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This title is also approximately that of one of my
papers (Phys. Rev. 137B, 405, 1965) which appeared at the
time I accepted to give these lectures (New York meeting
1965)., Then the flow of papers on SU6 was rising tremen-
dously and it was agreed that Professor B, W, Lee would
speak more specifically on SU6 and that I would have to
speak about the many published theorems on '' mixing'' (or
rather on the impossibility of mixing) Poincare invariance
and internal symmetries.

To make a review of the twenty or more papers which
appeared on the subject in one year would have been tedious
and not even useful; in my opinion §I1.7 deals with this spe-
cific task., What I considered more important is to give the
mathematical tools necessary in order to enable a physicist
to evaluate by himself those papers if he wishes and to work
on this subject if he likes. These mathematical tools on
some aspects of structures of groups, and their extensions
are not generally given in group theory books written for
physicists.

So I have lectured on this subject in three summer
schools (Istanbul 1962, Brandeis 1965, Cargese 1965), and
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the lecture notes had to be published: (same editor for the
three schools),

I have tried to minimize the overlaps between these
three sets of lectures. This has the bad consequence that
I have here to refer too often to the two other sets (mainly
for proofs not given in this one).

Another elementary mathematical object of group
theory, that of homogeneous space (so useful for the theo-
rem of the Mc Glinn type!) is studied in chapter II and I try
to give to Zeeman's theorem the emphasis it deserves,

Although § 5 of chapter III deals with relations between
charges and spin and § 6 of chapter IV is on polarization
and isotopic or unitary spin conservation, the main theme
of the title seems even more lost in these two chapters,
Indeed for the content of the last part of the lectures (chap.
III and IV) I have been influenced by the reaction and wishes
of the audience and also the content of others' lectures
(Robinson's for chap. I, Low's and Cabibbo's for chap. IV).

These notes would not exist without Mr, Challifour,.

Not only because he has written them, but also because he
has in many places expanded them, including for instance
pieces of supplementary lectures given at night on a strlctly
private basis and to a voluntary audience.

I did not want to suppress what he took the pain to write
in detail because I trust his judgement on how to make these
notes more understandable, I thank him heartily for the
hard work he did. Of course, I did make some changes and
I am responsible for all the crimes against the English
language and all errors contained in these notes. I would
have liked to work more on these notes, but the emphasis
for this volume is on fast publication, so I beg the indul-
gence of the reader.,

I have taken the opportunity of the publication of these
notes to correct two mistakes that I have published:

In the book of Boulder Symposium on the Lorentz group,
July 1964 (Lectures in theoretical physics, volume VIIa,
University of Colorado Press, page 118), I quoted incor-
rectly Zeeman's theorem and there resulted a gap in the
proof on my theorem that all automorphisms of the Poin-
care group are continuous. This gap is filled by the slightly
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different form of Zeeman's theorem I prove in II.4. A more
direct proof on my theorem on Aut P will be published in
the 1965 Cargese Summer School notes.

Finally § IV.6 reproduces mainly my letter to Nuov.
Cimento 22, 203 1961 ''Relations between polarizations due
to charge independence'', in order to correct a silly mis-
take I made in its last equation.

I. GROUP THEORY AND GROUP EXTENSIONS.

1.0 ELEMENTARY NOTIONS.

Throughout we shall consider an abstract group G with
elements x, y, X, ...€ G. An arbitrary collection of ele-
ments of G will be denoted by M when we do not wish to
make reference to any algebraic structure of M. We shall
write M C G, If H CG and H is a group, then H is a sub-
group of G written H < G.

Consider now subsets M, N C G;we denote M( N for
the elements common to bothM and Nand M.N={z |z€ G,
z=Xy Vx € M, yy € N}.

DEFINITION 1. LetM C G then the centralizer of M in G is
CcM) ={x|x€ G,xy=yx Vy e M}

Clearly Cg(M) is the set of elements in G which commute
with all the elements of M. Further Cg M) is a subgroup

of G under the same composition law. If G were an algebra,
then @g (M) would be called the commutant of M in G, and
would be an algebra.

DEFINITION 2. The set ¥gM) = {x|x € G, x-M=M-x ]}
is the normalizer of M in G.

It is an immediate consequence of these definitions that
CcM) < MgM) < G. When M = G, Cg(G) is called the centre
of G and is an abelian subgroup.
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DEFINITION 3. K is an invariant subgroup of G if
Mg (K) = G. When K is an invariant subgroup we shall use
the notation K < G,

Exercise 1. (a) CcM)<d Mg M) M C G,
() LetM, N< G then M(N < G
(0 LetM, N G then M N4 G

See the proof in the first pages of any text book on groups.

Consider now M C G. M generates a subgroup of G
which can be found by taking products of all possible prod-
ucts of elements in M until we arrive at a set which is
closed under this operation. Let us denote this set by { M},
the subgroup generated by M. A more precise way to de-
fine {M} would be to consider K; < G where each K; con-
tains M. Then {M} = (1) Ki, {M} < G and is the smallest
subgroup of G containing M.

LEMMA 1, If H, K< G then H.K = K.H-— HK < G,

Exercise 2, (a) Prove Lemma 1. (See proof for instance
in Kurosch)
(b) IfH < G, K< GthenHK=K.H < G
(corollary of (a))
(c) If H, K < G then H.K <G, (easy)

I.1 MAPPINGS AND EQUIVALENCE RELATIONS.

Given two point sets E and E' (disregard any algebraic
or topological structure) a mapping f from E to E', written

1

E — E'

is an association to each x € E of an element x' = f(x) € E'.
E is the domainof fandIm f = {x' |X' € E', x"=f(x),x€¢ E}
the image of f. Im f is a subset of E'. We shall require that
f be single-valued i.e, to each x € E corresponds only one
f(x) € E'.
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Various properties of f which deserve special comment
are:

If Imf=E"' fis said to be surjective (onto).

2. Iff(x) =f(y) > x=y Vx,y € E, thenf is injec-
tive (one to one).

3. If f is injective and surjective, f is said to be bi-

jective,

[y
*

The identity mapping I of the set E is the bijective map

ELEwithI(x) =x, Vx e E.

