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Part e) shows the polarization transfer from the initial polarization

to the final density matrix.

Part f) introduces some simple terminology for the transversity
and helicity amplitudes which must be B-symmetric (cf. eq. (2.6)),

and gives their linear relations for the conventions of sect. 2.1.

Finally part g) exhibits the relations between observables and
amplitudes. All moduli and relative phases of the transversity
amplitudes are easily obtained, even the relative phase between the
amplitudes a, b and the amplitudes a', b' can be directly obtained
for instance from the expression in brackets .

. * - 1 -e l+
4.4 Reactions of type 7p » K A (O 5 1 5—)

Forty examples of such reactions are listed in table 2b. For
each of them, with unpolarized target but with analysis of the joint
angular distribution of the final decays, the transversity amplitudes
can be reconstructed, up to one ghost phase, following the procedure
described in table 8. The determination of the ghost phase needs
a polarized target and can be performed following the procedure

described in table 9.

This section is a comment of table 8. Part a) gives the method

for measuring the double multipole parameters by a moment analysis of

the joint two body decays of K* and A (cf. sect. 2.4.2). Unprimed indices
and arguments correspond to K* polarization and decay while the primed
ones correspond to those of A, The a priori non vanishing multipole
parameters are listed in part b). Of course all other multipole moments
of the joint angular distribution can be measured too. Their vanishing

*
is a check of parity conservation in the production and in the K decay.

From these values of the double multipole parameters, the joint

density matrix is easily obtained (cf. eq. (2.9)). 1In part c) we



give explicitly the non vanishing elements of the measurable joint
density matrix, in transversity quantization. Upper indices refer

to the K* transversities and the index e labels elements of the

even density matrix; lower indices are twice the A transversities,
Remark that since the density matrix elements are linear expressions
of the multipole parameters, they could be obtained directly, by the
method of moments, as mean values of similar linear expressions of
spherical harmonics. This method reduces the €rrors on density matrix
elements and should be applied when amplitude reconstruction is
intended. Nevertheless one should first perform the parity checks

mentioned above.

The positivity and rank 2 conditions of the total 6x§ density
matrix (the measured part plus the ghost part) imposes to its
measured elements the constraints written in part d). The two
equalities are the rank constraints. They are rather cumbersome
but they constitute a new check and furthermore they have a diacrital
function. Indeed they contain the Square root of a complex number A
(function of 4th degree in density matrix elements); the constraints
decide which of the two possible roots must be chosen, since they
Will be satisfied for one of the roots and not for the other. This
choice eliminates any discrete ambiguity in the rYeconstruction of
the transversity amplitudes. Of course the check of these rank
constraints and the possibility of discriminating the two roots

Yequire accurate experimental results and hence high statistics.

Part e) introduces some simple terminology for the transversity
and helicity amplitudes which satisfy the B-symmetry conditions
(cf. eq. (2.6)). We give also the relations between these amplitudes
when the conventions of sect. 2.1 are used. Finally we give the
relation between our transversity amplitudes and those introduced by
Byers and Yang, who use a cartesian basis for the spin 1 particle and

a transversity quantization axis which violates the Basel convention.
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Part f) shows the expressions of the measured observables as
functions of the defined transversity amplitudes, and part g) gives
the inverse expressions which allow an algebric reconstruction of
the amplitudes. Of course the relative phase between the two sets
of amplitudes a, b, ¢ and a', b', c' is ghost and therefore the
moduli of the helicity amplitudes cannot be determined with unpolarized
target. Remark also that the determination of [bl and lc[ from P and
Q, and similarly for the primed quantities, contains a discrete
ambiguity indicated by the sign € or e€'. These signs can nevertheless
be fixed by the last inequalities of part g), when the choice of the

complex square root of A can be done as discussed above.

