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ABSTRACT

Tools for measuring joint polarization and polarization transfer
are gathered. They allow the direct reconstruction of amplitudes in
numerous quasi two body reactions with spinless beam and unpolarized
or polarized target. Eight simple types of such reactions are worked

out one by one; the practical results are summarized in Tables.
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INTRODUCTION

Several experimental papers have been published [1,2,3,4]
in which quasi two body reaction amplitudes are reconstructed and
tabulated. 01d [5,6,7] and recent [1,8] theoretical papers have
described the method for reconstructing the amplitudes from the data
in some simple cases. But each paper, limited to a particular
reaction, introduces its own arbitrary conventions and this may
obscure the future comparison of the experimental results for
similar reactions. This paper aims to a systematics of amplitude
reconstruction. It introduces a general terminology, it uses the
most commonly accepted quantization conventions and it presents in
details the practical method of amplitude reconstruction in the most

usual reactions with unpolarized or polarized target.

We focus our attention on quasi two body reactions. We suppose
therefore that resonances can be detected (we shall not enter into
the problems of background separation) and that they have well
known spins and parities. Furthermore, we restrict ourselves to
a direct, model independent amplitude reconstruction, based only
on aggular momentum and parity conservation. Hence we shall not
make use of other first principles as unitarity and analyticity, nor
shall we relate amplitudes at different s and t values. Finally,
this paper is limited to the simple initial state with a spinless

meson beam and a spin 1/2 (polarized or unpolarized) baryon target.

In Table 1 we list the most common reaction types and tabulate
their number of amplitudes and observables for different target
polarizations. The reaction type refers uniquely to the spins of
the final particles and to the possibility of analyzing their
polarization from their decay. We assume that for the spin 2 meson
resonance only the even polarization can be measured (e.g. p > 7T,
K* -+ Kr), i.e. we do not consider the case of, e.g. Al > pm.

On the contrary, for the baryonic spin j resonance we consider



both cases: i) measurement of even polarization only (je), this means
no polarization measurement in the case 1/2e (e.g. nucleons), and
analysis of the simple, parity conserving decay in the case 3/2e ’
(e.g. A -+ Nm). 1ii) Measurement of the whole polarization (j) by
analysis of the parity violating decay of spin 1/2 baryons
(e.g. A -+ prm) or by analysis of the cascade decay of spin 3/2

*

resonances (e.g. £ = An, A - p7).

The tabulated number of amplitudes is the number of real

independent amplitudes disregarding an overall phase.

For the observables the number tabulated in columns U and T
is the number of real and imaginary components of a priori non
vanishing multipole parameters and polarization transfer multipole
parameters (cf. sect. 2 and 3). As we shall see, at fixed energy
and momentum transfer they are not independent, they satisfy some linear
and non linear (rank) constraints(*). For this reason the number of
observables is presented as the sum of two numbers: the numbe{lof
independent observables + the number of constraints (when the second
number is zero it has been omitted). Column U corresponds to an
unpolarized target experiment, column T corresponds to a transversally
polarized target experiment; the observables of column T includes
of course the observables of column U. In column L is shown the
number of independent observables or constraints that must be added
to column U for an experiment with pure longitudinal polarization
or to column T for an experiment with transverse and longitudinal
polarization. Of course the number of independent observables can
never be bigger than the number of amplitudes, but often it is one
unit smaller; this is the case when the polarization of one spinning
initial or final particle is not at all considered. This is an

application of a general theorem derived by Simonius [9], cf. Appendix 2.

(*) Since we observe only quadratic expressions of the amplitudes, there
are often discrete ambiguities in their reconstruction; the non

linear constraints can be used to remove some of these ambiguities.



Practically the ghost amplitude appears as a relative phase between

two sets of transversity amplitudes.

An analysis of the numbers in Table 1 suggests the following

comments:

i) For higher spins the number of amplitudes increases linearly
while the number of observables increases quadratically. When the
number of observables becomes much bigger than the number of amplitudes
it seems reasonable to communicate the amplitudes themselves, in so

far as the statistics of the experiment allows their reconstruction.

ii) For some types of reactions all amplitudes but one can be
reconstructed with unpolarized target, while for others amplitude
reconstruction requires polarized target. For both reaction types,
the most simplest cases are those for which the number of observables
in columns U and T are set in boxes. It would be reasonable to give
priority for the reconstruction of amplitudes to these types of

reactions.

iii) As mentioned above, in all reaction types with unpolarized target
and in those with a spin l/2e particle, it remains one ghost
amplitude, the relative phase between two sets of transversity
amplitudes. Since helicity amplitudes are linear combinations of
amplitudes in both sets, they are ghosts too. Furthermore, parity
conservation in the reaction has a simpler form in transversity
quantization, and the observables are closer to the transversity
amplitudes. All these arguments favor the reconstruction of
transversity amplitudes. However to facilitate the comparison with
models which use helicity amplitudes, for each reaction type we

give the relations between the two kinds of amplitudes.

Table 1 lists only general reaction types. In order to
appreciate how many usual reactions correspond to each type, we

present in Tables 2 and 3 several lists of such reactions. We have



considered only reactions with practicable beam and targets and with
well classified final particles (nonets or decuplets). We obtain

in this way a list of 252 reactions belonging to the 8 types set in
boxes in table 1 and whose amplitude reconstruction will be treated

in detail below.

Furthermore in table 2 and 3 the isospin relations between
these reactions are explicitly given. For reactions related via
one isospin channel, the ratios of their amplitudes to the isospin
amplitudes are fixed coefficients which are given as the coefficients
of (f) in the brackets. Then the measurement of the amplitudes for
only one reaction yields the amplitudes of all reactions in the same
column. For reactions related via two isospin channels the amplitudes
satisfy the relations indicated in part c) of each table. 1In these
cases the reconstruction of amplitudes for two independent reactions,
because of the overall phase and eventually of the ghost phase, does
not fix the amplitudes of a third reaction. But this reconstruction
for three (two by two linearly independent) reactions fixes the
amplitudes of all the reactions in the same column(*) up to an
overall and eventually one ghost phases. The ghost phase of the

whole set of reactions can be fixed by an experiment with polarized

target for only one reaction of the set.