Mappings may also be composed. Consider E - E! X
E' £ E' then the composition of gandf, g, fis amap E£¥ E"
such that gof (x) = g[f(x) ], Vx € E.

Given three maps f, g and h, an important property of
their composition is its associativity ho(gof) = (hog)f.

Exercise 3. (a) Given two maps E % E', E' % E show
that gof = Iz — g surjective, f injective. (easy)
(b) If furthermore fog = Ig, , then both f and
g are bijective and g is the inverse map of f
and is denoted £,

An application of the mappings of a set E is a natural
definition of equivalence classes.

DEFINITION 4. VX, y, z € E an equivalence relation is
said to hold on E if

(i) x ~x
(ii) x ~y =y ~x
(iii) x ~y, y~z2 = X ~2

where X ~y means x equivalent to y. The set of elements
equivalent to a given x € E is called the equivalence class
with representative x. By (iii) an equivalence class is in-
dependent of which member is chosen as a representative,
In particular for a set E, an equivalence class would
be the elements of a given subset. Let E' be the set of sub-
sets of E, and f a map from E to E', f maps elements of E
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into the subset (equivalence class) containing them. Then
VX ye E, x~yif f(x) = f(y) is an equivalence relation.

Exercise 4, Prove that the above equivalence satisfies Def-
inition 4.

Let K be the set of equivalence classes in E defined by
this rela*ion. If we associate to each x € E the equivalence
class to which it belongs we have a map f; from E to K,
such that the following sequence of mappings

1,
ESK & Imf, 5 E

has f, surjective, g bijective, and f injective, Further if
the elements of K are K;, then

E= UK, Ki NV K; =6 i#]j.
i

More generally, given a map E - E' , the relation between
x and y : f(x) = f(y) is an equivalence relation, We shall
denote f ' (x' ) the equivalence class whose image by f is
X' € E'. This notation is useful, but note that ™' is not in
general a map (except if f is bijective).

Equivalence relations on E then give in a natural way
the decomposition of E into mutually disjoint equivalence
classes. This may now be applied to a group G.

DEFINITION 5. Let H< G and [G : H]_ be the set of
equivalence classes in G defined by the relation

Vx,y € G x~y ifx 'y e H

That this is an equivalence relation may be verified direct-
ly
(i) x ~x — the identity is in H. This is
true since H is a subgroup.
(ii) x~y—x"'yH, but (x 'y) '=y 'x
is alsoin H — y ~x,
(iii) x ~y, y ~z —*x"ly, y 'z € Hor
(x'y) (yv'z)=x"'2 € H—x~z
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Let X be in a given equivalence class, thenVy in this class
X" y € Hory e xH. We say that y lies in the left coset
of Hby x. [G:H], is just the set of left cosets of H in G,
and the equivalence class decomposition of G is

G = LiJ Xi H, xi representatives in G for the left cosets
of H, elements of [G:H]

Similar results hold for right cosets.

Define a map G & [G:H],, by f(x) = xH, Vx ¢ G. Con-
sider a representative in G for each left coset in [G:H], ,
this defines a map [G:H];, ® G. Clearly

fok =1 identity in [G:H]
but kof #1 ., Suchk is called a section of G for the base
[G:H], .

1.2 HOMOMORPHISMS OF GROUPS.

Let G and G' be two abstract groups and f a map
GSHa.

DEFINITION 6. If x, y € G, f(x) f(y) = f(xy), fis a
homomorphism from G to G',

The essential point is that as a mapping a homomorphism
preserves the group law. When G = G', then f is called an
endomorphism,

DEFINITION 7. The setKer f= {x |x € G and f(x) =1 )
is called the Kernel of f.

Both Ker f and Im f are subgroups of G and G' respectively.

Exercise 5. (a) Show that Ker f < G
(b) Under what conditions is Im f 9 G'
(c) H'<A G'—{f'(H')4 G. (Ker f is the
particular case Ker f = f~* (ig,))
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Important special cases of homomorphisms deserve com-
ment

1. f injective, Ker f = ig and vice versa.

2. f surjective, Im f =G*

3. If Ker f = ig and Im f = G' then f is an isomorphism
and G = G'.

EXAMPLES. An endomorphism can be injective without
being surjective. For instance we denote Z the additive

abelian group of the integer and

is a map defined by f(p) = 2p, Vp € Z. f is an endomor-
phism and ker f = 0, but Im f = 2Z, the even integer which
is a proper subgroup of Z.

A typical method in the theory of groups is to parti-
tion G into equivalence classes defined by a homomorphism
f. LetK=Ker f, then K< G and xXK = Kx, Vx e G. Also
[G:H], = [G:K]g = [G:K], that is the equivalence classes
of right and left cosets of K are identical. Denote

[G:K] = G/K

and define a multiplication in G/K by (xK) (yK) = (xyK).
Then G - G/K is the canonical homomorphism between G
and its factor group by K, Im f = G/K. Conversely given
any K << G we can define a surjective homomorphism from
G to G/K such that K is the kernel.

1.3 EXACT SEQUENCES AND COMMUTATIVE DIAGRAMS.

In the following the identity in a given group G will be
denoted by i. When G is abelian additive notation may be
used, with 0 for the unit,

Given a collection of groups A, B, C,..., G,... with
homomorphisms f, g, h,... between them, it frequently
happens that not all these homomorphisms are independent,
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and the relations between them may be represented by a
diagram

A —-——————f--——-»- B ____S{___,_ D
k 1
h e
C S . E B F
A diagram is commutative if the homomorphisms given by
composition of maps corresponding to a given sequence of

arrows are independent of the path, e.g. commutativity of
the above diagram requires

f = eoh, kof = Soh koeoh = logof, ete. ...

Frequently a given commutative diagram is not complete
in the sense that the given homomorphisms imply further
homomorphisms, or a subset of them is implied by a
smaller subset of maps. We shall use ~+for implied
homomorphisms, and call a diagram complete if nofurther
~—~=lines can be inserted,

It may happen that a collection of groups Gi, G;,...,
Gn,... and homomorphisms f;, f,,... such that

b4
n

Gn — Ga+:
have the property
Imfn—lzKerfn,Vn.

