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The reader is certainly familiar with the notion of
neighbourhood and we advise him, if he does not know, to
look at any classical book on topology in order to see how
to pass from the axioms on open set to those in neighbour-
hoods. However these lecture notes will be self contained
if one adds:

Given a subset X C E, the interior of X is the largest open
set < X (i.e., the union of all open sets in X); the closure
of X is the smallest closed set O X (i.e., the intersection
of all closed sets D X).

A neighbourhood of a point x € E is a subset of E which
contains X in its interior.

Of course, given two topological spaces E and F, there
is a '""natural' topology on the set product (product topol-
0gy), on any subset (induced topology), on the quotient sets
(quotient topology—this last point is more delicate). The
morphisms for topological spaces are the continuous map-
ping. The isomorphisms of topological spaces are called
homeomorphisms. E = E' if these exist between them a bi-
jective mapping f such that f and ™' are continous.

II.1 DEFINITIONS.

DEFINITION 1. G is a topological group if it is both a
group and a topological space such that the one variable
function G — G given by x — x~' and the two variable func-
tion G X G — G given by (x,y) — x y are both continuous.

In other words, in a topological group, the two structures
(group and topology) should be '* compatible'" .

DEFINITION 2. The morphisms of topological groups are
the continuous group homomorphisms, i.e., the continuous
mappings which are homomorphisms for the group struc-

ture,

DEFINITION 3. Of course a topological subgroup of G is
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a subgroup which is a topological group with the induced
topology from G.

Exercise 1. Show that an equivalent definition for the group
G to be a topological group is that the one var-
iable functions x — a x b are continuous for all
a,b, € G. Note that left (or right) transla-
tions on the group x % a x (or x a) are homeo-
morphisms so for the topological properties of
G it is only necessary to consider neighbour-
hoods of the identity,

DEFINITION 4. Local isomorphism. Two topological
groups G, G' are locally isomorphic if there exists neigh-
bourhoods U, U' of their identities e, €', such that H a
homeomorphic map f: U, U' with

(@) fxy) = f(x) f(y) VX, ¥y, Xy € U

b) £'&x'y')=f" (x') i) vVx', y', xX'y' € U,

Consider D < G where D is a discrete subgroup, and
form the exact sequence

I-D—-G—-G/D—1.
Then G and G/D are locally isomorphic.

Exercise. Show that DI G, D discrete — D < C(G) if G is
connected.
(Hint d € D, x € G, xdx ~* is a continuous
function of x on G, so it must be a constant),

EXAMPLE. LetR be the additive group of the real numbers,
then Z Q R is a discrete subgroup. Further

R/Z = U,

as abstract groups. Take o irrational then Z ¢ < R and
@Z=2Z withaZ (\Z= {0}, However the closure of
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@ Z +Z is the whole of R, (when X C E and closure of X is
E we say that X is dense in E).
However as abstract groups

Z ~(Z + aZ)/Z

and Z +a Z/Z is locally isomorphic to Z +a Z.

This example indicates how two groups (Z, (Z + o Z) /Z)
can be isomorphic as abstract groups but quite distinct in
their topological properties. Z is not dense in R, while
(Z +a2)/Z is

This shows that theorem 1 of chapter I is not true in
general for topological groups. This is also the case of
theorem 2, and so on. Indeed abstract groups can be con-
sidered as a special case of topological groups, if we give
them the discrete topology (then every function defined on
them is continuous).

Of course this notion of topological space is too gener-
al to be very useful and it would be easy to give examples of
topological groups pathological to the physicist taste,

So we shall restrict ourselves, in the following, to
'"locally compact'' group.

Definitions

If Xi are open sets of X and Uy X; = X, the family of
Xy is called a covering of X (by the family X; ). If every
family of open sets which covers X, contains a finite sub-
family of X; which covers X, then X is called " compact'',

The space X is locally compact if every point has a
closed compact neighbourhood.

Hence every group with the discrete topology is locally
compact (and every finite group is compact). Example of a
non locally compact group is that of all unitary operators
acting on an infinite dimensional Hilbert-space.

For a given topological group G one can consider Aut, G,
the group of continuous automorphisms of G (i.e., the auto-
morphisms of the structure of topological group). In the
general case there might be several natural topologies on
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Autc G (which are deduced from that on G). However, for
the more familiar class of groups this ambiguity does not
arise. For example:

THEOREM 1. (Iwasawa) Let K be a compact group, then
Outc K is discrete (see Iwasawa, Ann, Math, 50, 507, 1949).

Consider a non-connected topological group G. Let Go
be the connected component which contains the identity. Since
the image (by a continuous function) of a connected space is
connected, for any @ € Aut o G, a(Go) € Goanda™* (Go) C
Go s0 Go is transformed into itself by all continuous auto-
morphisms of G (so Go< G).

Consider now a topological group G with a compact in-
variant subgroup K. We then deduce that Ko (the connected
component of the identity of K) is aninvariant subgroup of G.
Furthermore the canonical homomorphisms G % Aut. Ko
and G — Autc K are continuous. So f(Go) € Int Ko. Hence

COROLLARY 1. Let G be a connected group and K < G,

K compact ccnnected, Then G is a central extension of the
connected G/K by K. Furthermore, if Center of K = 1,
then G is the direct product K x (G/K).

Covering spaces.

Let X be a path-wise connected topological space, i.e.,
V %, y€X,d a continuous map f of the interval [0, 1]
into X such that £(0) = x, f(1) = y. Then X' is a covering
space for X if X' is path-wise connected and H a surjective
map 7 : X' — X such that V x € X, d neighbourhood
(nbhd) U(x) for which the points x4, X%,.... of 7' (x) have
neighbourhoods U' (x% ), U' (x%),... x = 7(x4) = 7(x% ) = ...
where

(@) 7 /U' (x%) is a homeomorphism of U' (x%) into
U(x) for each x4 ¢ 7' (x)
(b) U U'(x%) =7 { Ux) |
i

() Ixy #x'), U'(x%) U (,)= o
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7 is called a covering map for x, and sometimes we say
that x' lies over X,

EXAMPLE. Consider the real line R, - «© < x © o, and
the circle S: |z| = 1. The map n(x) = exp [27 i x] de-
fines a map from RT S such that R is the covering space
of S.