Sect. 2 and 3 expose the general tools for the measurement of
observables. In sect. 4 the concrete recipes for the amplitude
reconstruction in each type of reaction are given. The hurried reader
can directly skip to the reaction type in sect. 4 he is interested in.
If its experiment uses polarized target we advise him to read
sect. 4.1 in order to see the connection of the terminology with
the standard Wolfenstein parameters. For all other necessary tools

he will find references to sect. 2 and 3.

(*) The amplitude reconstruction for all other reactions in the
column supplies checks of isospin invariance, and even for only three
reactions, when several amplitudes with their relative phases are

reconstructed.



SOME BASIC TOOLS OF QUASI TWO BODY REACTION ANALYSIS

In this section we present some well known features of the
formalism used in the study of quasi two body reactions. For more

details one refers to [10,11,12,13].

Let us first precise our notations. A quasi two body reaction

will be denoted by

1+ 2=->3+ 4.
1 denotes the beam, 2 the target, and we call 3 and 4 respectively
the particles which share some physical properties with the beam
and the target (for instance 1 and 3 are mesons, 2 and 4 are baryons)
so that the t- and u-channels are well defined. The 4-momenta of
the particles are denoted by pi (i =1,2,3,4) with pl + p2 = p3 + p4,

their spins by ji and their masses by m, (mi #= 0).

2.1 Covariant gquantization systems

To describe the polarization of the initial and final states
one must fix a quantization frame for each spinning particle.
Several different choices are possible, the most popular are the
helicity and transversity frames in the s-, t- and u—channels(*)
Unfortunately there is not as yét a universal agreement on the
definition of these quantization frames; the most usual conventions
are the following.

i) For each particle and for each channel, the transversity

'I‘n(3) Hn(2)

quantization axis and the helicity second axis are

along the "Basel normal" n to the reaction plane, defined by

2
n.p, =0 (i =1,2,3), n = -1, det(n,pl,pz,p3) > 0 (2.1)

(*) Cf. refs. [10,11].



> > -
where the last condition is equivalent to n . 1< X P, > O in the

laboratory system, or in the center of mass system.

ii) For each particle and for each channel the helicity and the

T (1 H (1
transversity frames have the same first axis, n( ) = n( ).

Note that with these two conventions, the transversity second

T H (3
axis n(2) and the helicity quantization axis n( ) have opposite

*
directions( ). Furthermore the transversity frame is transformed
. - L (xx) -~ uf T
into the helicity frame by a rotation R = (- PRI 50 of + 2
l . .~
around the common axis n( ). The unitary representations DJ(R) of

this rotation have several useful properties (cf. Ref. [13], [14]).

iii) For each particle i (i = 1,2,3,4) and for each channel a
H (3 .
(a = s,t,u), the helicity quantization axis ani ) and the transversity

second axis Zni2) are defined by

B T @) g @, e =1, (2.2)
a 1 a 1 1
with
()—[sinh¢(a)]_l - h ¢ (a) —p .)
q; 18 = i (p; cosh ¢, (a) - p_;
where p, = pi/mi, cosh ¢i(a) = PP, sinh ¢i(a) > 0, and where

ai is the particle associated to particle i in the channel a,

i.e., for i = (1,2,3,4), si = (2,1,4,3), ti= (3,4,1,2),

(*) This means that in any channel the x,y,z axes are related by

T H H

(Tx, Ty, z) = (Hx, - "z+ y). Ref. [14] and the Cracow group use

the same convention although a misprint in ref. [14] says the
contrary. Many other conventions are occasionally used. Ref. [2] and [3]

T T T H H H T T T H H
use (- x, 'y, 2z) = (x, 2z, y). Ref. [8] uses ('x, "y, "2) = (Hz, X, y).
Ref. [15] compares the conventions of ref. [8] and that of the text and

it recommends the latter.

(**) We use the Euler angles and the rotation matrices of Rose [16].



ui = (4,3,2,1)(*).

iv) The sign € in eq. (2.2) is a last convention to be chosen.

Jacob and Wick [17] and Cohen-Tannoudji, Morel and Navelet [18]

define € = +1 so that the s-helicity quantization axis of particle i,
H>(3)
n K]

s i
- > > -
mass system (pl + p2 =0 = p, + p4). On the contrary, Gottfried and

-5
; be along the 3-momentum pi of this particle, in the center of

Jackson [19] define € = -1 so that their t-helicity quantization
. H>(3 . . L
axis tn; ), in the rest system of particle i, is along the 3-momentum
->
o) of the particle ti associated to i in the t-channel.

ti

For convenience in this paper we quantize the spin of the target
in the s-channel transversity frame with ¢ = +1, i.e., in the
laboratory system the second axis ;(2) is in the direction of the
beam 3-momentum Sl. Then the longitudinal polarization of the target
(with respect to the beam) is in the y-direction, and the transverse

polarization is in the (x,2z) plane with the z-direction along the

normal to the reaction plane (cf. Fig. 1).

For the final particles we quantize the spins in a transversity
frame. We do not precise the channel since all subsequent equations

are independent of this choice of channel.

2.2 Amplitudes
At fixed energy and momentum transfer, the Hilbert space
‘xe =?Ifl @?ﬁz of initial particles has (2jl + 1) (2j2 + 1) dimensions.