In this case we say that f,, f,,..., fa,... is an exact se-
quence of homomorphisms and write diagramatically

{ { { { 1h +1
1 5 n- n
Gl — G2 L5 eee s Gn-—1 — Gn — Gn + 1 =

EXAMPLES. 1. If K< G and G & G/K we can write
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1-K5c5HG/K -1

where K & G is the injection map, i.e. Vx € K, i(x) =

x € G. An exact seguence of this type is called shortexact.
The diagram 1 — K — G means that Ker f = 1, i,e, f is in-
jective, 1 — X is the injection of the unit into K. f is sur-
jective is expressed by G - K — 1

2. 1 > K5 G — 1gives f injective i.e. K=G.

3. For any homorhorphism f there is always
the short exact sequence

1—Kerf G SImf—1,

From now on, every diagram written shall be commu-
tative and every sequence of homomorphisms represented
by arrows on the same straight line shall be exact.

Application to Abelian Groups

Consider an abelian group A and Vae A write

n
P NI

a+a+...+a=na,
Define a homomorphism from A to A by a — na, i.e.
ASA , Im n = nA.

The subgroup of elements of order n in A is the kernel of N,
we write Ker n = n A, These properties may be written

0—nA—A>A
For the infinite cyclic group generated by one element Z
(additive group of integers) Im n = nZ < Z. Denote

7/nZ = Z,. Then

0—-2Z23>3Z2Z52Zn—0
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Let U; be the one dimensional unitary group, and U; = U,
means

Vet ¢ U, »e'™ ¢ Uy,

@ a real number modulo 27. For a given n denote the n-th
roots of unity by

aUp = { e/ | fixed )
Then
0—,U, 2U; =U; —0
There is a relation between U; and Z given by:
Exercise 6. Give definitions for the homomorphisms in
0—n2—-U; »U;, —0

Returning to A, the cokernel of n is defined by A, = A/nA
and prove:

0—-aA—ASDA 5 A —oO.

This shows that exact sequences may be combined into a
longer one; indeed the previous exact sequence is equivalent
to the two following:

0—nA—A>nA—0
0—nA—-ALA —0
Application to Automorphisms.
Recall that an automorphism of G is a bijective endo-
morphism, and among these are a special class, the inner

automorphisms. Let Int G be the set of all such inner auto-
morphisms, i.e.
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Vo € IntG, Ha e G: Vxe G x S axa ?

Int G becomes a group under composition of inner automor-
phisms. Denote the set of all automorphisms of G by Aut G.
This also is a group under composition.

Exercise 7. Show that Int G < Aut G. (Proof in any text
book ).

The elements of Int G map G — G in a natural way, and
furthermore if to each a € G we associate an element of
Int G by taking the inner automorphism axa™', Vx ¢ G
thus defines a map G — Int G. fis a homomorphism under
composition of elements of Int G, Ker f is the set of ele-
ments a € G, suchthataxa ™ =x, Vx € G. This is
just the centre of G. All of these statements are contained
in the diagram

1

!

|—— C(G) - G — e IntG ———1
J Aut G

¢h
Out G/

f

1

Aut C (G)

from which we findInt G = G /C(G), and Out G = Aut G/Int G.
The last defines the group of class of outer automorphisms
of G modulo the inner automorphisms. These are all the
automorphisms which are not inner and are only determined
up to inner automorphisms.

Given that g = iof we deduce

h
1— C(G) -G 5 AutG — Out G —1

requiring Im g = Int G, If g is injective, C(G) = 1. While if
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g is surjective, Int G = Aut G and G has only trivial outer
automorphisms. Thus, C(G) = 1 and Out G = 1 imply that
g is an isomorphism.

DEFINITION 8. An abstract group G is complete if C(G) =1,
Out G = 1,

We have seen that for complete groups there is a natural
isomorphism between the group and its automorphism group.

EXAMPLES. 1. The rotation group in three dimensions,
S O (3), is a complete group.
2. The group of permutations of n objects for
n> 2, n# 6is a complete group.
3. The group of automorphisms of the Poincare
group is complete. (for a proof see L. Michel's
lectures in Cargese).

DEFINITION 9. A subgroup K < G is called a characteris-
tic subgroup of G if K is globally invariant under all auto-
morphisms of G,

By this we mean the following. If @ € AutG, x € G, de-
note the action of @ on x by x* , i.e. x = x,. Then

Vo, € AutG, Vx € K < G, x? € K

EXAMPLES. 1, C(G), the center of G, is characteristic
subgroup of G.
2. If K< G and if there is no other invariant
subgroup of G isomorphic to K, then K is char-
acteristic subgroup of G, For instance, T the
translation subgroup of the Poincare group.

Exercise 8, Show that C(G) = 1 — C(AutG) = 1. (See e.g.
Kurosch).

Some Results for Commutative Diagrams,

Consider the diagram
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A—-——g-—b-
g\
If it is commutative then f = hog.
This is equivalent to an exact sequence obtained as fol-
lows. Clearly
injection
Ker g € Ker f and Ker g —— Ker f.

bet § =g |Ker £

the restriction of g to the domain Ker f, then by commutativ-
ity
f(Kerf) =Imho@=0 — Im@ < Ker h,

Thus @ defines a map from Ker f to Ker h with Ker @ = Ker g.
The reader may verify that

Exercise 9, (a) A**B—AI—*Kerg-ﬁKerdeerh

A/b

1sexact
() AHB—1—>Kerg—Kerf—Kerh—1

gch

\1

(Proofs in Istanbul p, 157 and 172).
LEMMA 2. Consider the commutative diagram
1-ALHB=>C—1
al |, ib e
1— A% BE C

This diagram is complete.