Loosely speaking if 77" (x) contains n distinct points
in X' we speak of X' as an n-sheeted covering of X,

Since a topological group G is also a topological space
we can speak of covering groups.

DEFINITION 6. G' is a covering group of G if G' is a
group where G is homomorphic to G' as a group and as a
topological space G' covers the topological space of G.

DEFINITION 7. The universal covering group GofGisa
simply connected covering space of G.

It may be shown that G is uniquely defined. An example of
the universal covering group is offered by SO; and SU,. The
latter is a simply connected covering group of the rotations
and if T is the identity rotation, 7' (I) = {I, @} where a is
the rotation by 2 7 for the spinors. As a topological space
SO, is double connected since if we parametrize rotations
by a point on the radius vector of the unit sphere, points
lying on the surface of the sphere representing a rotation
of angle 7, then points on the surface opposite to each
other have to be identified since they lead to the same rota-
tion, The sphere with opposite points identified is a doubly
connected space. For instance there are the distinct closed
paths in this space which cannot be continuously deformed
into one another,

1. a closed path containing the origin but entirely within
the sphere

2. a closed path containing the origin but going to the
surface of the sphere and reentering at the opposite point.
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II.2 THE LORENTZ AND POINCARE GROUPS.

We recall the definitions of the various components of
the group of transformations preserving the space-time
metric, This group is necessarily linear.

Let T be the translation group in space-time, and L the
full homogeneous Lorentz group (including space-time re-
flections). As usual we denote

L, = set of homogeneous Lorentz transformations with
determinant 1,
L' = set of homogeneous Lorentz transformations pre-
serving the sign of the time component.
then L, is the connected part of the homogeneous Lorentz

group. More specifically if x* = (x°, x', x% x*) = (x°x),
then A € L is for everyx, y

xhg,,xV = y'%g,s y'B = A2 yM8ap AP, xY,
hence

A% g5 M, =gy, , or ATGA =G
where G : goo = - g1 = = gap = ~ g3z = 1, Euy = 0’u¥ V.
This implies (det A)? = 1
Li={AldetA=1), L' = (AN =1), L'=L"N1L,.
If T is a translation by a four vector a* then

(T x)H=xH4at .

A genera} Lorentz transformation is an element of the
Poincare group P = T A L where Vpe P,p=(a, A)

(px) = (a, A\x=Ax+a ae T, Ae L.



292 L. MICHEL

Let Z, be the group of two elements {1, - 1}, then

T

£ .
L X Zs L' =L, A Z,

!
i

=L, A Z L, =L.XZ, (1)
Exercise, Verify equations (1),

In a similar way we define the various components of the
Poincaré group, P,, P, P!, etc. where PU=T AL".

We may define a dilatation of T by a real number A> 0.
The dilatation multiplies each translation by an amount A,
and commutes with homogeneous Lorentz transformations.
The group of dilatation D, is a subgroup of Autc T. We de-
fine

G=PAD, G' =P'AD, G, =P, AD, etc...... . (2)

G consists of triples (a, A, ) wherea € T, A e L,
A € Dand

(a,]_, A]_, A]_) (a,z, Az, 7\2) = (a,]_ +>\.1A1 dg 1\1A2,7\1K2)
One can prove

THEOREM 2, For abstract group of automorphisms
Aut P = Aut P, = Aut P! = Aut P" = G,

A result which states that all automorphisms of the four
Poincaré group are all the same and are continuous. The
proof of this theorem and also that Aut G = G are given in
the Cargése Summer School lectures notes.

Covering Group of P/
A standard result on the Lorentz group states that

SL (2, C) is the universal covering group for L .
In fact
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1—-2Z, —SL(2,Q) — L' — 1
Aut’T
The covering group for #, may then be defined as
P, =T ASL(E,C) (3)

Definitions of T ~ PIGI ~ 391 D follows directly.

I1.3 TRANSFORMATION GROUP,

- Consider a group G and a set E. The bijective mappings
of E (one to one onto itself) form a group, the permutation
group of E written S(E). We say that G acts upon E as a

transformation group if @ a homeomorphism G & S(E). To
elements x, y, € g we associate permutations f(x), f(y) of E

such that f(x) f(y) = f(xy)

EXAMPLE. 1. The rotation group SOs; acts upon euclidean
three space, where rotations correspond to the class of per-
mutations preserving length and angle.

2, In a similar way P acts upon space-time,
DEFINITION 8., Consider Ker f where G -5 S(E), if

(a) Ker f=1, G acts effectively on E
(b) Ker f# 1, G acts ineffectively on E.

The action of G on E induces equivalence classes in E.
In particular Va,8 € E we define

a~Bif dAx e G: B=1x)[a]= x[o]

where x [o] is the result of the permutation f(x) acting upon
a.

Exercise: Prove that o ~p is indeed an equivalence relation.

DEFINITION 9. Givena € E, the set O, = {x[a |IVx € G
form an orbit of G in E.
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The set E is then partitioned into distinct orbits which are
the equivalence classes just defined above,

Orbits of the Lorentz Group.

Let E=T. Of course Aut T © S(E). The group L acts
upon the translations, Referring to the space-time diagram
below, we find

light-cone At light-cone

\(1)

(4
(6) *

3 (5 (3)

/ @

1. Orbits of L.

(4)

Denote the future (past ) cone by V,(V.), its interior
by V, (V_) and its boundary by a4V, (3V_).

Vpe V,, pP=m’>> 0 LT transforms this vector
into the hyperboloid sheet p* = m* p°® > 0. Similarly for
p € V.. This gives the orbits (1) and (2)
Again for a space-like vector p® = - k* < 0, L/ trans-
forms p on the same hyperboloid. This glves one orbit (3).
On the light-cone we have L [9V, ] = 9 V,, orbits
(4) and (5); while {0} is an orbit 1tse1f (6).