The transition operator for the reaction is a linear map T between

(*) We call these frames the s-, t-, or u-helicity frames and the
$=, t-, or u-transversity frames. Some people use the following
vocabulary for helicity frames: t-helicity frame = Jackson-frame,
s-helicity frame = helicity frame; and they extend it to transversity
frames: t-transversity frame = Jackson transversity frame,
S-transversity frame = helicity transversity frame! We find that this
last expression is an awful barbarism since helicity and transversity

are two mutually exclusive notions.
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the two spaces. The transversity and helicity amplitudes are the

4
in g:R(Zji + 1) matrix elements of the transition operator in the
transversity and helicity bases. For channel a they are respectively

denoted by aTA3A“A1A2 and aH 1112. They are related by

g5 PPRer® s plteerze’ (2.4)

The reflection through the reaction plane, called Bohr-symmetry
or B-symmetry, leaves invariant the 4-momenta of the four particles.
It acts on the polarization space of a spin-parity jn particle by

j(n,vr), the product of the parity n of the

the operator B(j) = n D
particle times the unitary representation of the rotation by 7
around the normal to the reaction plane. If parity is conserved

in the reaction, the transition operator is invariant by B-symmetry

i.e.

[(B(33) 83,1 T [BGD @B ] =1, (2.5)

and the matrix elements of T satisfy the relations

A3+AQ‘A1‘A2 A3A“ _ ASA“
n (-1) T ALh, T ApAy (2.6a)

Aghy

n (-1)33723 FIemAutdi-Mtdo-Ay o mAgmAy, L (2.6b)
2

-A1A,

where n is the relative parity of the particles, i.e., n = njyngngny

with n, = parity of particle i.

i

2.3 Density matrices

For a single particle of spin 3 and fixed 4-momentum, the
polarization state is described by a Hermitian, positive, trace one
operator acting on the Hilbert space 3hj) and represented by a matrix
p(j). For a system of two particles (spins j and j') of fixed
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4-momenta, the polarization operator acts on the space ﬂkj) ® 38(3')
and is represented by the joint density matrix p(j,j'). When the
particles are uncorrelated, this matrix can be written in the form

of a tensor product p(j) @ p(5').

For later use, especially for the study of decay angular
distributions, it is useful to introduce the polarization multipole

parameters of these density matrices.

i) The single particle density matrix p(j) is expanded on a set of
. . L . .
basis matrices T(j)M (L=0,..., 2j; M= -L, «..,+L), the matrix

elements of which are Clebsch-Gordan coefficients
LA
(T(j)M) X = <jL A'M|jA> (2.7)

The multipole expansion of p(j) reads

23 L —
1 L L
P =55y [T+ 3o 2 6, TG, (2.8)
L=1 M=-1,

L .
the expansion coefficients tM are the multipole parameters. We have
exhibited the trace of the matrix. We could have written an expansion

from L = O to 2j, with T(j)z =1 and tz = 1.

ii) A similar multipole expansion can be written for the joint

density matrix p(j,j'). The set of basis matrices is the tensor
1)

L L
products T(j)M Ga‘r(j')M, and the corresponding multipole parameters

LL'
are denoted by tMM" The expansion is

23 25" +L +L"

D S owyer+ny Y 3 IT' L L
PG3) = 2 o (3D tieen wier! Gae T @ TGy | (29)

L L'
Note that the multipole parameters t(j)M and t(j')M, of the single
*

particle density matrices( ) p(3) = trj, p(j,3') and p(3") = trj p(3,3")

(*) trj (and trj.) represent the partial trace in the space m&j)

/ 1 u — : o) u ____.2 ] ‘l\“A
(and3ﬁ(j )), e.g., p(3) N (trj. p(3,3")) o 3 o(3,3") oA



- 11 -

o L'

L'
it =
and t(j )M' t Mt

e E =
are tily Mo

B
A density matrix p can be split into a B-symmetric part p and a
A
B-antisymmetric part p satisfying the conditions

B B At A
B*::p B = -

Bop ’ B p

i) For a single particle, in transversity quantization, the matrix

B A
elements of p and p satisfy the relations

oY A oY A
N P LN P s S T (2.10)

(05"

and the multipole parameters satisfy the conditions

B A M
0 P = 0t el ? Ao t; A (2.11)

ii) For a joint density matrix, in transversity quantization, the

matrix elements satisfy

B,A \u Apu=At=u' B,A \u + for B
= + (- °
(™" = D " R for a (2.12)
and the joint multipole parameters satisfy
LL' B,A M+M' LL' B,A + for B
=t (- .
(tMM') (=1) (tMM') {-— for A (2.13)

. . . L1
In a quasi two body reaction with spin zero beam and spin 3

Ag A
target, the transition matrix has 2 columns (T 3 “O+%). If the
target is unpolarized, the density matrix of the final particles,
. ) (*)
at fixed energy and momentum transfer, is obtained by

1 t

0P =7 TT (2.14)

(*) This relation fixes the normalization of T.
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(where o is the differential cross section) and Pe has rank 2. If

furthermore T is B-symmetric, p_. is B-symmetric too and in transversity

£
quantization it can be written in the form of a direct sum pf =P ® 92'
each of which has rank one. This property enforces very strong

relations between the matrix elements or the multipole parameters of pf.

2.4 Decay angular distributions

If the final particles of the quasi two body reaction are
unstable, the angular distribution of their decay products (and
occasionally the cascade angular distribution) provides some information
on their polarization state. In this paper we limit ourselves to two
body decays, however we give some results for 3 body decays in

sect. 2.4.4.

Assume first that only one of the final particles is unstable
Jg ig)-
In the rest system of this particle the kinematics of the decay

and let j be the spin of this particle (j = or j =
is determined by the polar angle © and azimuthal angle ¢ of one of
the decay products with respect to the quantization frame of the
decaying particle. If M is the decay operator, the normalized

angular distribution is defined by

I(8,9) = tr M p(3j) M'r/[tr M p(3) M?d(cos e) do¢ (2.15)

This angular distribution is linear in the multipole parameters,

it can be written

25 4L —
1(e,9) = _}ﬁ+ 3 cw X2 t:; Y:(G,M (2.16)
L=1 ==L

where the coefficients C(L) depend on the spins of the decay products
and on the dynamics of the decay. If parity is conserved in the

decay (e.g. p = mm A - Nm) the coefficients C(L) vanish for L = odd;
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the angular distribution is an analyser of the even polarization.
If parity is violated in the decay (e.g. A - pm, Q@ + =m) no C(L)
coefficient vanishes; the angular distribution is an analyser of

the complete polarization.

