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III.3 DERIVATIONS.

DEFINITION 11, D is a derivation of Aif E > E is a
homomorphism (for the vector space structure) and

D (xpy) = D)y y+x¢r Dy
Note that D is linear on E and by Leibnitz's rule

D*(xqy) = 2, (2) (D'0r (D)

where
!
(M= =
p p! (n-p)!

The sum of two derivations is again a derivation, but not the
product since

D;D; (xpy) = (D1Dex)7y + (D2 X)r (D1y) + (D1xX)7 (D2y)
+ x1 (D1 Dy y).

However one sees immediately that [Dy, D; | = D1D; - D, D
is a derivation, Hence the derivations of an algebra form a
Lie algebra,

The Exponential Map.

Consider 00
eD= X 1 p
=0 n!

For an algebra & with a nilpotent derivation (D* = 0 for
some fixed N for all elements of ) eD is always well-
defined. (If the field associated with E has finite charac-
teristic then eD is well-defined on 4).

Consider the following
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LEMMA 1. Given an algebra 4 with a derivation D such
that eD is well-defined on 4, then eD is a linear map on
E (vector space of 4) and an automorphism of 4.

Let Der 4 denote the set of derivations of &. We
have seen that it is a Lie algebra and it exists for any
type of algebra 4. Further if we can define the exponen-
tial map eD on 4 this provides a natural way in which to
construct automorphisms of 4. Of course all automor-
phisms of & may not be obtained in this manner,

Inner Derivations.

Let a be an element of &, then in the same manner as
for groups we can define left and right translation by a:

aL 7
X = Aqgx Vx € &4
R
X — Xwyga

Be definition of algebra these maps are linear,
For an associative algebra & an inner derivation is the
linear map D, = ay - a; and

Dlx:: - a,'T X + XTa

D, is called the inner derivation associated with a.
In the case of a Lie algebra 4, left and right transla-
tion are essentially the same since

a
& arx=[a,Xx]=-xra

X
and ap, = - ag. We then denote this mapping by
L
X —arx = ad. (x)

the adjoint mapping determined by a, or the inner deriva-
tion determined by a.
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Exercise. Show directly that D. and ada are derivations.
For a Jordan algebra 4 let a;, the lefg transla-
tion corresponding to a; X € 4, X~ arX.

Of course a;, € Hom(E, E) i.e., a is an endo-
morphism of E the linear space structure of the
algebra. We know that Hom(E, E) also often de-
noted L(E) is an associative algebra. Let 4 the
subalgebra of L(E) generated by all ar, Va € 4.
(i.e., the smallest subalgebra of £(E) which con-
tains all a; ). One shows that the inner deriva-
tion are the elements of the linear subspace of 4
generated by all the elements arbr - bray, Va,
V b e 4.

One proves the following results on derivations

LEMMA 2. For any three type of algebra £ the inner deri-
vations form an ideal in the Lie algebra D e r 4 of deriva-
tions.

THEOREM 1. For a semi-simple Lie algebra all deriva-
tions are inner.

THEOREM 2. For a semi-simple Jordan algebra all deriva-
tions are inner.

Remarks on the Relation Between Lie Algebras and Lie
Groups.

The process by which the Lie algebra for the infini-
tesimal generators of a Lie group is obtained is well known
to physicists, but not so the converse. Generally given a
Lie algebra there are several groups having this algebraic
structure, If we construct from the infinitesimal genera-
tors a simply connected topological group, we obtain the
universal covering group G. To each discrete group
D < C(G) we can form G/D, which has the same Lie al-
gebra as G. Stated more precisely
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THEOREM 3. For each Lie algebra £ there exists a unique
simple connected group G, having this Lie algebra for its
generators,

THEOREM 4, All connected Lie groups G which have L
as Lie algebra have the form G = G/D, where D is a dis-
Crete invariant subgroup.

We have seen after II Definition 4 that G and G are then lo-
cally isomorphic and (following exercise) that D< C(G).
On should be careful, since it can happen that D; ~ D, but
G/D;+# G/D;.

As simple physical examples we refer to ''Istanbul'’
chap. 1.

To each subalgebra of £ corresponds a closed subgroup
of G, while to a two-sided ideal corresponds an invariant
subgroup. Characteristic subgroups of G correspond to
Characteristic ideals of £, the latter being defined in the
same way as for groups. Lastly to a derivation of the Lie
algebra £ corresponds an automorphism of the correspond-
ing Lie groups G.

II1.4 ALGEBRA OF OBSERVABLES.

Let us now turn our attention to the observables in a
quantum mechanical theory, The basic postulates of quan-
tum theory introduce a separable Hilbert space & in which
the observables appear as hermitian operators, generally
these operators may be bounded or unbounded. Given # we
shall denote the set of all bounded operators on # by B(#).

DEFINITION 12, A subset # C B () is a (%) star op-
erator algebra over @ if

VS, Te d — aS+BT, ST, S*¥ ¢ &

where o, B are complex numbers, s* the hermitian conju-
gate of S.
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In the following A will always mean a * -algebra unless
otherwise stated.

DEFINITION 13, The *-automorphisms of A, written
*-Aut (4), are these automorphisms £ of 4 such that

£S¥*)=£(8)*, Vs e 4

POSTULATE 1, The set of observables for a quantum me-
chanical system form a *-algebra, 4.

Physicists feel how much this postulate is artificial.
Indeed often only the hermitian operators of # are con-
sidered as observables. They form a Jordan algebra 4. In-
deed if X, Y € J, (i.e., X, Y € A and X¥=X, Y*¥=7Y)
then use for the Jordan multiplication of X and Y, 3(XY + YX)
(which is a Hermitian operator of £, hence an element of 7).
This observable corresponds to the classical observable xy
where x, y are the classical observable corresponding to
X and Y.

As we say Jordan algebra were introduced by physicists
for observable in quantum mechanics, However for the
(unphysical) reason that associative algebra are simpler,
physicists returned back to them.