Let us define for evergl a € T,e(@)=0ifa=0or
a? <0, =1ifa*>= 0anda’>0, = - 1 ifa* = 0 and a° < 0.
Then x belongs to the orbit of a if and only if x> = a” and
€(x) = e(a)
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2. Orbits of L.

Since time-reversal I. takes V, — V_ orbits (1), 2)
combine under L,. Similarly I, 8V, = 8V so (4) and (5)
combine, All remaining orbits are “unaffected since (3) is
invariant under space-time reflection Is I.

For L. there are only four different families of orbits.
This is the maximum number. Orbits are given by the
value of a®, when a # 0, since {0} is an orbit by itself.
Orbits of L and of L+ are identical.

3. Orbits of G1 and G+ .

Since the dilatations D multiply a by any A > 0, they
change a® into A* a® Hence G has only 6 orb1ts
a > 0ande(a) > 0 a > 0 and e (a)<0, a® = 0 ande(a) > 0,
a®> =0 ande(a) <0, a> < 0 and {0} (which is character-
izedby a®> = 0 ¢ (a) =0.)
The group G: and G have the same orbits; there are only four:
a®> >0, a®<0,a®=0anda#0, a=0.

More generally since G acts upon E it acts upon
E X E in a natural way. Let E= T above, then TX T
is the set of pairs (a,b) of four vectors We may then
ask when do the pairs (a,b), (a',b') lie on the same
orbit of L. Equivalence is defined by (a,b} ~(a', b")
if #Ae L: (a', b')= (Aa, Ab).

Clearly a® = a'?, b* = b'?, a.b= a'.b' are necessary
conditions, but they are not sufficient as shown by the fol-
lowing example:

a'=b' =(1,0,1,1 a=(,0,0,1, b=(1, 1,0, 1)

The reason is that the four vectors lie in a space with an
indefinite metric, and on an orbit we need to preserve the
euclidean dimension of the vector space spanned by a and b,

LEMMA 1. An orbit of L! on the space T X T is uniquely
characterized by the conditions
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e(a)=€(a’), e) =e(®'), a>=a'?, p? = b'?,
ab=a'b', dim (a,b) = dim (a', b')

where (a,b), (a', b') lie on the same orbit in T X T,

For the corresponding general theorem see Artin geo-
metric algebra (Interscience Pub. New York 1957) theorem
3/16 p. 126.

II.4 ZEEMAN'S THEOREM,

Let E = T and consider S(E). If f ¢ S(E) then £~ *
exists. Denote the future cone of x by

Vi) ={yl (y-xf = 0,(5-x)°> 0},
A partial ordering relation may be defined on E by
Vx,y € E x<yifye\°f+(x)

This defines a causal ordering among the four vectors, and
we wish to study the most general mappings which preserve
' causality'',

DEFINITION 10. f € S(E) preserves the relation < if
x<y —1x) < f(y)

THEOREM 2. (Zeeman) If f and f "' preserve causality
(<) thenfe G,

For the proof, see E, C. Zeeman's paper, J. Math,
Phys. 5, 490 (1964). Prof., Zeeman gives another version
of his theorem (see below Theorem 2').

This result is remarkable in that no continuity or
linearity has been assumed for f,

If X, y € E letus denote

x Ty if (x-y)2> 0

xSy if (x-y)2< 0
xLyif (x-y)? = 0, x-y£0

/N

t
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DEFINITION (Alternative to 10). f reverses x <y if
x <y — f(y) > f(x). For the negation of a statement
T(x T y) denote T, similarly for S, L.

LEMMA 2. fpreserves T, S, L« ™" does.

PROOF: If f preserves T then f ~' preserves T or S and
L. Further f preserves S and L. — ! preserves T,

DEFINITION 11, x<°yif x L y and x° < y°.

THEOREM 2', (Other version given in Zeeman's paper of
theorem 2), A permutations f of space time is € G' if and
only if f and £~ preserves the relation <.

If my note on the Automorphisms of the Poincare group,
Theoretical Physics Lectures VIIa in Boulder (1964) I quoted
incorrectly theorem 2'. I give here a version of the same
theorem, which is needed for the Boulder paper.

THEOREM 2'', The group of permutations which preserve
the relations of space like, time like or light separation be-
tween points of space time is G.

I write here the proof that Prof. Zeeman gave me once
at lunch table in Bures.

Let us first remark that a T b« a ¢ V (b) where V is
the interior of the light cone with b as summit, Suppose
XLz, x Ly, yL z, then y between x and z on the same light
ray means either x < V<& zorz<ey < <. X. This is equiva-
}ljent to V(}.) NV z) c V (y). Which can also be translated

y:

aTx,aTz — aTy.
To summarize:

IfLz, zLy, yLx, then "y between x and z2'"'— a T x,
aTz—aTy.
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If f preserves T, S, L and f preserves <. for any two
points on a light ray, then f must preserve <- for all points
on the light ray. Similarly if f reverses <- , it does so at
all points on a light ray, This is an immediate result of
the above construction,

Consider two light rays with a common point y, and x
a point on the first ray and z a point on the second ray,

Two cases arise

. y<xandy<zorx< yandz <« y—x Ly, yLz
and x S z

2. X<t y<zorz< y< X—xLy,yLzandxTz
or x L z,

Consequently if f preserves T, S, L; f must either pre-
serve <e or reverse < on both of the light rays. This re-
sult may be extended to arbitrary light rays 1, and 1,
since there is always a third light ray 13 which intersects
both 1, and ;. If f preserves S, T, L so does £ '; and
both these maps either preserve or reverse <onl,, I3;
and hence alsoon l,, 1. Then f, f~' either preserve or
reverse < on both 1,, and 1, which are arbitrary light
rays.

Hence, from theorem 2' we have shown theorem 2' .

II.5 HOMOGENEOUS SPACES.