In many cases angular momentum conservation implies that only
one amplitude contributes to the decay. Then the coefficients C(L)
are pure numbers, If two amplitudes contribute they depend on one

dynamical parameter. Here are the values of the coefficients C (L)

for some usual decays

17 00 : VYarc() = -/2,
¥ 20707 Vam c(2) = -/To/7,  Van C(4)
T5o1T0T i Vamc(2) = -/5714, Yar c4)

v18/7,
-'8/7’ (2-17)

2 =
1 1 —

> *50 Yar c(1) = a,

+ + -

-;--»—2—0 . Vam c(2) = -1,

where o is the asymmetry parameter of the parity violating decay

L
%-+ % O. With these known values of the C(L) coefficients, the tM

are obtained by a maximum likelihood analysis of the angular
distribution, or by a moment analysis which yields (Q = (8,¢),
dQ = d(cos ©) d¢)

L_ _ L - L
C(L) t, = <Y (Q)> -fI(Q) ¥, (Q) 4an (2.18)

Experimentally the moments <Y:(Q)> of the angular distribution
are the mean values of the spherical harmonics Y;(e,¢) for all
events in an ensemble of fixed energy and momentum transfer

L 1 N L
Yp@> =S 3 v (e,4)
i=]1
where the index 1 specifies the event which is considered, and N

is the total number of events in the ensemble.
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2.4.2 Joint decay angular distribution

If both final particles of the quasi two body reaction are
unstable, one may study the correlations between the directions
of their decay products. Let 3j and j' be the spins of the

final particles. The joint decay angular distribution reads

27 23" +L +L' I L 1
I(e,6; ©',4') = 2, 3 C C'@) 2 2 e Yie,e)Y,
L=0 L'=0 M=-1, M'=-L'

(e',9")

(2.19)
where C(L) and C'(L') are the coefficients of the single decays, with

C(0) = C'(0) = 1/V4n. These coefficients being known, the parameters
LL'
tMM' are obtained by a best fit analysis of the angular distribution

or by a moment analysis (Q = (©,¢), Q' = (8',9"'), dQ = d(cos ©)d¢,
dQ' = d(cos ©')do")

LL L L' L L'
' ! = = ! ' ! 2.20
C(L) C'(L") tMM' <YM(Q) YMI(Q)> ./;(Q,Q )YM(Q)YM (Q')da 4aq ( )

|

Consider the cascade decay C - A + B, A - Al + B, (with spins

1
. 1 .
j©) =3, j@a) = j(Al) = 5’, Jj(B) = j(Bl) = 0); the first decay

is parity conserving and the second decay is parity violating.
*
(e.g. £ = Am, A » pr). We denote by © and ¢ the angles of A

with respect to the quantization frame of C, and by €, and ¢l

1

the angles of A_ with respect to the quantization frame for A,

1
deduced from the quantization frame of C by a pure Lorentz

transformation (boost). Then the cascade angular distribution is

S ¢ ! c(L,J,L.) Z <J NMp|LM>
(8, ¢3v l/bl) = Z Z Z i | JL 1
L=0

— M,N,M 1
Ll-o J even 1 (2.21)

Ly

M

L. J
x Y (8 Y
tM N( ,9) .

(91,¢l)
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where the coefficients C(L,J,Ll) depend on the spins and parities
of the particles and on the dynamics of the decays, if they involve
more than one amplitude. The most usual decay of this type is

+ +
+O— }.—*:}_
2 2 o2 2
vanishing coefficients C(L,J,Ll) are

+ +
37 4,1

+ O . For this cascade decay the non

41 C(0,0,0) = 1, 41 C€(2,2,0) = -1,
4m C(1,0,1) = -a¥5/9, 41 C(1,2,1) = -a/2/45 (2.22)
4r C(3,2,1) = aV7/5

where o is the asymmetry parameter of the second decay. With these
L
known values of the coefficients, the tM parameters are deduced by

a best fit adjustment of the decay angular distribution, or by a

moment analysis (Q = (8,¢), Ql = (el, ¢l))
J L
C(L,J,L)t” = 3 <on. a_|mMs <y (@) vol(a,)> (2.23)
1'™ 171 N M1
N, M, 1

Note that in the above example, since for L = 1 one has two
non vanishing coefficients, C(1,0,1) and C(1,2,1), the parameters

1 .
tM can be measured by two different combinations of the moments.

Some well known unstable resonances undergo 3 body decays,
(e.g. n ~» Woﬂoﬂo or n+ﬂ_no w > n+n'n° ¢ - ﬂ+ﬂ—ﬂo). The final
state is determined by 5 guantities, often split into the 2 Dalitz
plot variables and the 3 angles which fix the orientation of the
decay plane. In the rest system of the decaying particle, let us
denote by 6 and ¢ the angles of the normal to the decay plane
with respect to the quantization frame of the decaying particle.
Then the angular distribution I(©,¢) can be written in the same

form as eq. (2.16) with coefficients C(L) depending on the spins and

parities of the particles and on the dynamics of the decay. For the
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most usual decay, i.e., 1 000 (e.g. w and ¢ decays), the

non vanishing C(L) coefficient is a pure number

1 000 : Vamrc() =-/2, (2.24)

which happens to be equal to the coefficient of the two body decay

1 00, (c.f. eq. (2.17)).

QUASI TWO BODY REACTIONS WITH POLARIZED TARGET

In this section we study the observables of a quasi two body
reaction with polarized target. In the particular case of a spin
zero beam and a spin 1/2 polarized target we give explicitly the
structure of the final state density matrix and of the differential
cross section in terms of the initial polarization. We also show
how to measure the multipole parameters which describe the

polarization transfer between the initial and final states.