Another method for amplitude reconstruction is to fit the
expressions in part f), imposing for instance that a and a' be real.
A mixed method would be to obtain directly by the method of moments
the moduli |a|2, Ib £ c|2, Ia'lz, b + ¢! 2 and to fit afterwards
the relative phase between these sets of amplitudes by using the
values of Im Q, Im Q', Sl and 52.

4.4.2 Experiment with polarized target

The determination of the ghost phase requires a polarized target.
Table 9 shows the method for measuring all the observables and
introduces the corresponding generalized spin rotation parameters

(for comparison see sect. 4.1).

Part a) shows the combined production and joint decay angular
distribution for an arbitrary target polarization (cf. sect. 3.3.2).
Its moment analysis yields the polarization transfer joint multipole
parameters. In part b) we list those which are not a priori vanishing.
They are 48 and are set according to the way they are measured:
the first line (12) can be measured with unpolarized target,
the two following lines (24) with transverse target polarization,

the last line (12) with longitudinal one. Of course, all other (48)
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parameters can be measured and should be found compatible with zero.

Part ¢) shows that among those 48 transfer multipole parameters
there exist 16 linear constraints (cf. sect. 3.2.2) so that, besides
the unpolarized differential cross section OO, 31 generalized spin
rotation parameters can be defined. The real P's and the complex Q's
and S's can be measured with unpolarized target. In addition to these,
a transverse polarized target allows the measurement of 16 more
barameters the T's, R's and U's, and a longitudinal polarized target
yields the R's and A's, i.e. 12 more than with unpolarized target

and 4 more than with transversal polarization.

These parameters are the coefficients of the polarization transfer

to the final joint density matrix as shown in part d).

Part e) gives the expression of the observables in terms of the
transversity amplitudes defined in table 8e). The ghost phase between
the two sets of amplitudes a, b, ¢ and a', b', ¢' is contained in
the R's, U's and A's parameters and can be measured either by
longitudinal or by transverse polarization of the target. In this
last case, the measurement of the parameters Tl and T2 allows a more

direct reconstruction of the transversity amplitudes as given in

part £).
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4.5 - Reactions of type mp-+ pN (0~ %&.4 17¢ %+e)

In Table 3b) 22 examples of this type of reactions are listed.
Their transversity amplitudes can be reconstructed with a transversally
polarized target up to one ghost phase and some discrete ambiguities. The
experiment with longitudinally polarized target supplies two more observables
which allow to check two non linear constraints and to eliminate the discrete
ambiguities. But the ghost phase could only be obtained from the polarization

*
of the final nucleon .,

Table 10, that we now comment, gives the practical recipes for the
amplitude reconstruction, by measuring some generalized spin rotation para-
meters (cf, Section 4.1)., Part a) shows the combined angular distribution of
the normal to the reaction plane and the p decay products (cf. Section 3.3.2).
It allows the measurement of the polarization transfer multipole parameters by
a moment analysis as indicated in the same part a). The list of these parameters
which are not a priori vanishing is given in Part b). Remark that yti can be
measured only with a longitudinally polarized target. Of course all other
moments of the conbined angular distribution could be measured and should be
found compatible with zero, as a check of parity conservation in the reaction

and in the p decay.

Part c) introduces the generalized spin rotation parameters, which
are linear combinations of the transfer multipole parameters, and as them
could be directly measured by the moment method. This Part c) uses the same
terminology as Part c) of Table 9 (reaction type mp #* K*A) ., But in the
present case we can only measure the polarization of the first particle, i.e.
the transfer double multipole parameters with L' = M' = 0 . They are given
by expressions of the type PO + PO' written in the left side equations and of
the type P - P ' written in the right side equations in Table 9 c¢). The
parameters oU agd A correspond to Ul + U2 and Al - A2 . Part d) of
Table 10 shows the polarization transfer from the target polarization to the

final density matrix,

¥
That is a simple application of the Simonius theorem (cf. ref., [9] and

Appendix).
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The transition amplitudes in this type of reactions are the
same as in the reaction type Tp - K* A, Thus we refer to the simple termi-
nology introduced in Table 8e) for the transversity and helicity amplitudes
which must be B-symmetric (cf.Eq.(2.6) ), and for their linear relations,

when the conventions of Section 2.1 are adopted.