DEFINITION 12. A topological space X is homogeneous if
Vxye Xda homeomorphism f: X — X such that

f(x) =y,

A topological group G is a homogeneous space and
X —y=axwitha=yx™' is the desired homeomorphism,
Clearly the orbits of G acting on E are homogeneous spaces
directly from their definition,

In the following we shall forget about topology. So E,
homogeneous space of G is just aanother name for E ' orbit
of G'". We also say that G acts transitively on & and the E
is a G-homogeneous space.
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DEFINITION 13. Vo € E consider G, = {x|x € Gx [a]=
=a }. G, is a group called the little group of. a.

In the mathematical literature G, is frequently termed the
isotropy group or stabilizer of a since Ga[a] = a.

Let B be a point in E and a a transformation such that
B=a[a], then

aGya ™' [B]=8
and the little group of B is G, = a G, a~'. So the homoge-
nous space E is completely characterized by the little group
of a point in the space and the other little groups may be ob-
tained by conjugations of a given little group.

EXAMPLE 1. E =G i.e., let G act upon itself-by left trans-
lation G * S(G) where a — x a for arbitrary a and given x,
elements of G. We shall say that G acts transitively on it-
self. The set of left translations form a group isomorphic
to G, and the isotropy group of any element is just the iden-
tity of G:

G can also act on itself by right translations: a = a x ~

2. Suppose H< G. To say thataandb € G be-
long to the same left coset of H (i.e., the same element of
[ G:H]L) is equivalent tob™ a € H. Butb™' a=b 'x'xa=
= (x b)"'(x a) so left translations map left cosets of H into
left cosets and it is easy to verify that this defines an action
of G on [G : H];. The little group of H € [G: H]y, is H
itself (as subgroup of G). Similarly right translations per-
mute right cosets.

1

Homomorphism of Homogeneous Spaces.

Let E and E' be two homogeneous spaces of a group G
acting on them, We ask for a map E--2-»E' which preserves
the way in which G acts upon these spaces.

This may be done with the diagram
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E...f.....};‘
X X xe G
Y |
... & (5)

f is the desired morphism provided the diagram is com-
mutative. For an isomorphism f is required to be bijective,

Let us see in detail that the commutativity of (5) pre-
serves the action of G. Ifa, B € E, a', g' € E' such
that under x € G, B—x[a], p* —x[a']. o' = @)
commutativity requires that g* = £(B) i.e.,

Vxe G, Ya € E, x[p'] =x[fl@)] =1 x[a])
and Vx, vy € G
y[x[8" 1] = y[x[f@@)]] = y[{&x[a])] = £y x [a])

so the action of G is carried over to E'by f. Conversely
let x[g'] = x[f()] and x y [B' ] = x[y[8"]], then

f(xyla])=x[y][ f(a)]]

Let y = 1 then
f(x[a])=x][f@)]

implying the commutativity of (5).

EXAMPLE. Given H < G, the G-homogeneous spaces
[G:H], [G ]H1 are isomorphic, The map f is chosen
tobef(aH)—Ha V xHe [G:H]Jy. Thisis a bi-
jective map.

One shows the commutativity of (5) immediately, the
action of G on these spaces being given by

aH>xaH

Ha*Hax" '

hence x[f(aH)]=Ha 'x"'= H(xa) '=f(xaH)=f(x[aH]).
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II.6 THE HOMOGENEOUS SPACES OF A GROUP.

We leave as an exercise to prove that if E is a G-
homogeneous space with little group H < G (H is defined
up to a conjugation, as we have seen) it is isomorphic, as
G-homogeneous space, to [G : H]1,. Hence the very im-
portant result,

There is a one to one correspondence between the G-
homogeneous space (modulo an isomorphism) and the sub-
group, up to a conjugation, of G,

Let us consider the case where G acts ineffectively
and let K be the kernel of the homomorphism

GLS([G:H]L) ie., Vke K, Va € G,a=aHe [G: H]y,

k[ a] =a so k a and a are in the same left coset of H:

a~' ka € H. With a =1 this shows K < H and from K < G,
we have K<JH, Let K' be another invariant subgroup of H
andk' ¢ K'JH;since Va € G, a~'k' a € K'< H, we
deduce that K'< K. Hence the kernel K is the largest in-
variant subgroup of G contained in H (such a largest group
does exist; it is the product K', K'', K'' ', ... of all in-
variant subgroups of G in H),

EXAMPLES. 1. Lorentz transformations. The Poincare
group P acts transitively upon [P : L], the space-time
continuum. Also P acts effectively on this homogeneous
Space and the stabilizer of a point is indeed isomorphic to
L. Of course P does not act effectively on [P : T]y, which
is just the Lorentz group L acting on itself by left transla-
tions,

2. Many topological spaces arise as homogeneous
spaces of the type [G : H], which frequently gives some in-
sight into the action of G on these spaces. Consider for ex-
ample the n-dimensional sphere S, embedded in E" ™", eu-

clidean n + 1-space. The group SO:.+; acts transitively on
Sn .

To find the little group of a point @ € S., choose a
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coordinate system with one axis containing o. The little
group of @ is Gy = SOa. Let us examine the homogeneous
space [SOn+; : SOn .

The elements of SO,.+, may be represented by
(n+1) x (n+ 1) dimensional matrices such that

E Mik Mij = ékj (5)

i

The columns {M; lx k=1, 2, ..... , n+1of M form an
orthonormal set in E" "' and SO. < SO.+; appears as
the set of matrices of the form

1 0.... 0~ detN=1, NTN=1

o

0

The elements of [SOn+1: SOa | are just the cosets of SOa,
which may be characterized as follows: A, B € SOn+1
lie in the same coset of SOn=—= A "' B ¢ SOa, ie

ATB € SO., in particular

:E Aiv Bixk =S«
The vector { A;}; is then orthogonal to {B;lx k =
=2, 3, ...., n+ 1, This implies {A;} = X {B;} ,, from
equation (5),
Ei {Ai}l {Ai}l :1: ? { Bi}l {Bi}l

we then deduce A\* = 1 and, from det A = det B = 1, we obtain

A=1lie. {Ap}: = {Bpli.
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Hence the cosets of SO, are distinguished by the firstcolumn
of the matrices in SOn+;, and the matrices belong to the
same coset <« their first columns are identical. As

n+1

T (A1) =1
i-1

the elements of the first column lie on the n-sphere and
conversely. Consequently

[SOn+1 : SOn] = Sp
3. In a similar manner to 2.
[SUn+1 . SUn]=S2 n+1e

(For the proof use the hermetian instead of the euclidean
product for column vectors.) For n= 2, [SU; : SU; |=S5
which is homomorphic to the phase-space for three par-
ticles of finite mass and bounded total energy. (of. A. J.
Dragt, Jour. Math, Phys.)