Relativistic Invariance,

A theory will be said to be Poincare invariant if P! is a
subgroup of the group *-Aut(#). We denote *-Int & the group
of inner *-automorphisms of 4, i.e., the inner automor-
phisms A — U A U~'of 4 generatedbythe unitaryoperatorsU*
=U" e/l
Exercise, Show that *-Int(4) < *-Aut(#), and state clearly

the group law.

Spatial *-automorphisms.

A special kind of automorphism plays an important
role in the theory of algebra operators.
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DEFINITION 14. The spatial automorphisms, Sp(Aut #), are
these elements £ ¢ Aut (A):

E()=XSX"™, VS ¢ AandsomeS ¢ L@).

If furthermore (X S X ')* = X g% X! , (thenS* X § =
S X*X), X induces a spatial *-automorphism,

Clearly *-Int(4) < Sp(*-Aut4), and from the preced-
ing exercise *-Int(4) <1 Sp(*-Aut 4).

Perhaps it is well to deal with a technical point con-
Cerning unbounded operators. For physical interest we
shall have to consider unbounded operators, an unpleas-
ant necessity. It the unbounded operators have a spec-
tral decomposition theorem (which is always if A is self
adjoint i.e., A= A* or normal i.e., AA* = A% A)

the spectral projectors Ej are bounded, If we want to deal
only with bounded operators the natural way to include the
unbounded observables is to consider instead of their op-
erators, the set of all their spectral projectors, For in-
stance the product of two unbounded operators A, B is not
defined everywhere, so is therefore their commutator
AB - BA. However we shall say that AB - BA = 0 if every
spectral projector of A commute with every spectral pro-
jector of B.

If all spectral projectors of A are elements of an al-
gebra 4 we shall say that A is affiliated to 4 (A may be not
an element of 4). If 4 is a *-algebra, let A' commutant of

4 i.e.,
A' : {Abounded, AX=XA, VX e 4)

It is easy to see that &' is a *-algebra (of bounded opera-
tors). We denote A'* = (A' ) the double commutant, and so
On LN

It is easy to see that elements of 4 are affiliated to 4"



326 L. MICHEL

and if B(4) deno:e the (subalgebra) of spectral projectors
of operators of 4, then B(A) < A,

Similarly &' c A" ', A < A", FromM < N —
H < of' we deduce A'"'Y < B(A)' =A', A < AN, so
At = A" and AT = AV ...

DEFINITION. A von Neumann algebra is a *-algebra 4 (of
bounded operators) such that A = 4,

We shall denote by U(4) the set of unitary operators (they
form a group) of the von Neumann algebra # and we leave
to the reader to prove that U(#A)' = 4, i.e., a von Neumann
algebra is generated by its unitary operators.

Let £ € Sp(*-Aut #), represented by X ¢ B(H)
(bounded operators on #). We have seen that X~ ' exists and
X* X € A. Since X* X is a positive hermitian operator let
C be its positive square root.

Since C has same spectral projections as X*X, C € 4°'.
Hence Y = X C™' induces the same spatial automorphisms
asX: YSY'=XC'SCX'=XSX"' VS e & butY
is also a unitary operator on #.

We see that a spatial *-automorphism can be repre-
sented by a unitary operator on#. Let X', X"' be two uni-
tary operators corresponding to the same element of
Sp(*-Aut &)

EG)=X"s X t=xtsx !

then X' *' X' = Y is a unitary operator in#4'. The con-
verse is also true. Let U(#) be the set of all unitary oper-
ators on #, this set is also a group for the product of op-
erators. We denote by U(#) the group of unitary operators
of A. The normalizer Wy(g) (U(A)) will be denoted simply
UN(A). To summarize, we have established the following
results, (Diagram 1) (with C(4) = center of 4).
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1 1 1

o

L 2 UC(H) o U) —p *-Int A o 1

o

1 U4 — - UMA) o Sp * AutdA 1 _
diagram 1

and, of course, this diagram 1 should be completed accord-
ing to diagram 1.2. The more elegant manner to do it is to
consider 4 as the von Neumann algebra generated by all ob-
servables (which are then affiliated to 4). Then (A")' =
A" = A, SoU(H) and UA') a respectively centralizer of
each other in the group UM(A). We leave to the reader to
write in this case the full diagram .2, which is completely
symmetrical with respect to the main diagonal.

Some further results arise if we modify Postulate 1
slightly. Given an operator S ¢ B(#) we define the norm
of S, written |IS|, by

IS = sup || ST |
hfn =1
where f is any element of & lying in the unit ball. The op-

erators norm allows us to define a topology on L(#). An
open neighbourhood of So € B (#) in the norm topology is

N€ (So) = { S N S € ﬁ(g{)), ”S - So ” < € }

The usual notions of limit, continuity, and closure can be
readily defined.

DEFINITION 15. A *-algebra 4 of operators on a Hilbert
space which is closed in the norm topology is called a C*-
algebra,
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Let D be a derivation on an algebra A, then D is called
a spatial derivation if VS ¢ A, d5 ¢ B(H):

D(S) = 6 S-S 4.

As before if D ¢ B@), eP ¢ Aut 4 and e?® form a one
parameter group of automorphisms; for *-Aut(#4), D is anti-
self adjoint. An important result in the development of C*-
algebras is that all its derivations are spatial.

Presently there seems to be considerable interest
among physicists to develop the theory of observables as
a C*-algebra 4 with the Lie algebra of the Poincare group
as a subalgebra of the algebra of derivations ot 4. This
last condition implies P! < *-Aut(4). It is hoped that this
section will appeal to same readers who might start their
serious thinking about these ideas by sketching some conse-
quences of the assumption P! < Sp(*-Aut &).

See preprints by Kastler, Borchers etc....

III.5 OBSERVABLES AND VON NEUMANN ALGEBRAS.

Given a *-algebra 4 in B(#) we may also introduce a
weak neighbourhood of S, € 4 by

Ne (So) = {8: 1< (8-80) fi, gi> 1< € i=
1,...,n Vi, gi € H }

Clearly every uniform neighbourhood is also a weak neigh-
bourhood but not vice versa.,

DEFINITION 16. A *-algebra # which is closed in the
weak topology is called a W*-algebra, (We assume A con-
tains the identity.)