Part f) exhibits the relations between the observable spin
rotation parameters and the transversity amplitudes. Remark that amplitudes
corresponding to opposite polarizations of the final nucleon, i.e, (a b' c¢')
and (a' b ¢), are never mixed, Therefore the relative phase between those
sets of amplitudes is ghost, The situation is equivalent to that of the
reaction type Tp - K*¥A with unpolarized initial state. From the polari-
zation point of view both reaction types are related by crossing of the
baryons, Indeed Table 10 f) is obtained from Table 8 f) by means of the
subtitutions b @c', c eb', P @p’', Q¢ Q', 5, 4 & (U-4), S, * & (U+a).
Therefore in our present case, when all the spin rotation parameters are
observed (experiment with transverse and longitudinal target polarization),
all the moduli and relative phases (up to the ghost one) can be unambiguously
reconstructed, and two non linear constraints can be checked. For this purpose

the expressions in Table 8 d) and 8 g) can be used with the substitutions

Ld

mentioned above,

When the experiment is only performed with transversally polarized
target, the parameter A and the last expression in Table 10 f) are ignored,
and the diacritical constraints are not available, Then, from the Table 10f) ,
the six moduli can be obtained up to two discrete ambiguities for the modul i
of b,c and the moduli of b', ¢', The two relative phases between these
couples of amplitudes are unambigously measurable., The two relative phases
between a and b', ¢ » and between a' and b,c can be determined from

the expression of U , up to at most a 24—up1e discrete ambiguity,
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- +e 1+
4.6 - Reactions of type mp = K**\ (0 ﬁ+'4 2"€ )

Forty examples of this type of reactions can be obtained from
Table 2b). Their transversity amplitudes can be reconstructed (up to one
ghost phase) with unpolarized target, but with analysis of the joint an-
gular distribution of the final decays, Table 11 gives the practical recipes
for this amplitude reconstruction., It is a simple extension of Table 8, which
gives the amplitude reconstruction for reaction type 1p = K¥\ and has been
commented in Section 4.4,1, We refer to these comments, which can be easily
applied to Table 11, althoughwe have omitted here the explicit expressions of
the 12 non linear constraints and the algebraic expressions for reconstructing
the amplitudes, They are very cumbersome and can be obtained from the equations
in Table 11 c) by elementary algebra. Anyway the simplest method to reconstruct
the amplitudes will be a best fit of these expressions as was commented in

Section 4.4.,1,

The determination of the ghost phase requires a polarized target,
The experiments with transverse target polarization and with longitudinal one
supplies 72 and 30 new observables including the ghost phase and new constraints,
We have not tabulated all these generalized spin rotation parameters. The cor-
responding Table would be an extension of Table 9 . The measurement of only

one final polarization is enough to fix the ghost phase (cf. ref. [9]), If only

T o
w

the polarization of K  is measured, Table 12 could be used.

4.7.- Reactions of type mTp 4 A N (0o %4-* 2te %+e)

2

Twenty two examples of this type of reactions can be obtained

from Table 3 b), Their transversity amplitudes can be reconstructed (up to

one ghost phase) with polarized target and measurement of the A2 polari-
zation, Table 12 gives the practical recipes for this amplitude reconstruction,
It is a simple extension of Table 10, which gives the amplitude reconstruction
for reaction type Tp=* PN and has been commented in Section 4.5 . We refer
to these comments, which can be easily applied to Table 12, although we have
omitted here the explicit expressions of the non linear constraints and the
algebraic expressions for reconstructing the amplitudes. All this can be ob-

tained from Table 12 f) by elementary algebra, Anyway the simplest method to
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reconstruct the amplitudes will be a best fit of these expressions by

fixing two arbitrary phases (e.g. a and a' real).