The only invariant subroup of SU; is its center Z;.
Since Z3;ASU; = {1} the group SU; acts effectively on Ss.
Generally for even n only the orthogonal groups act effec-
tively on S., while for odd n the unitary groups give also
effective action,

4, Let C""! be the space of n + 1-uples of complex
number z = (z,,..... , Zn+1). Define an equivalence rela-
tion in C* ! by z; ~ zp if z; = A z;, A a complex number.
The set of equivalence classes so defined is a topological
space called complex projective n-space, written P, (C).
In fact P, (C) is an analytic manifold with n complex di-
mensions.

The n-dimensional unitary group Us < SUn+:1, and
may be considered as the matrices of the form

(detUn)"' 0..... 0

0 Un aren Xn
unitary matrix,
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Then as homogeneous spaces
[SUn+1 . Un] = Pn (C)

For n= 2, [SUs : Uz ]| = P, (C); but SUs does not act effec-
tively on P, (C) since its center Zs; is Zs < U,. The adjoint
group SU; /Z; acts effectively on the homogeneous space
P, (C) with little group isomorphic to Us /Zs. (See E. Cartan
Atti Congr, int, Matem, 1928 c. 4, p 252).

An application of this result has been suggested by
Komar, Phys., Rev, Letter, 13, 220, 1964,

Application to representations.
Again let H < G, and let G act transitively in E = [G: H],
Denote by f a map from E to the complex numbers,

f ¢ M(E, C). For any such f an element x € G induces
amap M = M given by

(I«f) [e]=f x"'a) Va € E (6)

Diagramatically since x is bijective

The functionals (Ixf) form a representation of G on M(E, C)
since Vx, v € G

Ix {Lf}) [a] = (i) [x'a] =f(y ' 'x"a) = (Iyf)[a]  (7)

V a € E. This construction allows a natural way to build
representations of G once the functionals M(E, C) are given.
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When H is the identity subgroup (6) gives the left regular
representation of G. The right regular representation is
built on the functionals from the space of right cosets iso-
morphic to [G : H]g. The two representations are clearly
equivalent. We shall denote the representation (6) by U and
call it the representation of G induced by the trivial repre-
sentation of H.

An important generalization of (6) is due to Mackey.
Let H have an irreducible representation L on a Hilbert
space #, ie to each a ¢ H there corresponds a bounded
operator L, on@:

Va,be H L,Lyf=Ly,f Vfe &.
Lef—'—'-f

Define L(E, #) to be the set of vectors defined on the space
E with values in%#, isiff € L(E,#), a € E; f(a) € #.

DEFINITION 14, The representation U of G induced by L
on the Hilbert space & is the set of operators Uz, Vx € G
such that

(Uxf) [y] = Luf(e) Vy e G,a e E=f(x"'y) x'y-=
=a'o, a € H.
The group property follows immediately by analogy with (7)
(Usyf) [2] = (Ux Uy 1) [2] (8)

When L is the trivial representation of H on % then UL re-
duces to U.

For the case when G is locally compact and H is com-
pact, L may be chosen to be unitary. One may then show
that U is also unitary,

Let us return to the simplest case of G compact, and
D' the unitary irreducible representations of G on some
Hilbert space. If R is the regular representation of G, it
may be completely reduced to the form
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R = }_j‘, ¢ D' where ¢; = number of times D appears
in R.

is equal to the dimension of DL,
A generalization of this result is given by the following:

THEOREM 3. LetH < G, and [G: H] = E. Let U be the
regular representation of G induced by H on M(G, C), then

U=3 c¢; D!
i

where D' is an irreducible representation of G, and c; is
the number of times the trivial representation of H appears
in D' restricted to H.

More generally:

THEOREM 4, Le H< G and E = [G : H]. Denote the ir-
reducible representations of G and H by D", d! respectively.
If DiH is D' restricted to H and U* is the induced represen-
tation of G corresponding to da* , then in

i

UY = % cu D"
Dy = Zvi d
')/i = Cm .

EXAMPLES. 1. Consider the reduction of the irreducible
representations D’ of SO; over the sphere S,. From § 2.5
S; = [SO; : SO, ] so apply theorem 3 to

If j is half-integral the identity does not appear in the regu-
lar representation of SO; corresponding to d’ and DY, , does
not contain the spinor representations. When j is an integer
the corresponding trivial representation appears only once.
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For the spinor representations it is necessary to con-
sider S, = [SU, : U; ] since P,(C) is just the 2-sphere.

2. Consider S; = [SO4 : SO; |]. The irreducible repre-
sentations of SO, may be labelled by pairs (j;, j.) where ji,
Jo are integral or half-integral. If these representations
are regular representations induced by SO; one can show
J1 = j2. Physically such representations label bound states
of hydrogen and they appear only once. This SO; symmetry
of hydrogen seems to have been found by Fock Z. Phys. 98,
145 (1935). However see also the beautiful paper by Pauli
Z. Phys. 26, 336 (1926).

3. Consider P(4, R) i.e., the inhomogeneous SO(4, R)
group. P(4, R) acts in the translation and there are only
two types of orbits, { 0 }, and the spheres S; of radius A,
which are indeed [SO, : SO; |. Hence there are two types of
irreducible unitary representations of P(4, R) those for
which (A = 0, ji, j2) with (- 1)’1=( - 1)’? where the trans-
lations are represented trivially (they are representation of
SO4) and those for which (X, j) , A > 0, 2j integer = 0.