With this definition a W*-algebra is also closed in the weak,
strong, ultra-strong, and ultra-weak topologies (Dixmier
p. 44, Les Algebres d'operateurs de 1' Espace Hilbertian,
Gauttier-Villars Paris). Henceevery W *-algebra is a C*-
algebra. The converse is not true,
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THEOREM 6 (VON NEUMANN). 4 is a W*-algebra — 4 = A,
i.e., Von Neumann algebra and W*-algebras are the same
objects. A Theorem recently proven by Kadison and others
state that all derivations of a von Neumann algebra are inner,

To end this paragraph I present an already old work by
Lurgat and I (N. Cim, 21, 574, 1961),

Our assumptions on the observables for a quantum the-
ory may be written:

(1) The algebra 4 generated by the observables is a
W*-algebra. To see the difference between C* and W*-
algebra generated by the observables, we advise reading
the beautiful paper of R, Haag and D, Kastler J. Math, Phys.
5, 840 (1964), its use of € -equivalence, its explanation of
superselection rules, ,

(2) F a complete commuting set of observables B,
Mathematically we state this as 8 C A and 8' = B. We
say in this case B is maximal abelian. We refer to J. M.
Jauch, Helv, Phys, Acta 33, 711 (1960) for the physical
motivation of this mathematical hypothesis.

Since BC 4, 4, C B =Bc 4, ord' c 4. Hence
A' = Center of 4. Such a von Neumann algebra is called a
discrete algebra.

(3) The absolutely conserved charges in the theory
are contained in 4' = C(4) and they generate it. By the
charges we mean the operators generating baryon, electric,
leptonic charges.

(4) P! ¢ *~-Int4

As regards assumption (4) we note that C(4) is left in-
variant by P, . Conversely if C(4) is left invariant by P!
then a theorem of Dixmier (p. 120) has P! < *-IntX., So
4 is implied by 1, 2, 3,

The unitary operators of A which represent the inner
automorphisms are defined up to elements of U C(#A) so the
group € which realizes all relativity transformations is a
central extension of P by UC(4): see diagram 2. & =

p~t(P!).
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I — - UCA) — U(A) — e * - It T — 1

|

1 — »UC(A) — e & — P! a1
! ! diagram 2

We have already remarked in § 2.9 that the physically inter-
esting central extensions of P! by U=UC(A) are:
g U X P!
a = Zy(a)

here o is a square-root of U which is generated by the
charges; that is if we denote the charges in the set by q, b,
1, ...., the unitary operators U are of the form

e irf(q,b, 1,...)

where f is areal-valued function of the charges. The
square-roots a of U correspond to integer valued functions
f. In an irreducible representation of P! , w is repre-
sented by (- 1)), The condition on €, is that o and ware
both represented by 1 or - 1, i.e., a = (- 1)’ This gives

eiﬂf _ (_ 1)1 - (_ 1)2]'

f can be obtained as the weak limit of polynomials in q, b,
1, ..., but it has to be integer-valued and f = 2j, mod. 2.
One may deduce that f is linear and if e = 0 or + 1

f=€eot+teqq+ep b+er l
In nature it is found thate€o=€q =0, €» = €1 = + 1, thus

(-pPriirl oo (o)

where 1; is the electron lepton number, and 1, the muon
lepton number,
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IV. POLARIZATION.

IV.1 COVARIANT DESCRIPTION OF POLARIZATION,

Our purpose is to give a covariant description of spin
for relativistic particles. A free particle is described by
an irreducible unitary representation of the Poincare group
P¥ M" obey the following commutation relations,

[iP*, iP*] =0
[ P-.", iM* ] =i Pt g - jpv g (1)
[iM™, iMP7] = i M*Pg™ +iM"™ ght - i M gw -
- iM® guw

which form the Lie algebra of the Poincare group. For a
unitary representation, the P's and M's are hermetian

(= observables). The infinitesimal operators of the Lie al-
gebra are i P* and i M"; it is clear that this Lie algebra
is on the real field,

DEFINITION 1, Universal enveloping algebra. Physicists
want to consider products of P's and M's with the only con-
dition that they identify the commutator AB - BA of two ele-
ments with the bracket of Lie algebra [A, B]. This has a
name in mathematics: it is called the universal enveloping
algebra € of the Lie algebra £. It has many important
properties; for instance any homomorphism of £ into an
associative algebra # e.g., any linear representation of .L)
can be extended to €. (See a book on Lie algebra for more
detail.) When physicists have to consider a mathematical
structure, the associated '"universal'' structure must have
also a physical meaning. We can say that € is the algebra
of observables generated by the P's and M's. According

to § 3.5 (2) to find a complete set of commuting observ-
ables we try to find a maximal abelian subalgebra of §, It
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contains the elements of the centre the operators P*P, =
P? ) W*W, = W? where

€ \uvpM* pP (2)

W;\=-l € ALVP P“Mm:-—;-

2

(€”HP  the anti-symmeftric tensor in four dimensions),

Who introduced first this operator before the war ? It
seems it was Pauli (see e.g., a reference by Lubanski,
Physica in 1942). I do not know. At that time great physi-
cists did not rush to print any thought they had (and they did
have a lot of good ones) and did not fight for priority. It is
known by physicists but does not seem to be proven by
mathematicians that P* and W? generates the center of &.
In an irreducible representation of (1), P? and W? are
multiples of the identity, hence their spectrum can be used
to classify these representations.

This is not completely true, because for P? =0 W2 = 0
there is an infinity of representation. So for zero mass
representation P? = 0 and ' finite spin'' one needs the
helicity A defined by W = X P to distinguish the different
irreducible representations.

The commutation relations of P and W are given by

[W*, P¥] =0, [WY, W] =i e P, W, (3)
[Wh MY J=igw W”-igw w¥ (4)
Note that P*W, =P . W = 0 | (4')

The W* has been built in order to commute with the P's.
So if we characterize the state of a particle by the observ-
ables P (P° energy, P momentum) to complete the descrip-
tion of the state we shall have to use some function of the W
the polarization operator. (Polarization is what is needed
to form with energy and momentum a complete kinematical
description of a particle static).