3.1 Observables

Consider a quasi two body reaction 1 + 2 - 3 + 4. The beam and
the target are prepared independently hence the initial state is
described by a (Hermitian, positive, trace one) density matrix which
is a tensor product Pe = p(jl) c)p(jz). On the contrary, the
polarizations of the final particles are generally correlated and the
final state is described by a joint density matrix Pe = D(j3, j4)
which cannot generally be written in a tensor product form. These

matrices are related through the transition matrix T by
=Tp T. (3.1)

We have denoted by ¢ the double differential cross section

. 4o t
g = at ay = tr T pe T (3.2)

where t 1is the momentum transfer and ¥ is, in the laboratory system,
-+ ->

the angle between the Basel normal n and a direction L, perpendicular

to the beam direction, fixed by the initial polarization. If the

initial state is unpolarized, pe =1 /leD 1 /n2 with n, = (2ji + 1),



- 17 -

the double differential cross section is denoted by co

o = =3 _ =t eyt (3.3)
0 dt ay - 3/n n nln2
pe 12

-
In this case, the initial state has no preferential direction £ in
the laboratory and the double differential cross section co is

isotropic in Y. Then one may consider the simple differential cross

section

do 2T
_— = (o] =
at fo o dy 2m co . (3.4)

At fixed energy and momentum transfer, a caomplete measurement
of the reaction includes the measurement of the double differential
cross section 0 and of the joint final density matrix pf, as functions
of the initial polarization pe and of the angle Y. We call observables
of the reaction the set of quantities which parametrize these functions
and can be effectively measured. The measure is obtained by an
analysis of the differential cross section and of the combined
angular distribution of the normal ; and of the decay products of

the final particles (cf. sect. 3.3 below) for different initial

polarizations.

3.2 Description of the final state when the target is polarized

From now on we assume that the initial state consists simply

of a beam of spin zero particles and a target of spin %-particles.

3.2.1 The initial state

The initial density matrix pe is a 2 x 2 matrix, which in the
laboratory system is described by the polarization pseudo vector
Z (Zz £ 1), also called the Stokes vector. The projection of this
vector on a plane perpendicular to the beam fixes the direction E
alluded to previously. As we defined it in sect. 2.1, for

s-transversity quantization, in the laboratory system the 3(2) axis



- 18 -

of the target is in the direction of the beam momentum ;l' while

3(3) is along the Basel normal ; to the reaction plane and ;(l) is
perpendicular to the beam and to this normal. Then the densfty matrix
Por in s-transversity quantization, is

Oe =

|-

(‘ﬂ+xrx+yry+zrz) (3.5)

where TX, Ty, Tz are the Pauli matrices, and x,y,z are the projections

> . +(1) =>(2) =>(3) .
of the vector ¢ on the s—-transversity axes n , n , n respectively.
These components can be written
-
r : x = PT sin ¢, y = P_, z =P _cos yY (3.6)

L T

- -> - > -
where ¢ is the angle between n and & with the sign of n X L . p see

1
fig. 1. By definition PT is the length of the projection of Z on
the (x,z) plane; it is the degree of transverse polarization,

O < PT < 1. PL is the projection of Z on the beam; it may be positive
or negative and its modulus IPLI is the degree of longitudinal
polarization, O g IPL[ < 1. Note that Pi + Pi = Zz is the degree of
polarization of the target. It is important to remark that in general
the initial state is not B-symmetric. Indeed, the matrices 4 and

T, are B-symmetric in transversity quantization, but TX and T _are
not. Then, except in the case of normal polarization, E = ;, the

initial state is not invariant by reflection through the reaction

plane.

e e o s e s e e S sl e . o . S i o i O S S o S O o, S o

The density matrix p_ computed fromeq. (3.1) with the initial

£
state (3.5) is linear in the components of Z. It can be written in
the form
= + + + (3.7)
9 P o lpy vt zp, +xp *+Yy Dy):

where pO is the density matrix of the final state when the target

‘+ .
is unpolarized (¢ = 0). If parity is conserved in the reaction,
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the transition matrix T is B-symmetric, and since the matrices
1 and 12 are B-symmetric, the matrices P and pZ are B-symmetric téo
and have non vanishing trace, while the matrices ox and py are
B-antisymmetric and hence traceless. The density matrix po has

trace 1, whereas the trace of pz depends on the dynamics of the

reaction;
tr =1 tr =P tr = tr = 0. 3.8
pO ’ Pz R’ Dx py ( )
By definition the 4 matrices oopa=1;T T, T (a =0,X,¥,2, T, = 1)

are not independent of each other. It is easy to show that the

so-called "polarization transfer matrix" (cf. BAppendix 1 and ref. [20])

+ + i
Po e, Py Oy
W = }:'r o =0 - (3.9)
a ac9 o Pa e} p = ip p - p
X 3% o z
(~ = transposition in the initial space) must be positive and have

rank 1, since oW can be written
w=-;_-f1~ pf (3.9')

where T is the column matrix obtained from the transition matrix T
by transposition in the initial space, i.e., its elements are
~A1AsAqA A
S TAV Lo LT T .
ApAg
The matrix W is B-symmetric; in transversity it can be written in the

form of a direct sum W = W ®w2. The line and column indices of Wl

1
satisfy Ay} + A, - A3 - Ay = even, those of W2 satisfy Ay + Xy - A3 - Ay
The rank 1 condition on W implies that either w2 = O and rank wl =1
or W, = O and rank W, = 1. Which submatrix is nul depends on the

1 2
relative parity of the particles. From eq. (2.6a), if n = +1, w2 = O,

if n=-1, Wl = 0. The nullity of wl

between the elements of po and pz and of px and py, while the rank 1

(ox W2) yields linear constraints

condition for w2 (or wl) gives quadratic constraints between the

this trace, P_, is sometimes called the "reaction polarization"
R

odd.
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elements of all matrices. Often the decay of the final particles

does not allow a complete measurement of the matrices wl and w2.