By a generalization of theorem 4:
U3 SO* ~ caD ™) DMy &', em =y

where D(™’and d’ are irreducible unitary representations
of SO(4,R) and SO(3,R) respectively.
Since
IS TR PN

D(m)ISOBE (1, j2) gy = Z d’

3 i=liy -y |

we deduce

U (2, j) | (1, j2)

) .
= %,
SO, 1y 2

when the summation is over all j1, j2 such that j, +j. =
integer and |j; - j. | <j <j; +ja.
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As an example

;)

Do |

U( A, 0) = =120 (

Hence the bound states of the hydrogen atom span the space
of the unitary irreducible representation U(A, 0) of the
group P(4) = inhomogeneous SO(4,R).

Dual space of a group. It is the set of all classes (up to an
equivalence) of the irreducible unitary representations, let
us denote it by G for the group G and not consider here the
related questions of topology. Since Aut G acts on G, it also
acts on G. It is obvious that Int G acts trivially on G.
Indeed, let D(x), x € G be a representation of G and
x % x® an automorphism a € AutG. Then D(x?) is an-
other representation of G, It is obviously equivalent to D(x)
if @ € Int G induced by the element a ¢ G, Indeed

D (x2) = D(a) D(x) D(a)~*.

EXAMPLE. We already remarked that Aut P = G and

OutP} = G /Pl =2y xZ, AD
the two Z,'s corresponding to space and time reflections.

Given a mass m > 0 irreducible representation of Pi,
the space reflection leads to an equivalent representation.
This is no longer true for m = 0 since space reflection re-
verses the helicity states of the massless particle.

Including the dilatation in (9) transform a given mass
m > 0 representation into a representation of arbitrary
positive mass, which is clearly inequivalent to the initial
one. Thus for m # 0 it is the dilatation contribution to
Out P! which generates inequivalent representations of
Pi.

Consider now a group G which contains P, as a sub-
oroup. Let N = ¥g( Pl) ie., the normalizer of P+ in G.
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If N contains the dilatations D, then for any unitary repre-
sentation U of G, U |P. contains the whole spectrum of
positive m if it contains an irreducible representation of P:
with m> 0,

II. 7 MC GLINN'S THEOREM,

An interesting application of the theory of homogeneous
spaces relates to an invariance group G of a physical theory.
G is to contain P, the Poincare group, and an internal sym-
metry group S. If G has P as a quotient, then G is an exten-
sion of P, The idea behind the following is to use the rep-
resentations of G to obtain mass formulae due to the com-
bination of S and P,

The following lemma is a generalization of a result
first published by Mc Glinn, (Phys. Rev. Letters, 12, 467,
1964),

LEMMA 3. (Michel) Let
(i G=s.Pl, sNPl = (1)
(i) P=TAL

(iii) M a non-trivialpe Pi, p¢ T
such that
s'pse P!, Vs e S,
then G=P AS.

As a short hand, we write P' for P!

PROOF. Consider the homogeneous space [G: P' ], and G act
acting transitively on it. Since G =S . P', {a one-one
map between S and [G : P' ].
. G does not acteffectivelyon [G : P] since Vs,
8" ps € P'orps € sP';this means

sP' % psP'=s P

hence p € Ker f where
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G 5s([G:PY])

Now, p € Kerf () P' « P'. But the only invariant sub-
groups of P' are { 1}, T, and P' itself. Hence Ker f () P'=
= P!, ands™'ps e P', Vpe P;orP'q G.

G is then an extension of S by P', hence by Lemma 1.4,

G=P' NS

Alternative form of Lemma 3. LetG=S.P', s (1 P' = {1},
and S a simple group (no invariant subgroup) and da non-
trivials € S:p 'sp € S Vp € P'. Then

G=S AP

This hypothesis is weak and physical: at least one internal
symmetry s should be Poincare invariant. But the decompo-
sition G = S . P' and the hypothese S simple are in fact very
strong.

For a more general discussion see L. Michel Phys.
Rev. 137 B, 405, 1965.

1.8 IMPRIMITIVITY CLASSES.

DEFINITION 15, A subgroup K < G is maximal if
K< K <G —K' =KorK' =G,

Exercise. Show SUa is maximal in SL (n, C).

If a subgroup H is not maximal in G we say that the
corresponding homogeneous space [G : H] is a G-homoge-
neous space which is imprimitive, The reason for this is
the following. Let K be maximal in G and H < K < G.

Consider then the surjective morphism of G-homoge-
neous space [G : H] = [G: K]. The surjective mapping
f is such that f(aH) = f (bH)—a ' b € Kie.,, aandb
are in the same K cosets. Since f commute with the group
actions on the two G-homogeneous space (see diagram 1)
the subsets f~' (@) corresponding to every point @ € [G : K]
are also permuted '" in blocks''. These subsets are called
imprimitivity classes.
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EXAMPLE. We have studied the orbits of L] on the trans-
lations T. For a time-like vector the orbit is one sheet of

a 2-sheet hyperboloid the little group is SO; (up to a conju-
gation) which is maximal in L] , so no imprimitivity
classes; but the orbit of L for time-like vector has a little
group ~ 0; which is a subgroup of the maximal L." sub-
group of L. The homogeneous space [L : L' ] has two ele-
ments corresponding to the two sheets of the hyperboloid.
Similarly for space-like translation the orbits are one sheet
hyperboloids, the little group for L] is SO(2, 1) which is max-
imal in L!; we leave to the reader to study the little group
for L, to show that it has four connected pieces, so that it

is maximal. The more interesting case is for light vectors;
then we have seen that the two halves of the light-cone (minus
the summit) are two orbit for L], the little groupis P(2),
(Poincaré group = euclidean group in two dimensions) it is
not maximal in L] . We leave to the reader to study by him-
self this case and to show that the imprimitivity classes are
the generators of the light-cone. The set of generators is
homeomorph to S, (two-dimensional sphere = set of points

at infinity of the light-cone). If we consider SL(2, C), the
universal covering of L] , then the maximal subgroup is

the group ST(2, C) of triangular matrices

o o)

of determinant 1and [SL(2, C): ST(2, C)]=S,. Asanother
example of ' imprimitivity'' in Physics literature, the
reader is advised to look at the remarkable Wightman's
paper "On the localizability of quantum mechanical sys-"'
tems' Rev. Mod., Physics 34, 845, 1962,