PROOF: We have to show how to construct the homomor-
phism ¢ so that cop = p'o b. Denote group elements by
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a, B,y € A, B, Candea', ', ' A', B', C' respective-
ly.
1. p is surjective — Vo ¢ C, 3 € B: p(B8) =vy. Let
Bi, Bo € B: y=p(B) =p(B) then B;" B € Ker p.
2. Kerp=Imi— B 'B1 =i (a) for some o e A. Since
i is injective, @ is unique.
3. By commutativity of the diagram p'o boi = p} i} a hence

ploboi(a) =p'ob(f! A1)

p'ob(B1) =p'ob(pB:)

Thus the map cop = p'ob is well-defined and can be used to
define c. That ¢ is a homomorphism is easily seen, since
byl., Vy e C, HB € B: y=p (p)

Now V'}/_l, Y2 € C

c(yr ¥2) = cop (BiB2) = p'ob(BiBz) = plob(B1) Pob(B:)=
=c (y1) ¢ (y2)

where commutativity of the diagram has been used.
COROLLARY 1. p', b surjective — ¢ surjective.
COROLLARY 2, b injective, a surjective — c injective,

Exercises (a) Prove corollary 1.
(b) Prove corollary 2. This proof is equiv-
alent to the "' Five Lemma'' of Cartan and
Eilenberg: Hilton and Wylie - Algebraic
Topology page 208.

For further results on commutative diagram the reader
should look at

1. L. Michel's article in the Istanbul Summer School.

2. Hilton and Wylie - Algebraic Topology § 5.3, 5.6.

3. Cartan and Eilenberg - Homological Algebra Chapter 1,
Princeton University Press,
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4, Mac Lane: Homology (Springer).
5. Any book on '' Homological Algebra'', the simplest one
seems that of Northcott (Cambridge University Press).

PROOF OF COROLLARY 1. By 1. in Lemma 2 Im ¢ =
Im (cop) = Im (ph%b) = C'.

PROOF OF COROLLARY 2. We wish to prove the diagram
1 1

1-———————-.-A——-——i——>B-——p—-—->-gj—-————>1
a b ¢
i' p’'

1———> A'—————’B'—————*-C'

1

Since b is injective so is boi. Then by commutativity
Ker(i'oa) = 1. But Ker aC Ker(i'oa) — a is injective.
Thus a is bijective and A = A'. In the following we shall
not distinguish A and A'.

Vy € Kerc, B € B:y=p(B) and 8 € Ker (cop) =
= Ker (p%b)

Hence b(B) € Ker p' =1Im c'. Since c',a,b, c are injec-
tive, so is c'ga = boc. Furthermore a is bijective, so there
is a unique a € A such that c'ga(a) = boc(a) b(B), cla) = B,
and v = p(p) =1 hence c is injective,

1 1 1

i Y J é k * e
Az A1 AO A_l_ A..z
p Q* fl g hl
1 Y
BE_“{F““ Bl"*j'?—" Bo g o B B-:

! "5 Lemmma'',
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PROOF: Letao € Ker fthenao € Ker (k'of) = Ker (gok)
and K(ao) € Kerg=1—00 € Kerk. ~ ao=j(a;) some
a; € Al.

Now o; € Ker (j'oq) and q(a1) € Kerj', i.e.
4B, € B, : qlai) =1 (B).

Since p is surjective Ha, € A, : p(as) = B, and
Q(a1) = i'op(az) = qoi(az )

But since q is injective a; =i (@, ) and ao = joi(az) = 1.

Note that the proof depends only on the diagram struc-
ture, but not on the particular group law. It is also valid
for any kind of mathematical structure whose ' morphisms"’
can form exact sequences. Note also that by ""reversing
the arrows'' of a diagram one obtains a ''dual'' diagram;
so each theorem has its dual. For instance, ''dual 5
Lemma'' is

Try to prove it directly.

1.4 THE ISOMORPHISM THEOREMS.

We shall meet often the situation of a group G with two
distinct invariant subroups H and K. What can we deduce
from this, Let us first consider the particular case K < H

THEOREM 1. (Second Isomorphism Theorem). Let G be a
group and K < G, K < H4G, then

G/H = (G/K) /(H/K).

PROOF: Lemma 2, corollary 1 yields
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1

!

l——> K —> G —G/K—1

la o lI D' ‘c

™= H —m G —™*G/H—1

| |

1 1

and Exercise 9b tells us 1 — Ker p — Ker p'd — Ker ¢ — 1
Hence

_ G, H G
Ker ¢ = H/K so K/ < = H

In the general case, K< G. H < G have a non trivial in-
tersection H () K which is also invariant subgroup of G.
From Exercise 2¢ we also know H, K 4 G.

THEOREM 1'. (Second isomorphism theorem). If

H H.K
H A G, KAG, thenHmK = Tk
By symmetry K _ HK
HOYK =~ H
PROOF: Lemma 2 tells us
¥
l— HOK — H —a H  — o
. H K
a
| Voo e
] ————p K -—-—-—»—HK-—-—E——» HKK - 1

Lety' € H.K/K; there existh € H, k € K such that

p' (i' (k) - b(h)) ="' hence v' = p'yb(h) = cop(h) so c is
surjective, Furthermore Ker cop = Ker p'ob= (H \K) =

= Ker p. From Exercise 7.b 1 —@Ker p —Ker cop —Ker ¢ —1,
So c¢ is injective, hence the "'second isomorphism"'.



RELATIVISTIC INVARIANCE 267

The whole information concerning the general situation
1s condensed in the following diagram.

THEOREM 2, If K< G, H < G, then the diagram 1.

N

1--=HNK--= H --+ -——1 -_H _HK
l \l x HOK K
l 1
Y =
| et K - G -- G/K—-/—-:-l
\/ K _H.K
l 7 l “HK  H
RN -
1--+= Y "—-+ G/H --*>G/H)K--+1 7

THOK

S l 1
1 1/ 1 1 diagram 2

Theorem 2 is made by the combination of all subdiagrams
given by Theorems 1 and 1' or Lemma 2. We leave to the
reader to check that the union of these commutative dia-
grams still makes a commutative diagram.

1.5 DIRECT AND SEMI-DIRECT PRODUCT.

Our next consideration is the study of two methods for
forming a new group from two arbitrary groups A and B.

DEFINITION 10. The direct product of A and Bis G =AxB=
= {(a,b)| Va, a' ¢ A, b, b' € B} (a,b)(a', b') =

= (aa', bb'). G is a group under the indicated composition
law,

The subgroups A; = {(a, 1) } < G, B;= {(1,b)} < G are
isomorphic to A and B respectively. Further A;, B; < G
since Vx € G, x A, X' is the set of elements of the
form (a,b)(a;,1)(@a',b™') = (aara™',1) € A; ;so

LEMMA 3. G is isomorphicto A x B—A<d G, B G,
AMB =1, and G = A.B.
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Let us prove the converse lemma. If we feed its hypothesis
into the diagram of Theorem 2, this diagram simplifies to :

LEMMA 3' diagram 3 4 G ~ A x B.