Then one may obtain constraints on the observable parameters by
elimination of the unobserved gquantities from the previous equations.
This elimination keeps the degree of the linear constraints, but it

generally raises the degree of the quadratic constraints.

3.2.3 Multipole expansions

i) If only the final particle 4 has spin (j3 = 0, = j), the

Iy

density matrix is a single particle density matrix. Its multipole

Pe
expansion is (cf. eq. (2.8))

25 4L

_Z z L
[(1 + Po z) 1+ 2: 2: (2L +1){ ty Tz oty

__1

o
- P :

£
0o 23+1 L=1 M=-L,

(3.10)

X L v L L
+xTh ty T } T(3) 1.

z L . .
where t; and tM are the multipole parameters of the B-symmetric
. X L y. L
matrices po and pz , and tM and tM

B-antisymmetric matrices p « and p . We have exhibited the trace
y
o .
(1 + PR z) of the matrix . pf; we could keep this term inside the
o Z O
summation (L = O, 2j), with the conventions to =1, to = PR.

are the parameters of the

ii) If both final particles 3 and 4 have spin (j3 =3, j4 = 3",
the density matrix p. is a joint density matrix pf(j:j')- Its
multipole expansion is (cf. egq. (2.9)).
+L'
2]

+L
j! S—— s e
CEEY 223 (L+l) (L'+1) 2 Y LU,z IL
2 P T & 2. (23D (23'+1) M=-L M'=-L' MM MM

(3.11)

X_LL' y LL' L L'
« N . .
+ tur T Y tMM,} T(3)), ® T(3') .

LL' z LL' x LL' LL'
where tumr ! tMM' ’ tMM' ’ thM' are the multipole parameters

of the B-symmetric matrices s and e, and B-antisymmetric matrices
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oo z 00
P

d i = = .
px an py respectively, with the conventions too 1 and too R

LL
The multipole parameters at; and atMM' (o = x,y,2z) are called

"polarization transfer" multipole parameters.

3.3 Measurement of the observables of a reaction

If the final particles are unstable and undergo two body
decays, the final state is characterized by the production angle
Y and by the decay angles ©,¢ and 6',¢'.

3.3.1 The double differential cross section

From the general form (3.7) of opf and from the trace conditions

(3.8), one gets
0o = tr gp = co(l +PR z) (3.12)

Then from the value (3.6) of the z-component of the polarization

->
vector r, the Y dependence of the double differential cross section is

o(y) = co(l + PR PT cos V) (3.13)

i) The unpolarized double differential cross section co may be

obtained by several different ways

o-o - O—(w) !P - (3.14a)
T
m

o =0 (& (3.14b)
o) 2

1
o == (0(0) + o(m))
@) 2

1 1 2W
o, = 3. o> == /; o(y) ay (3.14d)

One may verify that all these ways lead to the same result.
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ii) Similarly the asymmetry PR?T of the differential cross section
can be obtained by several ways. We denote by ot (resp. o+V) the

>
cross sections of the events with the polarization vector { above

(resp. under) the reaction plane

il 3n
o+=f 2 O(yp) ay , c+=f2 a(y) day , (3.15a)
I I
T2 2
and we use the notation
2™
<f(y)> =f £f(y) dy (3.15b)

O

Then the asymmetry can be obtained by

- glo) - a(m
PPr = oo o) (3.16a)

m ot - ov

PRPT T2 ot + o¥ : (3.16Db)
_ <o(y) 2 cosy>

PRPT = <5 (0)> (3.16c)

3.3.2 Production and singie decay angular distribution

s s o s . S S . o -t 2 . Y " S, " o o oo oo - T~ - o ] " 1 - v

Assume first that only one final particle undergo a two body
decay (e.g. mp > mA, A > N ; oxr mp » pN, p = 7n). Then the final
state is characterized by 3 angles ¢, ©, ¢. Let us call T the
reaction transition matrix and M the decay transition matrix. The
normalized combined angular distribution is defined by

tr MT p_ o’

I(w; e, ¢) = + + ‘ (3.17)
ftr MT p_ T M d(cos e)d¢ dy
From eq. (3.1) this can be written
tr M 9 p M+
0o £
. .(3.18)

I(Q); e, ¢) = +
ﬁ:r M -g-- pe M dlcos @) d¢ ay
o]
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Then, by comparison of the multipole expansion of %— Pe (cf. eg. (3.10))
o
with the expansion (2.8) and from the usual decay angular distribution

(2.16) one gets the combined normalized angular distribution

1 +P P cos ¢ 23 Z:-fL —
- }__. R T Z L z L
I(y; 6,¢) = T [ an + &~ C(L) =1 {tM + PT cos ty

, X L y L L
+ PT sin Y ty ¥ PL tM} Y, (8/¢)

(3.19)

where the coefficients C(L) are defined in sect. 2.4 and are, for the

most usual decays, well known numerical coefficients (cf. eq. (2.17)).

By inspection of this expression one sees that it allows the measure of
, L y. L z L X L

th i P_P + P P i i
e quantities rEp tM I tM’ PT tM’ - tM' either by a best fit

adjustment or by moment analysis which yields

PPy = <2cos > = fI(w;Q)Zcos v aQ dy (3. 20a)
e (g, + 2 Y = <y (@)> = fx(w;m Y, (@) d ay (3.20b)
g c(L) P zt; = <2cos | Y;(Q)> i/CIUPﬁD Y;(Q)Zcos Y 4o dy (3.20c)
cw) B xt; = <2sin ¥ y;‘m» sfx(w;m Y;(Q)zsin v an dy (3.20d)

-

with @ = (€,¢) and dQ = d(cos ©) d¢. Note that eg. (3.20a) is a

particular case of eg. (3.20c) for L = 0; with the conventions

th =P_, C(0) = 1//4m) and is equivalent to eqg. (3.1l6c). By different

R
->
choices of the initial polarization 7, i.e. of PT and PL, one easily
deduces from these equations the value of the observables:
i) The target is unpolarized, i.e., PL = PT = 0. One must first
verify that the angular distribution is isotropic around the direction
L
of the beam. Then eq. (3.20b) gives the B-symmetric parameters tM'

and one must verify that the B-antisymmetric moments vanish.
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(We recall that in transversity quantization B-symmetric parameters

have M = even and B-antisymmetric parameters have M = odd).