.9 IWASAWA DECOMPOSITION.,

We said in 2,7 that the decomposition of a group
G =S.PwithS M P= { 1) was a strong condition, so
many students thought this was a ' rare'' phenomenon.
Another inquiry showed that the majority of students did
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not know that it was possible for instance to choose repre-
sentative of cosets of SO(3) in L! so that they form a
group. So let us learn the existence of the Iwasawa decom-
position. All students know what was a Lie group. Let us
just say here to be complete that every finite dimensional
Lie group is locally isomorphic to a group of n by n mat-
rices, n finite integer (Ado theorem) with the induced
topology of C** or R"® . This may not be true globally (e.g.
universal covering of SL(2, R)). We speak of real Lie
group if the matrices can be taken real.

Let G be a non compact real simple Lie group (simple =
here the only possible invariant subgroups are discrete
and in the center). It is always possible to find a maximal
compact subgroup K, where the structure of G is given by

G=K . A.N-

Here A is a maximal abelian subgroup homeomorphic to
that of a vector space and N is a nilpotent subgroup (iso-
morphic to group of triangular matrices with 1 on the di-
agonal and zeros below) are homeomorphic to a vector
space.

This is a remarkable theorem in that this decompo-
sition for G holds globally

KMNA={1}=AMN N=K (M N)

A further consequence of this decomposition is that any
semi-simple Lie group has at least a compact homoge-
neous space, namely [G : H] for allH < G and containing
A . N,

This is just the case we saw at the end of 2.8 where
the compact sphere S, is homogeneous space for the SL(2,C).
This group is a 6 real parameter Lie group with SU, as a
maximal compact subgroup. The Iwasawa decomposition
may be verified by direct computation
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cos § e - gin O elf e 0 {1 & +in
SL(2, C) =
i

sin § e cos 6 e-ia 0 e-x 0 1

where a, B, A, 6, &, 1 are real.

II. 10 EXTENSIONS OF THE POINCARE GROUP P}
(RESULTS ONLY).

We give here results only., For proof see L. Michel
Nuclear Physics 57, 356, 1964, In chapter III we shall see
the physical implication of these results. Let us just say
here that if G is an invariance group for a physical rela-
tivistic theory by Zeeman's theorem (2.4) G acts upon
space-time through G = Aut. Let K be the kernel. The
image of p contains at last P! < G. andp ~' (P! ) is an
extension of P!

1 » K =p ' (P,)— P, —»1
1

As before we denote P' by P' and its universal covering
by P' and by s : P' & P' — 1.

As we have seen in 1.6 for searching the extensions of
P' (or P') by K we must consider a homomorphism

g: P' = OutK
g 8

(hence p' > OutK)

and there is a one to one correspondence between the two
problems:
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(K, P', g) and (C, P', hog) where C = center of K, h is
the canonical homomorphlsrn Out K b, Aut C. Correspond-
ingly for P' the triplets are (K, P', gos) and(C, P, hgos).

If C is a Lie group and the extension has to be a Lie
group then the only solutions are for Lie algebra the semi-
direct product of the Lie algebra C N ', (See for in-
stance L. Michel Istanbul chap. I to pass from the Lie al-
gebra to global Lie groups, there might be then several
solutions). This is an application of the last theorem of
G. Hochschild and J. P. Serre, Ann. Math, 57, 591, 1953.

For abstract groups the only results established are
when hog is trivial (central extensions of P' or P' by C).
Then if C is a reduced group; i.e., if it has no divisible
subgroup except {1}, the only solution is the direct
product C X P', (A abehan group is divisible if for every
integer n and every x € A, dy. € A such thatx=(ya)"
with the multiplicative notatlon Another way to say it us-
ing the notation 1.3, Vn, A= Aie. Ax =0).

Then the solutions of the initial problem correspond to

Cc xP!

G=Eq= Z:(a)

(10)

where the notation has the following meaning. The center

of P! has two elements 1=(0, 1) (0 e T, 1 € SL(2,C)),
w = (0, - 1) where - 1= ei?" ig the "rotatlon" by 27 in

SL(2, C). Ifae C= C(K) andd® = 1, then Z; (@) =

{(1, 1), (a,w)} atwo element subgroup of the center of

C X PL.

If C is not a reduced group, there are still the solu-
tions given by (10). It is not known if others exist, but if
they do, they are quite pathological, as explained in the
Nuclear physics 57, 356, 1964,

The meaning of (10) for the extensions of P' is that
the irreducible representations of E4 are the tensor products
of irreducible representations of C and of P' which map (@, )
to the identity.

This does yield relations between quantum numbers for
internal symmetries and the Poincare group. One such rela-
tion has been found by Lurcgat and Michel:
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(- =(-p°*?

where b and 1 are the Baryon and lepton numbers respec-
tively for a system of particles and j is its total spin (see
ITI.5 below).

III. OBSERVABLES AND ALGEBRAS.

III.1 DEFINITIONS.

With the current interest existing at the present time in
symmetries of observables in quantum mechanics, it does
not seem out of place to give some mathematical results on
algebras in general, These will appear as the mathematical
basis for discussing gauge groups and broken symmetries
at an axiomatic level (cf. Robinson's lectures).

Through out we consider a linear space E over some
field X, (In the following the field cannot be arbitrary, so
let us think only of the real or complex field).

DEFINITION 1. E ® E=1{(x, y) | X, y € E modulo the
equivalence relation (A x, y) = (x, A y), A € #}

E & E is called the tensor product of E by itself and is the
set of equivalence classes in the direct product of the abel-
ian group of E by itself E X E modulo the above equivalence
relation, Sometimes instead of (%, y) for the elements of

E ® E we write x X y, where A x X y=x X Ay.