1

AN

1——>B—>G-—->A—-—>1

NS
}

1
diagram 3

Indeed consider the homomorphism G 2% A x B which trans-
forms x € G into (f(x), g(x)) € AxB. Any xise Kerfxg
if and only if f(x) = 1, g(x) = 1 so xe Ker f () Ker g.

Hence for such an x there exista € A, B € b such that
i(b) =i'(a). So1=foi(b) = foi' (a) = I(a) = a hence a = 1;
similarly b = 1, hence f x g is 1n]ect1ve It is also surjec-
tive; givena € A, b € B, thenx=1i'(a)i(b) ¢ G is

such that (f x g)(x) = (a, b) € A x B. Indeed
(fxg)(i'@)i(b))= (foi' (a)- foi(b), goi' (a)- goi(b))= (a,b).

So f x g is an isomorphism.

DEFINITION 11, Given two groups A and B and a homo-
morphism B % Aut A, the semi-direct productG = A AB
is the group whose set of elements if the set product of the
set A by the set B, (i.e. elements of G are pairs (a, b)),

a € A, b € B) and whose group law is

b
(a1, bi)(az, by) = (a; a, ', biby)
where a, ! = g(b1) [az |, the transformed of a, by the

automorphism g (b, ).
We leave to the reader to verify that this law is a
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group law, that (a,b)™' = ((a'l)bl, b)) = ((abl)"l,b’l),
that the elements (a,1), a € A, form an invariant subgroup
of G, (indeed (a,b)(a;,1)((a~*)"", b™') = (a a;"a™*, 1), that
the elements (1,b), b € B, form a subgroup of G.

In other words,

LEMMA 4. G=A "B— A 4G, B<G, ANB=1, AB=G
We will express the converse lentma in diagram language.

LEMMA 4'. diagram4 —G=A AB
i
B
BN
i'
i p

== A—*=G— B—*1 diagram 4

Indeed i(A)Mi' (B) = 1 for if i(a) = i' (b), poi(a) = 1 =

= poi' (b) = Db so b =1 and since i injective, x = 1. So

V x € b, there exists a unique a € A and a unique

b € B such that x = i(a)i'(b). Indeed, given x, put b =

= p(x) and i(a) = x.(i' (b)) "' - Ker p. Since i(A)<d G, it
is stable by inner automorphism of G, i.e., there is a homo-
morphism G & Aut A such that x i(a) x ' = iof(x) [a]. We
denote g = foi' so i' (b)i(a)i' (b™') = iog(b)[a] = i(a").
Then the group law of G is x; X, = i(a; )i' (by )i(az )i' (b ) =
=i(a;)i(az’')i' (by)i' (b,) which is just the semi-direct
product group law,

Examples of Semi-Direct Product.

Ex. 1. The Poincare group P = T A L where T is the
translation group (elements a, b, ...)(and L the homogeneous
Lorentz group (elements A, M,...)). We chose the usual
additive notation for T, the group law of P is

(a, A)(b, M) = (a+ Ab, AM)

since physicists prefer the notation /b tob” .
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Ex. 2. More generallyinann + m dimensional Euclid-
ean space with pseudo metric

m+n

Ix1?=2 & - 2 % x=(X,.c,Xnsm)
i=1 j=1l+n

Let 0(n, m) be the n + m dimensional pseudo-orthogonal

group preserving this metric, then the corresponding dis-

placement group is the semi-direct product

P (n, m) = Tn+m /\ O(n, m) .

Another example is given by Exercise 10, Note that the
direct product K x Q is a particular case of the semi-direct
product K A Q where g : Q = Aut K, is the trivial homo-
morphism,

Exercise 10. Let A < G such that B/A = Z, Z the infinite
cyclic group = additive group of integers,
Show that G = A N\ Z,

Hint; denote p: G > Z — 1, let x € G such thatp(x) =1¢ Z

(with additive notation for Z). Show that x generates a sub-
group of G isomorphic to Z and that you get the diagram of
Lemma 4'. The group Z is the simplest ' free group''. The
exercise can be generalized to G/A = a ' free group''. (See
a book for the definition of this notion)

I.6 GROUP EXTENSIONS.,

Given two groups K, Q we ask for all groups E such
that K < E and Q = E/K. E is called an extension of Q by
K, though this terminology is not entirely settled yet in
the mathematical literature. (Some say extension of K by

Q).
When E is determined, the inner automorphisms of E
induce automorphisms of K in a natural way, i.e.,

Vxe Ejoae Ka—a"=xax"'=1(x)a, E-SAutK

Stated diagramatically,
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C(K)
vl P

] — INtKeepo AU—tK e—m OQutK . 1

b \ */
1 1 h
Aut C
diagram 5

We may read (5) in two ways. Given the extension E,
the natural map f determines g by Lemma 2, and (5) is de-
termined,

So the problem of finding all group extensions of Q by K
can be decomposed into sub-problems.

1. Find all homomorphisms g of Q into Out K. We call
Hom (Q, Out K) this set. Among them, there is the trivial
homomorphisms that are noted g = 0.

2. Given Q, K, g € Hom (Q, Out K) find all E which
satisfy diagram 5.

How does one count the solutions? We have to say when
two groups E are considered as the same solutions. There
is a natural definition of equivalence of extensions (we will
not explain here why it is natural) which exists for all kinds
of mathematical structure.

DEFINITION 12. Equivalence of Extensions, Two exten-
sions E and E' of Q by K are equivalent if there exists a
homomorphism E 4 E' such that the diagram 6 is commu-
tative.

Exercise 11, Show that this is an equivalence relation.
p

1 K E Q 1

Rt

1 K E' Q 1 diagram 6
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(The five lemma and its dual tells us that f is an isomor-
phism). Note that equivalent extensions are isomorphic.
The converse is not generally true. See at the end of Chap-
ter III for a counter example and the physical different
meanings of isomorphic but not equivalent extensions,

The semi-direct product (and its particular case the
direct product) are particular examples of extension, But
in the general case of an extension E of Q by K there is no
subgroup of E isomorphic to the quotient Q.