Let us consider an irreducible unitary representation
of £ on the Hilbert space #. This representation extends
to an irreducible representation of §. The operators P?
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and W* are multiples of the identity. Let us diagonalize the
P's. Since they have a continuous spectrum, this intro-
duces a continuous basis on & whose vectors are not in %.
(But physicists are not embarrassed by this although mathe-
maticians have been slow to justify them.,)

PY | p> =p¢ |p > (5)

The operators in the enveloping algebra which commute
with P* are functions only of P*, W*, Restricted to the
vectors given by (5) further specification of the states is
given by a function F(W).

P* FW) | p> =p* FW) | p > (6)

To each p* there corresponds a Hilbert space of polariza-
tion states which is reduced by F(W). For a representation
[M, j], M > 0, the degeneracy of | p> is of degree
2j + 1. We shall denote the restriction of W* to this 2j +1
dimensional subspace #, ¢ # by WY. From now on, we
consider only the case M > 0.

For each point p# in the spectrum of P* choose a
tetrad, i.e., orthonomal basis of four vectors n(® (p), a=
1, 2, 3, 4 where n(“o) = pu/ M.

nl@ @ - gas (7)
€ \vp nrc;) n(f) n® n(g) = - gabyb (7')

(This last relation chooses a right handed orientation.)
The completeness of the basis is expressed by

(¥

ko T By (8)

n'(:) gué n
Let us introduce the operators.
s@ - -Ml— W.n@ - —;-4— W nf@ , 9)

where in future for two four vectors a.b = a* bu. Note from
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(4') that S®= 0 and S@ = (0, 8), S= (S', $?, S*) which
are the operators '' components of W in the tetrad n@ (p)"

3 . WZ
iv2 _ W
i=1
and 3 i
W =M 2 s@n®p) =MSmn (10")
=1

From the commutation relation of the W* we can compute
these of the S and we find

[s®, §0)]=18® (11)

where i, j, k is a circular permutation of 1, 2, 3. Indeed
the S* are the generators of the little group of p; this little
group is isomorphic to SOs.

As is well known to physicists, from (11), we prove
that for an irreducible representation

. 2
% s¢ =8%2=j(j +1), 2jinteger = 0 (12)

i

and from (10)
W2 = -m? j(j +1)

This also proves that %, has indeed dimension 2 j + 1,
To verify that S has the correct properties, consider
the rest frame P°= M, P = 0, Denote

i jk

';Ti ;\J/on (i j k) a cyclic permutation of
(123)

then
Wl = pJ, W=p°J-P x N

and in the rest-frame P°= M so

w
S-—‘ﬁ'—-J.
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For the mass zero case see L. Michel N, Cim. (Supl.) 14,
99 (1959).

EXAMPLES. 1. Denote the mass operator by M = v P2 |
and form a function F(W) which is a rational function of the
Poincare operators, e.g.,

1 W’ P
E=—ﬁ[W—m] (13)

Note that [P, £] =0, © X Z=1i Z, while in the rest frame
Z = 8, Z is then also a good candidate for a spin operator,
(see for instance several papers by Chakrabarty in JMP
1964-65 and also H. Bacry's thesis).

Of course, since neither S nor T are polynomials in P,
W (but more general function of them) they do not belong to
&, the enveloping algebra but to a much larger algebra. The
trouble with this algebra is that it has lost its origin from
the Lie algebra of the Poincare group. It would just as well
have been generated by the Lie algebra of SO(4, 1), the de
Sitter group, whose infinitesimal generators M?? (a,B =
0, 1, 2,3, 4) can be identified with

af4#8 M = MM o= B= v

a=4 B=p M* =[C, P*] (P"P,)V2 =_ MM
where C = 1 My M™ and (P*P,) 72 g M, the positive
square root” of the operator P* for ""physical'' representa-
tions of the Poincare group with non zero mass (i.e., P > 0).

2. Remarks on SUs. For one year many physicists
tried to define a relativistic SUs theory by trying to embed
the Poincare group P and SU, into a larger group G, The
infinitesimal operators of the subgroup SU, x 1 < SU, X
SU; < SUs had to be identified with the spin operators Z
where T X Z=iZ, [P, Z]= 0. Hence £ might be a way
to describe polarization in SUs. Let us try to fit in the rest
of P in some way.
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Let
P xW J'=J-2 (orbital angular

2= M(P° + M) N'=N-12Z momentum)

One may check that P#, J', and N' form a Lie algebra iso-
morphic to the Pomcare algebra and the whole algebra com-
mutes with Z. We call P' the corresponding Lie group
whose Lie algebra is that of P*, J', N'. Its corresponding
mass operator M'? = P*Pp, = M but for P', the corre-
sponding W'? = 0 so P' is without spin.

So the operators P*, J - Z, N - Z, Zgenerate the Lie
algebra of the direct product P! >< SU,. But the physical
Poincare group (with generators P*, J, N) is not a sub-
group of it, Indeed P , J, Z, N, Z do not generate afinite
Lie algebra.

On the other hand for the Galilei group we do have for
the corresponding operators [N, Z | = 0 and the physical
Galilei group ¢ is contained in ¢' X SU,. On this basis we
conclude that a Wigner supermultiplet theory with internal
symmetry groups SUz, SU4, SUs,.... can exist under Galilean
but not Poincare invariance,

IV.2 THE DENSITY MATRIX FOR POLARIZATION,

Consider the Hilbert space #, of particle states of

given energy momentum p and a normalized state |n, p> e #,.

In the following we drop the momentum dependence., The pro-
jection operator for |n>is Pa = |n><n | where

trace P=<n |n>=1, P, = P¥ =P,?