L
Eq. (3.20c) gives the B-symmetric polarization transfer parameters
z L
tM, and one must verify that the B antisymmetric moments vanish.

Similarly, eqg. (3.20d) gives the B-antisymmetric polarization transfer

ii) The target is transversally polarized, i.e., PT = 0, P_ = O.

x L
parameters tM and one must verify that the corresponding B-symmetric

moments vanish.

Furthermore one may verify that eg. (3.20b) yields the same results

as in case 1i).

iii) The target is longitudinally polarized, i.e., P_ = O, PL = 0.

T
One must verify that the angular distribution is isotropic around the
common direction of the beam and of the polarization vector Z.

Then eq. (3.20b) gives the B-symmetric parameters t; (which should be
equal to the parameters obtained in 1)) and the B-antisymmetric
polarization transfer parameters yt;.

iv) The target is arbitrarily polarized, i.e., PT 0, PL 0. One
obtains all the parameters. Eg. (3.20b) gives the B-symmetric
parameters t; and the B-antisymmetric parameters yt;. Eg. (3.20c¢,d)

z L X L
give the B-antisymmetric parameters tM and tM' and one may verify

that their B-symmetric moments vanish.

Of course, if the decay is parity conserving, this analysis yields
only the L = even parameters (cf. sect. 2.4.1). The moments with

L = odd must be found compatible with zero.

If both final particles (3 and 4) are unstable and undergo two
body decay (e.g. mp = pA p » mm, A - Nm) the combined production

and joint decay angular distribution is (cf. eq. (2.9, 2.19, 3.11))
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23 3! L L' --7
1(Vi6,4,0',6") = 1 2 2;2 c(L) c' (v )fj i

21 L=0 L'=0 LM' =-L' MM’
(3.21)
z LL' X LL y LL'
+ P, cos ¥ tyyr * Pp osiny twr *PL tMM,}
y (©,4) Y (e',¢ )
[e]e] = z 00 = = ' = (] =
where t =1, "t " =P, C(0) =C'(0) = 1/¥am, ¥ 1/V/4T7. The
moment analysis of this distribution gives (0 = (8,4), Q' = (©',4")).
cw c' ' YL L P a)>
(L) c'(L") (tMM, + L ) = Y ) Y ( )
cw c'@w) p, 2 o <2cos y Y@ vh @ns
T Fum ! (3.22)
x LL‘ L L'
= <
c(L) c'(L") P,r MM. 2sin ¢ YM(m YM,(Q )>

A similar discussion to that of the preceding section 3.3.2 can
be made. We shall not repeat it. We only recall that in the present
case, the B-symmetric parameters (in transversity) have M + M' = even
and the B-antisymmetric ones have M + M' = odd. Furthermore, if both
decays are parity conserving, one gets only the L = even and L' = even
parameters; all the moments with L or L' odd must vanish. If the
decay in (©',¢') is parity violating one gets the multipole
parameters with L = even and L' = even or odd. All other moments

vanish.

Assume again that only one final particle decays, but that it
undergoes a cascade decay of the type discussed in sect. 2.4.3
(e.g. Kp ~+ wz*, 2* + An, A+ pr). Then one may study the angular
distribution of the production and of the cascade decay. It reads
(cf. eqg. (2.21))
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1

23
L2 2 2 >
I . . = e
(Vi®,9:6,,9,) 2 i%o L0 'even C(L,J,L;) MAT N <JL MM, [LM>

L z L . x L v Ly J Ll
x + P + +
{tM cos P tM P _sin ¢ tM PL tM}YN(e,¢)YMl(el.¢l)

T T

(3.23)

The moment analysis of this angular distribution yields (Q = (©,9),

Ql = (ellq)l) ).

L yL J Ll

C + P = < > < >

(L,J,Ly) (g + P ") g;%l JLlNMlILM Yo (@) yMl(Ql)

z L E J L
= > < 1

C(L,J,L) Py Tty o <JL1NMllLM 2cos ¥ Y (@) YM1(91)>
x L _ E . I L

C(L,J,Ly) P, "t = N, <JLlNMliLM> <2sin § ¥ (Q) YMi(Ql)>

(3.24)
A discussion identical to that of sect. 3.3.2 can be made. Note
however that in this case, with the C(L,J,Ll) coefficients given in

eq. (2.22) all parameters (L = even and L = odd) can be measured.

One may consider more intricate situations. For example, if the

two final particles are unstable and one of them undergo a cascade
* *
decay (e.g. Kp + pZ , p » nwn, L = Am, A - pr) the complete angular

distribution involves 7 angles. Still more complex is the case where
*
157 A, >,

*
o> mn, £ =+ Am, A - pr). Then the complete angular distribution

both final particles undergo cascade decays (e.g. Kp - A

involves 9 angles.



The expressions of such angular distributions are easily written
down, however the present day experimentalists are not yet interested

in such complex reactions with polarized target.

AMPLITUDE RECONSTRUCTION IN USUAL REACTIONS

In the previous sections we have shown the way of measuring the
Observables of a reaction with unpolarized target (sect. 2) or with
polarized target (sect. 3). They are embodied in the final polarization
opf or in the transfer polarization matrix W, which are quadratic
expressions of the transition matrix T or %, namely (c.f. eq. (2.14)

and (3.9')).

t t

Opf=%TT, w=%i'f

We call amplitudes the elements of these transition matrices. Their
reconstruction consistsessentially in obtaining an explicit expression
- . . + -~

for T or T by inverting the quadratic expressions TT or TT .