Such an example is given by SU, as an extension of
SO; by Z,:

1- Z, - SU, —S0; — 1

SU, is the group of 2 by 2 unitary matrix of determinant 1,
Its center Z, has two elements, the matrices 1 and - 1,
Those are the only square-root<of the unit., The three di-
mensional rotation group SO; is isomorphic to SU; /7.
This group has an infinity of square roots of 1: the rota-
tions of m, (They are image, in SU, of the zero trace mat-
rices, which are the square roots of - 1), So SOs; is not a
subgroup of SU.

If L is the connected Lorentz group and SL(2,C) the
group of two by two complex matrices of determinant 1, we
similarly have

1 —Z, — SL(2,C) — L — 1,

We shall not repeat here the elementary lectures of
Istanbul (1962) on group extensions and we shall try to min-
imize the overlap. We wish again to advise the reader to
go back to the classic mathematical papers on this subject
and we advise him especially:

S. Eilenberg and S. MacLane, Cohomology Theory in
Abstract Groups I and II, Annals of Maths., 48, 51 and 326
(1947) and references given there, chiefly those of R, Baer.

For instance we shall not give the precise criterion for the
existence of a solution to the extension problem for a given
triplet K, Q, g: Q = Out K. Let us give here only a suffi-
cient condition: the existence of a semi-direct product:
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THEOREM 3. Given K, Q, % Out K, the necessary and suf-
ficient condition for the existence of a semi-direct product
as one extension K, Q, g is the existence of a homomorphism
r € Hom(Q, AutK) such that g = ros where s is the natur-
al homomorphism Aut K = Out K — 1,

The condition is sufficient; indeed given Q = Aut K, we can
form the corresponding semi-direct product and in diagram
5 the corresponding homomorphism g does satisfy g = sor.
The condition is necessary. If there is as solution of
diagram 5 a semi-direct product, then we can imbed in it
diagram 4 (characteristic of a semi-direct product). We
then obtain diagram 7 and then homomorphism for
Q — Aut K is r = foc which does satisfy g = sor

1

v

] —

P

X . Q —1

N/

r

|
C
|
K

w

Int K -———-—-»AutK——»OutK S |

LN /e

Aut C

diagram 7

(We draw more diagrams than strictly necessary, but we
feel this makes things clearer for the reader and helps him
to memorize the situation).

Note that the condition of Lemma 5 is always satisfied
if

1. Aut K = Out K, i.e., K is abelian.

2. Aut K =Int KA Out K. Which is the case of most
of the groups met by physicists. For instance, compact
Lie groups, semi-simple Lie groups. Then there is a
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homomorphism k such that sok = I (of Out K), see diagram
8 and the corresponding homomorphism r : Q — Aut K is
r = Kog. It satisfies sor = sokog = g.

P

g
w f Out K g
5/ \
S

l—— IntK —— Aut K OutK —1

diagram 8

3. Note that it is enough that s™* (Im g) be a semi-
direct product

s'Img) =IntK A Im g.

Otherwise, if there are solutions for a triplet K, Q, g which
do not satisfy the condition of Theorem 3, then none of them
is a semi-direct product.

I.7 CENTRAL EXTENSIONS.

The only extension problem we shall study is that to
find the central extension of Q by K.

DEFINITION 13, An extension E of @ by K is called central
if the corresponding homomorphism Q % Out K is trivial,

In this case E is called a central extension, since if Kwere
abelian then K < C(E). For central extensions the direct
product K x Q is always a solution. This need not be the
only one,

In (5) g trivial implies Im f < Ker s = Int K, thus
V x € E, Va € Ksincexa x ! is an automorphism
of K,

At eK:xax'=tat ™t or t7'x ¢ Ce K),

S
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the centralizer of K in E. But £™' x € Ker f hence Ker f=
= H = Cg (K). Diagram 5 then reduces to diagram 9

1 1
v '
l1— C(K) — H
| ! ‘
11— K ——» il ; — Q) — 1
l— 3 IntK — 3 IntK —— 1
‘ v
1 1

diagram 9

which gives Int K = E/H, and E is also an extension of Int K
by H.

Furthermore, by definition of the center, KM C (K) =
=KMH= C(K), andK, H < E. By Theorem 2 we can ex-
tend (9) to

1 1 1
I l l l /1
1--+- C --» H ---KH/--—+1

. ‘\_:i /i 1,

AN

1———+IntK ——+ IntK - -+ 1
R
1
1 1
diagram 10

From (10) E/g g =1so E=HK. AlsoQ=K.H/K=H. So
this diagram also shows that H is a central extension of Q
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by C(K), which has an extensive literature since C(K) is
abelian., A last result of (10) is, from diagram 3,

E/C = IntKxQ

Let us give an example of central extension which is famil-
iar to physicists. We denote U. the group of n by n unitary
matrices. The correspondence U — det U is a homomor-
phism Ua =5 U, — 1 whose kernel is by definition SUa
(unitary matrices of determinat 1). The centralizer of SUa
in Us is the set of matrices of Ua which are a multiple of
the unit : el¢ 1,, They form a group U: and the intersec-
tion SU. (M U; = Za the cyclic group of n elements, repre-
sented by the matrices e¥® 1, with ein= 1, Hence the
corresponding diagram 10' as an application of Theorem 2.

1 1 /1
1= ——> Zn _—— U1 . R U1 -——-—b-l
—— SUn\Un E‘t/_yl 1

l S

-

SU U / “\1 1

o AT D
e zZ 1

diagram 10'

The homomorphism U; = U; is defined by n(e¢1,) = einé,
Note that
Ua _ SU Us _ SUa

= —— X
Us 7 and 7 7 U; .

Suppose E and E' are equivalent central extensions
with corresponding extensions H, H' of Q by C = C(K)
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respectively. As we have seen, H = Cg(i(K)), H' =
= Cg' (i' (K)). Put E and E' in diagram 6

f[C e (i(K))] = Cgr (foi(K)) = Cqe (i' (K))
by commutativity, This is H' = f(H).