Let A be an observable, then its expectation value for the
state |n> is

<n | A | n>= Trace (AP,)
Note that P. is invariant under a phase change in | n> .
Given a set of states | n >, n=1, 2, ,.... orthonomal,

with probabilities C, for flndlng physmal quantltles in these
states, ¥ C, = 1, the expectation value for A is

trace A p=2 Ch < n|A | n>
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where p(p) = & C. P, is called the density matrix for the

physical system, Note that we have assumed that the states
In > mix incoherently,

Properties of the Density Matrix.,

(1) p*=p

(2) Tracep= 1,

(3) Tracep' = 1, k positive integer,
4) <nlp | n> = 0, Vin>e€ #,.

If p* = p for some k we say that p describes a pure state
corresponding to a single vector | n > and p ~Py.

Case of M>0, j=1/2.

For spin 1/2, dim &, = 2 and the polarization operator
W may be expressed in terms of the Pauli matrices

_ 2 3 1 _ 01 2_0"‘1 3_10
T (T, T ), T s <1 o> 7 ‘(j o)’ o <§-1>

The most general two dimensional operator satiSfying the
Conditions for a density matrix is

pB) =5 [1+8 (P). 7]
T
1 1
=§*M~§.(Wp.n)

where 0<t%< 1 and S = ~21— T

Let s = £ ., n then

p(p) = .

Sy 0=¢*’=-s"=1,8p=0 (13)

D] bt
2=
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which is a fully covariant expression. The vector ¢ is called
the stokes vector and | £| specifies the degree of polariza-
tion. Observe that

2

PP=Z 1+ +28-T]=p+(8*-1) /4

| -

Represent by the unit sphere and its interior (Poincare
sphere), then

(a) origin represents unpolarized state

(b) the surface, completely polarized states

(c) Interior represents partially polarized states
with degree of polarization £ > = - s*.

Longitudinal and transverse polarization. These concepts
have a meaning only when a time axis is chosen, Let

t= (1, 0) be the unit vector along the time axis, Then, if
the particle is not at rest, t and p* determine a plane in
four space, let 1 be a unit vector in this plane orthogonal to
p# and I* = - 1, i.e.

1% = -1

Lp = 0

1“ = r_n_lEET pr - T%lj t¥

E = + m? (14)
Consider the tetrad 2— , n%) n® 1 where

M

we write
gk = C(l) nWE 4 C(Z)“n@)ﬂ+ 6(3)1#

transverse logitudinal
part part

This decomposition is certainly not covariant, and the
chosen time axis must be specified.
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Higher Spin Generalization,

For the case of a massive particle of given energy-
momentum the little group is just SO; which acts in #H, by
means of its irreducible unitary representations D'. Under
such a transformat on one readily shows that the density
matrix transforms as

p—-p =D p D*

where D' * is the hermitian conjugate to D’. In terms of
components

P aeg=D" D' por
=QuaB, 0 Tp

and p behaves like the components of a tensor whose irre-
ducible components are

2j

s p®

i=o
How we have seen, the polarization density matrix is a
polynom in W. To reduce it into irreducible tensors for the

little group it is easier just to pass through the operators
S For instance

j = 2 (quadrupole) S¢)g® 4 s“”s@-% s? §™

Generally to construct a higher spin multipole consider
sums

where £ ijk .... is completely symmetric in (ijk...) and
Zi&iijx,, = 0. To obtain a covariant expression replace s®
by its covariant expression in terms of W.

The result for spin j has the form
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1 we wew? wepePw?
P) =555 ~Sem *Se T TSy T

a a o
wlw? . w'H
aZj mazai

+ (— 1)21 Sala2....

where Saqg,....a is a 2j rank tensor completely sym-

., 12 2j
metric in

(a1 ..... agj) and paS L PO = O, S Clla [ O = (),

273 %
For a more detailed and complete account see C. Henry and
E. de Rafael, Ann. Inst. Henri Poincare, Vol II A, 87, 1965,

IV.3 N - PARTICLE STATES.

We turn briefly to setting up the formalism for a system
of N particles, whose single particle representations [Mi, js ]
fix the single particle Hilbert spaces #1, #z,..., #n. For
a given configuration of momenta (p1, Pz, ..., Px) if there
is no correlation between the particles the N-particle con-

figuration may be represented by
N

Ipr, j1> & Ipz, je > X veeee X 1Py, jx > in X H,

a=1

After correlation, for instance interaction, the final state
vector cannot generally be decomposed as a tensor product.
This applies even to independent but identical particles, eg.
bosons or fermions require

N
z;¢:¢=1 ® ‘p,j >

symmetrized
anti-symmetrized

For a system without correlation the N-particle density
matrix may be written

pn = (N@ Pa (Pa)

a=1
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acting in the space
N
X dtp
a=1
corresponding to the subspace for a momentum configura-

tion (p]_ 9 ri)z g00ny pN)'
Let px be the density matrix for an initially uncorre-

lated N-particle state, and S the scattering operator in

0
@) FHe
a=1
Then the final configuration density matrix is
pxt = Spi S*
Let pyt+ be the density matrix describing an arbitrary con-
figuration of the N' final particles. The transition prob-
ability for finding a state initially described by px in the con-
figuration Px, after interaction is
X = trace (p¥ py') = trace (px' Spx S*)
From the general form of the given in 4.2 we see that) is
linear in the polarization tensors Sa,a,,... of the different
particles, when py and px' are independent particle states.
Perturbation Theory.
Suppose to a given lowest non-vanishing order of per-
turbation theory S=1+i H + O(H), where H is hermitian,
and consider a decay of one particle into N,

A =trace ({I+iHIp) {I-iH ) py)

= trace [py px] + i trace H(pipx- oxpt)
+ trace (Hpi Hpy)

= trace (Hp; Hpy)
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as ?N and pil lie in orthogonal subspaces, i.e., pfp =0 =
PNP1.

IV.4 PARITY CONSERVATION.

Let the initial state be denoted by Z; and the final state
by ¥, , the transition probability for the reaction Z; — 2,
is A 1. Under a space reflection with respect to some plane
let 2, — 21, Z;—2%. Then if space inversion or parity is
a symmetry of our theory

Az =212,
and inequality indicates a violation of the symmetry,
Define
Aig=a+b, A1'2' =a-Db

then a is a scalar and b a pseudo-scalar under space-
reflection, since A1z and A;",', are exchanged by space
inversion.