Theoretically this can easily be done, and one obtains T or T up to

some unknown Pphases (by the procedure of "conventional amplitude
reconstruction" of Appendix 1,2). Practically each concrete case
needs a separate study since generally the observable matrices pr

or W are not completely measured.

In this section we present the practical method of reconstructing
the amplitudes in usual reactions with unpolarized and/or polarized
target. For pedagogical purposes we first recall the method of
reconstructing the amplitudes in the simplest reaction type
Tp =+ KA, by measurement of the classical Wolfenstein parameters
P,R,A. 1In view of further generalizations to higher final spins,
we introduce, already in this simple case, the multipole formalism
and some complex spin rotation parameters. This is discussed in
sect. 4.1, and summarized in table 4. In the following sections
we present the details of the generalization to reactions of the
types mp - KZ*, mh, K*A, PN as simple comments to the tables 5 to 10,
in which all the recipes for measurements and amplitude reconstructions

have been gathered.
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4.1 Reactions of type mp -+ KA

4.1.1 The Wolfenstein parameters

It is well known that reactions of the type mp - KA with
polarized target and analysis of the final A polarization are
completely described, at fixed energy and momentum transfer, by oo,
the unpolarized differential cross section, and P,R,A, the
3 Wolfenstein parameters (cf. ref.[21]) which satisfy one quadratic
constraint (cf. table 4)). Indeed these 4 real numbers supply
the whole phenomenological information, namely the differential
cross section o and the final polarization components (X,Y,Z) as
functions of the initial ones (x,y,z). In the right part of
table 4) we show these functions when the polarizations are
quantized in s-transversity frames (cf. sect. 2.1). The simple
inspection of these functions shows that each one of the 4 parameters
can be measured twice. That both experimental procedures must
supply the same result constitutes a Wolfenstein theorem which will

be proven below.

A complete measurement of the reaction mp - KA involves a measure
of the differential cross section and an analysis of the combined
angular distribution of the normal to the reaction plane and of the
N decay products, as it was discussed in sect. 3.3. This angular
distribution is given in table 4a) and its moment analysis yields

L zL x L L )
the polarization transfer parameters t , t. ., ¢t , yt as shown in

M M M M
the same table. There are 8 real, a priori non vanishing, parameters,
given in table 4b) (in transversity quantization). They are not
independent; they satisfy some linear and quadratic constraints.
The method to derive systematically these constraints was given
in sect. 3.3.2. In the present case we first write the B-symmetric

matrices po and pz, and the B-antisymmetric ones px and py, which

appear in the matrix W (eq. 3.9), in the form
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P Zp *R -1¥R
o o o [}
= ' p = ' p = ' p =
, z z_, x O y —
P F *R iYR
o o
Then the polarization transfer matrix W reads
+1/2 +1/2 -1/2 -1/2 Aé
A - _ '
p M +1/2 1/2 +1/2 1/2 }A
z X Y
+ "R
+ 4k Po + Po Ro o
| - 4 ] ?—. - y—
+5 o+ Po Po” Ro Ro
B X, _Y _z
E o+ Ro Ro Po Po
VT v . z_,
, " Ro + Ro Po + Po
It is the direct sum of the external matrix W1 (with Ap - AA = even)
and the internal one w2 (with Ap - AA = odd). The rank of W must
be 1 since the other two particles are spinless. This condition
imposes either
oz z X Y 2 .
= = P p!' P! = = P
W, =0, rank W = le—P_ =°P , P! se TRO=7R IROI PP,
= =3 o= _,z L _z ] X = -y 2 = [] N
W, =0, rank W, = le—=P P P! Py 'R=""R, [R | =P .
In each case there are 4 linear constraints and one quadratic constraint.
= +lp the first

For our reaction, with relative parity n = n. np nK nA
alternative is realized, and the corresponding linear constraints are
equivalent to the Wolfenstein theorem. The parameters Po and Pé are
= *r =YR° is complex. They are also called

o
"the spin rotation parameters" of the reaction. The definition of

real, the parameter Rb

complex spin rotation parameters will be useful in the generalizations
below. The relation of Po' Pé, Ro with the Wolfenstein's A,P,R is
given in table 4c, where we also show their relations with the

polarization transfer multipole parameters and the linear constraints

between the latter.



Finally, table 4d gives the quadratic constraint in terms of
A,P,R and Po' Pé, Ro and table 4e shows the polarization transfer
in terms of the density matrix elements in transversity gquantization

which are closer to the amplitudes we intend to reconstruct.

4.1.3 Reconstruction of amplitudes

Table 4f introduces the terminology for the helicity and transversity
amplitudes (c.f. sect. 2.2). Their relations with the spin rotation

parameters are given in table 4g.

Note that with unpolarized target, i.e. by measuring only Oo and P
(or o and Po) the moduli a and a' of the transversity amplitudes

is determinated and only their relative phase is ghost.

On the contrary, for the helicity amplitudes, the moduli are not

determined with an unpolarized target.

+ +
x - -3
4.2 Reactions of type mp > KI (0 %‘ >0 3 )

In table 2a, 30 examples of such reactions are listed. For any
of them, with unpolarized target but with analysis of the cascade decay
of the final baryon, the transversity amplitudes can be measured, up to
one ghost phase, by the procedure indicated in table 5. The determination
of the ghost phase needs a polarized target and can be performed

following the procedure described in table 6.

4.2.1 Reactions with unpolarized target

This section is a comment of table 5. Part a) gives the method
for measuring the even multipole parameters by a moment analysis of the
two body decay of the Z* {cf. sect. 2.4.1). Part b) gives the method
for measuring all the multipole parameters by a moment analysis of
the cascade decay: Z* + Anr, A - pm (cf. sect. 2.4.3). In fact,
for L = even one has Ll = 0 and the ©',¢' disappears; then by
integrating on ©',¢' , the same distribution as in Part a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>