DEFINITION 2. An algebra 4 is a linear space E with a
homomorphism E &) E & E.

For convenience we shall write h(xX y) = x t y where
()l ) denotes the product of two elements of 4. De-
Pending upon our choice for ( ) ¢ ( ), we obtain differ-
ent algebras. In particular we do not require ( ) 7 ( )
to be associative.

An algebra 4 is associative if Xr¥)r 2 = Xqp(ypz). It
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is interesting to note that an associative algebra may be
defined diagramatically

E

E

Diagram 1 is commutative, Reversing the arrows in this
diagram defines a co-algebra co&. If 4 is both an algebra
and a co-algebra, then 4 is called a hyper-algebra.

Given the tensor product space E (X) E we can make a
decomposition into symmetric and anti-symmetric tensors

X E

h X 1

S

EXE XE I ®h .
EX® E .

h
(1)

xCW:%(ﬂDY+YC“)+%ﬁ®Y‘Y®X)

or
symm anti-symm S a

EXE=E ® E+E R E=EXE+E®X® E

Then
S f a
1 EXE—-EXE—-EXE-—1

and a S
EXE=EXE/EX E.

Similarly S i a
EXE=EXE/EQE.

DEFINITION 3. An algebra 4 is called a Lie algebra if
1° h factorizes over a

2 Vx,y,2, (xp (Y’r y)) + (YT (ZT X)) + (s7 (x7y)) =0
(Jacobi's identity)
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In terms of diagrams, given the homomorphism h there ex-
ists f and g such that h = g. f i.e. the diagram is commutative.

E X E ! .

E

h T

E

In a Lie algebra x;x = 0 since x;x = h(x ®x) =

gof(x X x) =0; and x,y = -y 1 X
Note that Jacobi's identity can then be written

ho[I@h-h®I(xX®y®2z) =h (h®D (zX xR y).

This corresponds to the ''lack' of associativity of h.

éE
g

Exercise. If E @ E-I E, h(x X y) = xry is an associa-
tive algebra and h (x ) y) = h(y X x) defines the "Opposed"
El_g_ebra, this is associative. Furthermore show that (h-h)
(x® y) = xpy - yrx defines a Lie algebra (indeed Jacobi's
identity is verified). Note that every Lie algebra is not
obtained by this method trom an associative algebra.

DEFINITION 4, An algebra 4 is a Jordan algebra 1° if the
homomorphism h factorizes through E (X E, i.e., ¥ fandg
such that the diagram

EQE— »ESE
g

e

is commutative, Then of course X, ¥=YrX
2°IfV x, y,
[(x7 x)g Vit x= (x7X)r (y1 %)

Exercise. Same notation as previous one, h and h define
opposed associative algebras. Then (h + h) (x X) y)=
X1 Y+ yr X, define a Jordan algebra. The same remark
is true, There are Jordan algebra which are not of this

type.
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The theory of Jordan algebras has its foundations in
quantum mechanics where if x and y were observables then
generally x y was not. However the symmetrized product
was (xy + yx)/2 since this is hermetian if x and y are.
Indeed these algebra were introduced by Jordan for quantum
mechanics in 1933 and studied by P. Jordan, J. von Neumann
and E. Wigner ""On an algebraic generalization of the quantun ‘
mechanical formalism'" Ann. Math. 35, 29, 1934. 9

3.2 Classification of Algebras

Given two subalgebras B; and B: C A/, we may form the j
product Bit B2 = { biT bz, b1 € B1, bz € B2}. In general 1
B: v Bz is not an algebra since the vector space axioms are ]
not satisfied. The closure B;t Bz would be a subalgebra '
of 4. The intersection Bi( ) Bz is always a subalgebra. (For
the case of groups recall § 1-0).

DEFINITION 5. Let 4 be an algebra and®© a linear subspace
of such that # © ¢ @, @ is called a left-ideal.

Similarly we define a right-sided ideal, and then a two-
sided ideal as an ideal which is both left and right sided. For
Lie algebra and Jordan algebra every ideal is two-sided.

Two=-sided ideals @ play the same role for algebras as
invariant subgroups, for groups. Given a homomorphism
between two algebra 4 L. A" the kernel of f i.e., £77(0) is
a two-sided ideal of 4 and we can form the factor algebra by
the kernel, i.e.,

l1-g—A - 4 =4/ g—1 Ker f = g.

Exercise. Prove that the intersection and linear sum of
two ideals are also ideals.

DEFINITION 6, Let A be an algebra. There the derived
algebra A' of 4 is

A' = A A

We can form higher derived algebras by
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A _ ﬁ'T Ar, A = A AL A (ﬂ(n-lzr,ﬂ(n—l).

Let us denote D°A =4, D" 4 = A then

is called the derived series for the algebra 4,

Exercise, (a) Show that D* 4 is a two-sided ideal in 4, and
D*4 > D"+ 4,

(b) Consider an abstract group G, and Vx, y € G
the set of products of the form x™'y~! xy gen-
erates G' < G, the commutator or derived
group of G. Give the derived series for G and
generalize exercise (a) to groups,

(c) Show that G / G' is abelian,

DEFINITION 7, An algebra 4 is solvable if ° integer k:
D"A=0 Vn> k.

Exercise, Generalize definition 7 to groups,

DEFINITION 8. Given an algebra &, 'H a largest solvable
ideal called the radical of 4.

DEFINITION 9. 4 is semi-simple if its radical is trivial,

DEFINITION 10. 4 is simple if H no non-trivial two-sided
ideal in 4,

EXAMPLES. 1. In classical mechanics the observables of a
Physical system form an infinite dimensional Lie algebra,
where if p, q are observables ppq = {p,q} the Poisson
bracket, In quantum mechanics the observables formed an
associative algebra and, with the commutator of any two
Operators, a Lie algebra. Diractells us in his book the
general correspondence between the two Lie algebras
(classical and quantal) for the same system. A detailed
study for concrete problems is worthwhile.