Note that positive probabilities impose a = | b |.
To detect violation of parity we attempt experimentally
to measure a non-zero b term. For this let us build
Table 1.

Recall that P(p°, p) = (0% - p), P(s° ) = (-s°,8);
T(p09 p): (p07 - p) ’ T(Soa S) = (SO’ - 8).

EXAMPLE. A decay of unpolarized particles into two or
more particles, but only the energy momentum p and polar-
ization s of am > 0, spin 1/2 final particle are observed.
Let P the energy momentum of the initial particle P =
p+p' +p'’.

Table 1 shows that we may form the scalar (P.p) and
the pseudo-scalar (P.S). This identifies a and b above, and

X = f(P.p) +g(P.p) (P.s) (15)

since X ;o must be linear in S (see 4.3).
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TABLE I

Transformation Properties of the Scalars
made from p's and s's

Lorentz scalar P T | PT

S1:-815 PPy, SiPy |+ )+ j, 1 denote any

four of s and p for

det(ps,ps,s,81) | | |, all particles)

det(pi, pj, px , p1)
det(piy piypkysl) }

det(pi, s, sk, s1)

Mass zero x - + -
Recall that P(p°, p) = (p7, -p); P(s°s) = (-5 s);

T(p’, p) = (0% - p), T(s® s) = (s° - s)

We can use for this 1/2 spin particle the general form
given in 4.2, We denote by p(p, s) the density matrix of the
state for which we compute A

A1z = Trace Sp'Sp(p,s) = trace p’p(p,s) =

16)
wH 1 g (
trace (f(I - 2 s a)—2~ I-2 T, S ))
Where a.p = s.p = 0. - B
We can also use the '"Stokes vector'" ¢® = a,n®,
¢ = sn®  Then
N =f(1+a.8) = (1 - a,sH) (17)

By comparison with (15) we then find that

ayst = - g/f s,PH* for all s .
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This implies that a is proportmnal to the projection of P in
the 3-plane _L p and spanned by n®; n®, n®, So a is in the
2-plane P,p and _L_ p. Calculation y1e1d a =qé& with la|=
lal and

. m?*+M> -(P-p? p _ 2m
h ‘/_' A(Ms m, X) ~I—n— ‘/—_ A o (18)

where A(a, b, ¢) =(a+b+c)@+b-c)(b+c-a)c+a-b),
x= (P - p)°.

If a non-zero value of a is found experimentally then
parity is violated.

For the reaction 7 — i + v, s being the u-polarlzatmn,
x=0 so

m2 + mp Py ) 2 my (19)

2 = A |
2 - 2 -
mo5 ms, my mzn m‘i v

In the rest system of the 7, eis the longitudinal polariza-~
tion of the u.
For the 7* decay one finds for the i polarization
Sy = F €

which means that it is totally polarized,

Exercise. Apply this to the u decay when one observes the
electron polarization.

IV.5 TIME REVERSAL.

Let T denote time reversal, then

pO’ - p)

i
—

T(p’, p)



RELATIVISTIC INVARIANCE 345

Under application of T let the motion reversed systems be
21, 2. Then T invariance implies

Az = A3 1

A better name for this symmetry should be '* reversal of
motion'',

EXAMPLE. Consider a scattering process between mas-
sive particles

A+B — C+D
P1 tP2 — P3 + P4

and the polarization s of particle C is measured. Again
looking at Table 1 reveals that det(p, p1, pPs, S); p = pP1 +P2;
is the only pseudo-invariant. This has its maximum value
where s_|_ the reaction plane, Let p, s denote the corre-
spondmg kinematic quantities for the motion reversed proc-
ess C+D— B+ A, T invariance implies a relation between
transition probabilities

X12(P1, P2 Ps Ps) = 227 (Ps, Pa; D1 P2)

For a theory in which P is also conserved PT conservation
gives P A;’f =Xy SO

Az (P1, P2 Ps, Pa) = X21 (Ps, Ps 5 D1, P2)
which is the principle of detailed balance when all the polar-

izations are unmeasured.
Under PT, P § — - s so that PT invariance implies

det(p, p1, ps, s3) = det (p, ps, p1, - s1)=det(p, p1,ps,s1)

To say that in sentence, PT invariance implies for a scatter-
ing process that the polarization producing power of the
process is equal to its polarization analyzing power.
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Time Reversal in Perturbation Theory.
From § 4.3 we find to lowest order

Ai» = trace (Hpy Hpz) = Aax

Similarly
Az 1 = Alz
and T invariance to any order implies.
Nz = Az 1

so to lowest order it yields A2 = A3 i.e., we compare the
kinematic quantities det (p,p1,ps,s) and det(p,p:,ps,S) =
- dEt(p’ P1, Ps3, S)-

The presence of such a term will rule out T invariance
in perturbation theory. This seems to be true inn —p +
e + v, but it required careful measurement, In the light of
CP violation found in K%, K% decay, this is worth studying
again to find sensitive tests for T violation if T C P is good.
Note however that for the exceptional case of K° decay the
existence of K° - K° mass difference does show that second
order weak coupling term cannot be neglected. So the term
det (px, Pu, Py, Su) inK K°— p*+ 77+ v decay can
appear (transverse p-polarization to decay plane see 4.8)
without T violation. Then its time average vanishes. See
B. G. Kenny and R. G. Sachs, Phys. Rev. 138 B, 943, 1965,

Charge Conjugation (C).

Since C has no effect upon p and s, in the decay of un-
polarized particles we have studied the polarization should
be the same for particle and anti-particle reactions.