Exercise 12, If CK) = HM K, C'(K) = H'(K show
f(C(K)) = f' (K).

This shows that given an extension E (central), H = Cg(K)
is a central extension of Q by C(K) and that E~E' — H ~H'
(where ~is the equivalence relation of extensions). Con-
sider the case ‘when H is given, then we ask how to construct
E in accordance with (10).

Let o € K, £ € H and consider (a,£) € K X H.
Since C(K) < K, H, CXC < C(K xH) < K XH., The set
C'= {(y,y') 1y € CK)} is a group isomorphic to
C(K) but embedded in K X H, It is called the antidiagonal
of C XC,

There is a natural map from K X H onto E given by
(a,£) % akt. This map q is a homomorphism since

a(e B, En) =aBtn=at Bn=[q(e,&)][aBn)]

since H = Cg(K). Also Ker q=C', and Im ¢ = E since by
(10) E = H.K. We can then write the short exact sequence

q

1 - C - KXH — E — 1 diagram 11

and E = K Xx H/C'. The reader may readily verify that H is
isomorphic to Cg(K;) where K; = {(a,1), a € K.

The equivalence of extensions is preserved under this
construction. For let H and H' be equivalent extensions of
Q by C(K), and E, E' the corresponding extensions by K.
In the diagram for H, H' comparable to (6) denote the map
H — H' by f, then 1 X { is an isomorphism from K X H to
K X H' such that diagram 11
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1 C' K xH E 1
I I xf és
1 C' K xH E' 1

diagram 11

the map s is constructed by Lemma 2. An easy computation
shows K; <K X H/qr, so that we may write diagram 11

1— 3+ K — B — 3 Q —»1

L]

1——-—-——’-K-——-——-———->E'-—-—-—-—>-Q-—-—-—-——-—>1

diagram 11'

We may then conclude that there is a one-one corre-
spondence between the equivalence classes of central ex-
tensions of Q by K and of Q by C = C(K).

EXAMPLES. 1, Suppose Out K = 1, then all extensions of
kernel K are central.
2. If K is complete, i.e., C(K) =1, Out K=1,
Any extension E of kernel K satisfies dia-
gram 12 which is a simplified diagram 10.

L

H e

=

—_—1

1

-
T
|

diagrain 12
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With diagram 3 this shows E = K xQ = K X (E/K). The
direct product is the only extension of an arbitrary group Q
by a complete group K.

Exercise 13, Prove this result directly. (Proof given for
instance in A. Speiser, Theorem 110, Gruppen
von endlichen Ordnung).

Charge Conjugation and Isotopic Parity.

Consider the isotopic spin space of a system of par-
ticles, invariant under isotopic rotations SO3. Adjoin to
this symmetry group charge conjugation C, giving a larger
symmetry group G = { SOs, C}. Since C* = 1, SO; has just
two cosets in G, SO; and C.SOs. Thus SOs <4 G and we may
write

1-—-9S03 — G — Zz—-——>1

where Z, is a group of two elements. However SO; is com-
plete, and its extension is G = SO; X Z, . Note that G is
not a direct product of SO; by {1,C} since physically charge
conjugation and isotopic spin rotations do not commute,

Denote reflections through the origin in isospace by 7,
then G is isomorphic to O; = SO; X Z,, the rotation group
with 7 added. The quantum numbers of the system of par-
ticles having charge independence and charge conjugation
as symmetries are just isotopic spin I and isotopic parity 7.

For the 7 mesons we know that C 7° = 7° from 7° — 27,
—Cy = - 9. Choose a coordinate system in which the 7° is
along the z-axis, then C is a reflection through a plane con-
taining the z-axis. Which plane depends upon the phases
between 7 £, Under isotopic parity n° — - 7° or n(7°)=-1,
since 7 is the product of C and a rotation of 7, around an
axis_| to the reflection plane of C, which reverses °.

More generally, for an isotensor t, if the charge con-
jugation quantum number of the neutral component is C, the
isoparity of the isotensor is

n=C(-1)"
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This is equation (45) of the paper which introduced isopar-
ity, L. Michel, N, Cim,. 10, 31( (1953) (called there isotopic
parity)*,

In this very simple example we see that physicists con-
sider groups with names given to elements. However, it is
also useful to consider the structure of the abstract group.
A problem which may then arise is the following: Given
K, Q, Q = Int K, one can form the semi-direct product
K AN Q which is also a central extension. When is this semi-
direct product equivalent to a direct product ?

THEOREM 3. Given K, Q, Q = Int K, this defines a semi-
direct product which is a central extension E = K N Q.

The necessary and sufficient condition that it is equivalent
to the direct product E = K X @ is the existence of

t € Hom(Q,K) such that wot = r where w is the natural
homomorphism K - Int K.

PROOF: The condition is necessary. Let us write in
diagram 13 that

1-K—E >Q—1
with
f
E — IntK
both a semi-direct product (diagram 3, i, p, k) and a direct

direct product (diagram4, i, p, i', p'). Thent = p'ok and
indeed wot = r

*When T. D. Lee and C. N. Yang learned about this
paper they liked it so much that they decided to propagan-
dize for it, reproducing its main table p. 333 for annihila-
tion of nucleon antinucleon pair, in N. Cim, 13,749 (1956);
see also their footnote 3. T am very grateful to them for
the great advertisement they gave to this new quantum
number, although they never explained why they dislike
the expression "' isotopic parity'' and why they choose
G-parity.
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- _» K _._1_.: E D
TN
1/“\ 1f/

Int K

1/ \1

diagram 13

The condition is sufficient; Q * K is given, so is the
composition law for the semi-direct product E

(a,a) (B, b) = (ap®,.ab)

corresponding to Q = Int K with g = r(a)[B8]. The group K
is isomorphic to K' = {a' = (o, 1)}, K< E and Q to
{a' = (t(a”'),a)} =Q". Note that K'M Q' =1 and K'.Q'=E.

