SPACES; THEIR SYMMETRIC ALGEBRAS 

The octet space is realized as the &dimensional vector space of 3 x 3 hermitian 
(x* = x), traceless (tr x = 0) matrices. The action of u E SU(3) is defined by 

x N\-t u x 21-I = u x u*. (77) 

It leaves invariant the Euclidean scalar product 

The Lie algebra law is 

(x, y) = $tr xy. (78) 

x,y = -! [x,y]. 
2 (79) 

The symmetric algebra law is 

x,y = qix,y: - +Y)z. 630) 

In the physics literature, one uses for the octet space a traditional basis Xi , 
(hi , Xi) = Sii defined by Gell-Mann, who denotes byfijk and d3 dij, the corre- 
sponding structure constant for the ,, and v algebra: 

Chi > xjAx?J =fijk 9 (81) 

(hi , hj,h,) = d/3 diik . (82) 

Every vector of the octet satisfies 

X”X”X =x. 

In the Gell-Mann basis, 

y = h3, q = -H&7 + 43 &), 

ch = $(A, f ih,) cos 19 + +(A4 f i&J sin 8. 

(83) 

(84) 

(85) 

We denote by the direct sum of two vectors of the octet, Cz = a+ @ a- , the 
elements of the representation space gi6 of the adjoint representation (1, 8) @ (8, 1) 
of SU(3) x SU(3). Then 

(4 4 = (a+ , b+) + (a- , b-1 (86) 
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and 

<%J> = (u+/lb+) 0 (a-/lb-). (87) 

The symmetric product a”, 6 is defined in Eq. (29). 
The real representation space 6& of the (3,3) @ (3, 3) representation can be 

realized as the complex 9-dimensional vector space of all 3 x 3 matrices m with 
complex coefficients. The action of (a+ , a-) E N(3) x SU(3) on m is defined by 

m 
(U+.U-) 

- u+mu-* = u+mu2 (88) 

The corresponding representation of the Lie algebra is 

L(Z) m = L(a+ @ a-) m = - i (a+m - mu-). (89) 

The restriction of the (3,3) 0 (3, 3) representation to the SU(3)d subgroup yields 
two scalars p and p’ and two octets m and m', so we can denote m by 

m = (P I m 1 I F’ I m’) (90) 

with 

m = dj (p + I’$) I + m + im'. (91) 

In the notations of Ref. [5], 

p = uo, PI = vo , m = 1.4.h. * 2, m' = vjAj . (92) 

The SU(3) x W(3) invariant Euclidean scalar product is 

(ml , w) = ttrh*m, + m2*ml) 
= ~1~2 + k’p2’ + (ml , m,) + h’, 4’1. 

(93) 

(94) 

Since the (3, 3) 0 (3, 3) is a real representation, irreducible on the real but reducible 
on the complex, this representation g- D(g) or iI - L(6) leaves invariant an 
antisymmetric bilinear form which is represented by the matrix 

A = --AT, A2 = -1, (95) 

(m, , Am,) = -(mz , Am,) = 4 tr(m,*m, - m2*ml) (96) 

= PlP2’ - P~‘P~ + (ml , m’) - (ml’, mz>. (97) 
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The W(3) x W(3) invariant symmetric algebra T is defined by 

r.+ = &Z(tr r* tr s* - tr r*s*) - &r* tr s* - is* tr r* + *{r*, s*). 

Useful identities are 

(x,x)* x = Zdet x, (x,x),(x,x) = x det x. 

We define 

(98) 

(99) 

WO) 

(101) 

W) 

(103) 

VW 

and 

Then 

so 

n(v) = (~0s v I 0 I I sin g, I 0) 

n(d, n($) = djn(--9) - y'). 

n(O) and n(r) = -n(O) 

are idempotents; also 

Y(F)T Y(F’) = 0. 

- y d/- sin y). 

In the text we denote n(0) and y(0) simply by n, y. For more details, see Ref. [l(b)]. 

APPENDIX3: SMOOTHACTIONOFACOMPACT LIE GROUP GONAMANIFOLD M 

One can define on M a Riemann metric y(x, JJ). Its average, by the Haar measure 
of G, 

507 u> = jG Y(% m> 44d with 
s G 44d = 1 (105) 

defines on A4 a G-invariant Riemann metric; so G acts on M by isometries. The 
choice of a geodesic coordinate system in a neighborhood V, of m makes the 
action of the little group G, linear on V, . The operators D(g) of this linear 
representation of G, are 
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where @(g) is the diffeomorphism m - @(g, m) of A4 for a fixed g, and d!@(g), 
is its differential at m. When g E G, , d@(g), is also a linear operator on T,,(M), 
the plane tangent to A4 at m. Let T&G(m)) and T,(S(m)) be the tangent plane at 
rrz to the orbit G(m) and to the stratum S(m). Of course, 

T,(G(m)) C L(W4) C T,&W. (107) 

The representation D [Eq. (106)] of G, on T,(M) is real, orthogonal, and leaves 
invariant the subspaces T,(G(m)) and T&S(m)). 

We split T,(M) as the direct sum of three orthogonal subspaces; 

such that 

T,(S(m)) = ~,(G(m)) 0 Q?. (109) 

One proves that the representation of G, on Q$ is trivial and the representation 
on Q’“’ does not contain the trivial representation. One also proves that if f is a 
smoo;h G-invariant function on M, then 

gradfe Qi’. (110) 

So if Q$ = 0, T,(G(m)) = T,S( m , ) i.e., the orbit G(m) is isolated in its stratum 
and, as Eq. (110) shows, gradf = 0. One also proves that QE) = 0 is equivalent 
to (a) or (b) of Theorem 1. 

We also point out to the attention of physicists the Theorem of Mostov: If 
the number of strata of (G, M, CJJ) is finite (this is the case when M and G are 
compact), there exists an equivariant map which embeds M into a finite dimensional 
Euclidean space on which G acts linearly. 
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