As we have said, they are opposite for £ and pt~ from
7 decay, so C is violated and CP violation does not show up
there.
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IV.6 POLARIZATION AND ISOTOPIC OR UNITARY SPIN
CONSERVATION.,

We want to study the relations between the polarizations
in different processes related to each other by an internal
symmetry group such as isospin or unitary spin invariance.
The simplest non trivial case will be to study the polariza-
tion of a spin 1/2 particle in three reactions with two iso-
spin (or unitary spin) channels. For example, study the =
polarization in

a) at +p+» >t + KY

b) 7 +p* - 2° +K°
c) 7 +pt -3 +K*

when the possible value of isospin T are 1/2 and 3/2. (Proc-
ess a is pure T = 3/2.) So for given energies momenta and
polarizations of the 7, p, =, K, the corresponding ampli-
tudes f., fy, f. depends linearly on f 3/2, f 1/2 through
coefficients which are Clebsch Gordan coefficients. Hence
these 3 amplitudes satisfy a linear relation

Aafa +A.bfb +>\.cfc :O (20)

In that particular case

"A.az'_'\/:;j— Abzkc

The corresponding cross-sections are 0; = |fi | Gwith
1=a, b, ¢). They depend only in the modulus of the f; and
relation (20) for the modulus means, if

a = Ixafgl’ b: ‘ Abfb!, Cc = }Acfc';

the three positive numbers a, b, ¢ must be the lengths of the
sides of a triangle. Equivalent mathematical formulation of
this fact are

a=b+c,b=c+a, c=b+a (21)
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or
la-bl=¢c¢ Ib-cl|l=a, |[c-al=h.
(21")
or
-2ab=a’ +b® -c® = 2 ab, (21')
or
A(a,b,c) =(a+b+c)(-a+b+c)(a-b+c)(a+b-¢) =
(21" 1)

= -(a*+b'+c¢ - 2a%b*-2a°c*-2b%c®) = 0

Of course one does not measure pure kinematical states but
unpolarized or partially polarized states, and some energy
band, or some geometric average on momentum direction,
for instance measure of a total cross section, Then the
measured quantity is

o= [ If1* dp = ZZ [IH(E:, @, 6:) |
p(E, @, 6) dEdQ dE d 0, ...

where du is a positive measure on the energies and direc-
tions of momenta E;, i, discrete values of the spin. The
averaged cross sections to be compared must be the same
average on spin, the same integration on the other kinemati-
cal variable; they should differ only by the internal symmetry
variable. Then they satisfy the same kind of triangular re-
lation:

A(IAaIVO’a, [Kb'\‘o-b, lkcl‘o‘c) 20 (22)
as is shown by the following lemma.,
LEMMA. Let a(x), b(x), c¢(x) positive valued functions de-
fined on a domain D and such that for every xe D,
A(a, b, ¢c) = 0. Let
2 2 4 2 2 2 2
A - fDa (X) dH(X), B® = be d“‘y C - fDC du'

where du is a positive measure, Then A(A, B, C) = 0.
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PROOF. Relation 21'' is also true when integrated by [ dpu
-2 [abdu= A® +B* -C®* = 2 [abdu. Schwartz's in-
equality which expresses that [(a A + b)®dy =0 for any real
A yields (A, B, C > 0)

(Jabdw?®= [a® du . [Db? du= A® B2,

Hence
-2AB=-2 [abdu= A® +B*-C® = 2f{abdy =2A B
SO A(A B, C) = 0,

If one observes only the = polarization, it is orthog-
onal to the scattering plane and can be measured by its com-
ponent £ for *, n for 2° € for =~ which satisfies

-l=sg=1, -1=s9=1, -1=¢t=1 (23)

b
Letx=2x7 0., y=2} 0, , z =22 0. where the 0's are
the cross section for unpolarized Z production and energy
and momentum (fixed or average) given once for all. The
corresponding cross section with total polarization up (+)
or down (-) are 0;® = g;@© (where € = 1),

Then the observed polarizations are

e R ST EE
SO ca(i)zél— 0, (1+ €t), etc... forn, €,
We can write again
)\z,lo,i('”:xe:—:’Zl—x(lJreg),y€ :—21-y(1+en),
Z e =%z(1+e§) .

We know that we have not only (22) but also

AV xe ,Vye, Vze) = 0. (24)
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Let us denote

4A (Vxe , Vye , Vze ) = -Ce (£,0,8) (25)
with
Ce(£,n,8) =8 X + 'y* + ¢*2" - 2 ¢ yz-26C xz- 280 xy
+2¢el[Ex(x-y-2) +nyly-z -x) +Cz(z-x-y) ]
- A (Vx, Vy, Vz) (26)
Condition (24) reads
C, =0, C.=0 (26"
In the cartesian coordinates C, = 0, C. = 0 are the sur-
vaces of two cones. Condition (27) gives the intersection of

their interior which is inside the cube (23).
Let us study these two cones.

C.(¢,n,8) =C.(-&, -n, -¢)

so they are symmetrical by inversion through the origin,
C.(E+2,n+2,8+2) =C,(§,n, C)

so the translation (2, 2, 2) carries C. on C,.

Hence their summits are (- 1, - 1, - 1) and (1, 1, 1).
Indeed

Ce(-€, -, -€) =0,

Their intersection is a fourth degree curve which decomposes
into a conic at infinity and a conic in the plane

tx(x-y-2z) +ny(y-z-%x) +8z(z-x-y) =0,

It is an ellipse. Also the cones are inscribed inside the
cube (23). For instance the intersection with the plane ¢ = -1
is
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Coléym -1) = (E+2) x-(n+2) y)2 =0

i.e., the generators ( +1)x= (75 + 1) y counted twice, See
Fig. 1.

ng
Kl
|
l C_
|
|
o IN\__/ 1.
n
SN )
\\

('19-19'1)

Fig. 1. Three corresponding polarizations in a

given direction £, 7, ¢, must be inside the double
cone inscribed in the cube - 1=£¢, 5, £ <1,

If one polarization (let us say {) is not measured, the
two measured polarizations £, n must be inside the apparent

contour of the double cone by vertical projection on the hori-
zontal plane &, 7,
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I computed directly this relation in N. Cim. 22, 203,
1961, Equation (17) of this paper reads in to-day notation,

2cos® w, -1-En=(1-£)72(1-m)" (27)

where w is the angle between sides vx and Vy in the tri-
angle with sides vx, vy, /z. I made a silly mistake passing
from (17) (here 27) to equation (18) of the quoted letter.
The equivalent of (24) is

D= (D, D;) ~ Ds
which happens to be
D=D,J (D; n D)
because
D; C D3
where

D, : £24+ 1 -2Encos 2w, - sin® 2 w, =0 inside of
ellipse  (28)

D, :-tn+cos2w, =0 hyperbola (28")
D,: -1= & = 1,-1=< n =1 inside of square, (28')

The domain of possible value of (£,7) is drawn in Fig.2.