Furthermore any @' € K commutes withana' € Q'.
Indeed

a'a' = (@t(a™'),a) = (t(a~")t(a)at(ay',a) =
(t(a™'). wot(a) [a'],a) = (t(a™')r(a)[a],a) = (tla™')e" a)=

= (t@"),a)e, 1) =a" o

Hence Q' < E and by Lemma 3', E=K XQ.

Exercise 14, Show that Hom (Q, K) is just the number of ways
in which the group Q can be embedded in the
direct product K X Q. And Hom(K, Q) gives the
number of map f for embedding K into K X Q.

(For the generalization to semi-direct product,
see Cargese Lectures).
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Let us give an example of a semi-direct product which is
a central extension but not a direct product, We have seen
(in1.5) that L = SL(2,C)/Z, and L = P/T. Since L has no
center L = Int SL(2,C). So the semi-direct product
SL(2,C) N P defined by P — L = Int SL(2,C) is not a direct
product since Hom (P, SL(2,C)) reduces to the trivial
homomorphism,

.8 SUMMARY ON GROUP EXTENSIONS.

We will give here only results, We refer to the quoted
references for the proof,

Returning to 81.6 we give several sufficient conditions
for the existence of solutions to the extension problem. The
direct product K X Q is always one solution. By introducing
the map Q £ Out K we obtain a Subproblem, given K, Q,

g € Hom (Q, Out K) determine all E which satisfy (5). For
a general map g there may be no extensions. Below are a
set of sufficient conditions.

Our first claim is that if E exists then E is a solution
for the extension problem C(K), Aut K X Q, 1 X (heg) €
Hom(Aut K X Q, Aut C). This may be seen by extending (4)
with (9), to

1 1

|

l—= C(K) — CL(K)

SIS R

1-~»~IntK-—-—«3—-—AutK wé—h-OutKMl

1 h

di 14
1 Aut C tagram
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From (14) f X p is a map from E — Aut K X Q, where

Ker (f x p) = Ker f() Ker p = Cr(K) M i(K) = i' (C(K)).
So any group extension problem can always be transformed
into a problem with abelian kernel, the center of the kernel
K.

DEFINITION 14, A short exact sequence
1— A — B — C — 1 splits if any of the following hold:

(a) A=1
b) C=1
(c) B=A AC, (which is the only non trivial

splitting 1)
Sufficient Conditions for Existence of E.

This list is not complete, for further results the reader
should consult the quoted literature, (Istanbul or, better,
Eilenberg and MacLane).

1. 1-CK) =K —IntK — 1 splits,

There are three possibilities

(a) Int K =1 — K abelian.
(b) C(K) =1 — Hone solution for each
g € Hom(Q, Aut K)
C(K) A Int K which implies K = C(K) XInt K

() K

2. 1 —Int K — Aut K > Out K — 1 splits at Out K.

Then
(a) IntK = 1, this is case 1. (a).
(b) OutK =1, E is a central extension.
(¢) AutK =Int K AOutK.

As we have already seen, for case (c) it is actually enough
to have the exact sequence

1—-IntK—s" (Img) 2Img —1

which always splits in the central case.
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3. dr e Hom (Q, AutK) : sor =g. There exists among
the solutions the semi-direct product, (See also Theorem
3) and we have seen 2. implies 3.

THEOREM 5. If there exist extensions E there is a one-to-
one correspondance between equivalence classes of exten-
sions for the two problems:

K, Q, g € Hom(Q, AutK)
C(K), Q, hoge Hom (@, Aut C)

NOTE: If C(K) = 1, for anyg, there is a trivial solution of
the second problem. It is a semi-direct product for K, Q, g
only if 3, holds.

InI1.9 we give known results for the central extensions of
the Poincare group by an arbitrary group K.

II. HOMOGENEOUS SPACE AND ZEEMAN THEOREM

Introduction

In the first chapter we dealt only with groups (sets with
a group law). It would be very useful to study a richer struc-
ture (i.e., with more axioms) that of topological groups
(topological space with a compatible group law). We shall
define it but not study it because this would increase too
much the scope of these lectures. However we mention
topological groups in order to give a warning to the reader:
do not consider that topological groups are a special family
of groups so that everything we proved in chapter I for the
general case of groups is true for the particular case of
topological groups. This point of view is mathematically
wrong. As we shall see, groups are a particular case of
topological groups. Some results of I are not true for the
general case of topological groups.

We cannot here begin this chapter by a general course
in general topology. We suppose that the reader knows
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what is an open set, a closed set, a continuous mapping (or
function), a neighbourhood, even if he does not know the
more general mathematical meaning of these words. For
what follows let us give sufficient definitions (which are not
very intuitive if seen for the first time).

We say that E is a topological space, if one has chosen
a family of sets of elements of E called the open sets of E,
such that E and the empty set ¢ belong to the family and the
family is closed for union and finite intersection, i.e., the
union of any number of open sets is an open set, the inter-
section of a finite number of open sets is an open set,

The closed sets are the complements of the open sets.
(So ¢ and E are also closed). Let us give one definition us-
ing open and closed sets, The space E is connected if there
1s no proper subset of E (i.e., not E, not ¢) that is both
open and closed. Such a definition was intriguing for the
majority of participants of the summer school, (but it was
familiar, and therefore ' intuitive'' to a substantial mi-
nority) . Letus just give for the mathematically untrained
but curious reader the highlight of the content of a supple-
mentary and well attended lecture.

Given two topological spaces E and E' a mapping
E L E' is continuous if for any open set X' ¢ E', £~ (X')
is an open set of E. Hence one can have different topol-
ogies for E, such that for some of them f is continuous and
for some others f is not continuous. One may compare
topology. Given two topologies on E, T; is finer than T,
(and T, is coarser than T:) if every open set for T, is an
open set for T;. Hence, if T, is strictly finer than T, (i.e.,
there are open sets of T; which are not open sets of T,
then the identical mapping E(T,) 5 E(T, ) is continuous
but E(T, ) L E(T:) is not. The finest of all topologies on E
is the discrete topology; for it every subset of E is open
(and therefore closed), in particular this is true for every
point (= element) of E. Hence whatever the topology on E! ,
any mapping E — E'is continuous for the discrete topology
in E,

Of course, one can also define the coarsest topology on
E such that a given mapping E - E' is continuous, and so
on.