Of course if w; = 0 or 7 the triangle Vx, Yy, Vz is flat
(because for instance one of the two isospin channels ampli-
tude is negligible) then £ = 7 the first diagonal in Fig. 2 and
the main diagonal of the cube in Fig. 1.

The opposite case, w; = m/2 gives no relation between
¢ and n(D = Ds, the whole square). The intersection of the
two cones Ce¢ is for instance in the plane & + 1 = 0(for
z = X +y) which of course still yield relations between §, 7,

C.
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A7

Fig. 2. If two of three corresponding polariza-
tions are measured, they should be in the do-
main D; U (D, M Dg) where D; is the interior
of the ellipse, D, that of the hyperbole (i.e.,
contains the foci), D; that of the square. (See
equation 28.)

IV.7 PRECESSION OF POLARIZATION IN AN ELECTRO-
MAGNETIC FIELD.

We turn to the question of a particle with spin inter-
acting with a macroscopic electromagnetic field E and B,
The field is assumed not to vary appreciably over a region
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the size of the particle. This allows us to consider only
direct interactions, and no terms of the form (K . grad) B.
Mean values of the observables P* and W* satisfy classical
equations. Let the spin vector be s, v the velocity, e the
charge, m the mass and g, g' the magnetic and electric
dipole factors. The non relativistic equations of motion for
v and s are

g_‘_f _ e _ Ee

a _E—(VXB+E) =g S (29)
ds _ _ gk ,
at = UXB+ §6XE G'Zm g (29"

The last equation is exact in the rest frame of the particle
(here the units are so that ¢ = 1). These equations were
made covariant, for g = 2, g' = 0, by Thomas (Phil. Mag. 3.
1, 1927), by noting that the linearity of the equations must
continue to be true in any frame. Let

E? E? = F
B® - B
0 B!

- B! 0

be the electromagnetic field tensor. Denote proper time de-
rivative by dots, i.e.,

dx . du d 1 d w2y Y
u= dr- ’ at = ¥ ’ d'r y Y = (1 V)
u = }.(:7(19‘,)

(29") may then be written (the scalar products are Lorentz
products) (most general linear equation in F and u, which
specializes to (13) in the rest frame).
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i=£ F .4 (30)
i with u.s = 0
s5=—= M. s (30")
m
where
_ '
M.s:[F+p(—g—2~2l F+5 F).s (31)

in which F'uv =€ puvpoF?’, P =1 - u (X) u a projection on
to the plane perpendicular to u. When g = 2, g' =0 the e-
quations for u and s are identical (see Bargmann, Michel,
Telegdi, Phys. Rev. Let. 2. 435, 1959).

If we write

M=[F+ P@F+a F') P] (32)
then
u - & M.u
m
s = £ M.s
m
AN S ) (33)
m

where n@ is the tetrad associated with u. Then M, an
antisymmetric tensor is an infinitesimal homogeneous

Poincare transformation. (Note that when there is no elec-

tric dipole, g' = 0, and E = 0, . F' s is a constant of
the motion.)

A useful case is to decompose the precession of polar-
ization into the normal one

n® -& g p@ (34)
m

and the anomalous one which is described by the motion of
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the Stokes vector in the frame (34). This is particularly
useful when a and a' are small (e.g., G. Charpak, F. J. M.
Farley, R. C. Garwin, T. Muller, S. C. Sens, A. Cichichi,
N. Cim. 37. 1241, 1965) then the second motion is slow (

is a short for =; i=1, 2, 3)

¢!t =sn®¢ = s.n¥+s., 0

= = (-s.M.n“)+S.F.n@))
m
- & s.@F +a F').n"Y
M
':Exff 2, n®, aF+a'F) .nl? g = Q¢!

Q is the infinitesimal rotation with respect to the ' normal-
ly precessing'' frame.

As another example of application, choose a time axis
t = (1, 0) and compute the rate of change of the longitudinal
polarization.

Longitudinal Polarization.

-~

Let|vl=v, v=v/v, and1= v (v, v), the longitudinal
vector (u, 1=0, ? =-1) 1=(1/v) u+ (1/yv) t

Write

s=1cos ¢ +rsing, withr transverse vector

r?=-1,r,l=ru=rt=0

then cos ¢ determines the degree of longitudinal polariza-
tion,
1

c t.M.r
m yv

Exercise. Prove ¢ =

IV.8 POLARIZATION AND THE DIRAC EQUATION.

As example of application to Dirac equation see Wight-
man, Les Houches, 1960 (Relations de dispersion et
particules élémentaires, Hermann Paris 1961).
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EXAMPLE. Study the decay K* — 7° + pt 4+ v

momenta P, p', p, q
P=p'" +p+g
masses M, m', m, 0.

Introduce the real form factors {, g, f', g' such that the
box amplitude is z= (f +ig) P + (f' +ig')(p + q). Then the

transition probability for decay into a u of charge x = -1
and polarization s is proportional to

M= [p-xms, z, q, z ]-im (s, z, q, z)
where

[a, b, ¢, d] = (a.b) (c.d) - (a.c) (b.d) + (a.d)(b.c) =
= Pfaffian of (a, b, ¢, d)

1

(a, b, ¢, d) = determinant (a, b, c, d)

Polarization in the decay plane contributes only to the
Pfaffian, If the determinant is # 0, there is a transverse
polarization of the i _L to the decay plane (in the rest frame
of the K) and it shows a violation of time-reversal,