The ghost phase between the sets of amplitudes (a,d,e,b',c') ,
(a',d',e',b,c) could only by measured by analysis of the final nucleon
polarization, The situation is equivalent to that of the reaction
mp + K*¥*A with unpolarized initial state, Indeed Table 12f can be o?—

tained from Table 11 e) by the substitutions be# c' , c & b', I:’ld"bl“1 R
QueQ » Sy £8) PUps Ay Sy S 3Uy, Ay, 5, 53 Uy, Ay .

4.8 - Reaction of type mp - K* T* (0 i*’» 1°¢ %+)

Thirty examples of this type of reactions can be obtained from
Table 2 e). Their transversity amplitudes can be reconstructed (up to one
ghost phase) with unpolarized target, but with analysis of the joint angular
distribution of the K# decay and the T* cascade decay. Table 13 gives
the practical recipes for this amplitude reconstruction. It is a simple
extension of Table 8, which gives the amplitude reconstruction for reaction
type Tp - K*¥A and has been commented in Section 4.4.1, We refer to these
comments, which can be easily applied to Table 13, although we have omitted
here the explicit expressions of the non linear constraints and the algebraic
expressions for reconstructing the amplitudes. They can all be obtained from
equations in Table 13 f) by elementaryalgebra. Anyway the simplest method to
reconstruct the amplitudes will be a best fit of these expressions as was

commented in Section 4.4.1,

The determination of the ghost phase requires a polarized target,
The experiments with transverse target polarization and with longitudinal one
supplies 122 and 48 new observables, including the ghost phase and new cons-
traints, We have not tabulated all these generalized spin rotation parameters,

The corresponding table would be an extension of Table 9 .
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-e 3+e )

4.9 - Reactions of type T1p = pA 0 ﬁﬁ'4 1 >

Thirty four examples of this type of reactions can be obtained
from Table 3a). Their amplitudes can be completly reconstructed with trans-
versally polarized target and measurement of the joint angular distribution
of the final decays. Table 14 gives the practical recipes for this amplitude
reconstruction., It is a simple extension of Table 10, which gives the ampli-
tude reconstruction for reaction type Tp - PN and has been commented in
Section 4.5 , We refer to these comments, which can be easily applied to
Table 14, although we have omitted here the explicit expressions of the non
linear constraints and the algebraic expressions for reconstructing the am-
plitudes. All them can be obtained from Table 14 f) by elementary algebra.
Anyway the simplest method to reconstruct the amplitudes will be a best fit
of these expressions by fixing one arbitrary phase (e.g. a=real). Remark
that the amplitudes are here obtained without any ghost phase, up to the

overall one.
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APPENDIX

1. The matrix W of polarization transfer.

We consider the linear map w from the initial polarization space
of density operators on ﬁL to the final polarization space of density

operators on Hf
p. *wip) =op. =1 1t . (A1)

There is a complete mathematical similarity between this pola-
rization transfer and the polarization correlation for a system of
two particles, It is therefore very convenient and more elegant to
describe polarization transfer by a matrix W analogous to the joint
density matrix [20] . For an initial polarization density matrix P

and a final analyser of polarization Af , the transition rate is
w(p ,A)) = tr A_T p T+ (A2)
e’ 'f f e

or, writing down the indices (upper = lines, lower = columus) ,

+

A A
) u|

- (SRt
wip,sAg) uzu' (45 UT
A A

(pe) X (T

A

- >y M Ty A

= I (P)x (A.) (™ (thH,, ,
U e £f° M Al
AN

where the symbol ~ means transposition in the initial space. The

last expression can be written
wip,Ag) = tr (p, ®A) W , (43)

by using the polarization transfer matrix W , whose elements are

whH

= (mM (gt
= @

T ))k’u' . (A4)
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This matrix represents an observable, rank one, positive, Hermitian
operator acting on the spin space Hé* ® #f . The final state density
matrix cpf is obtained by taking the partial trace in the inital

spin space
op = tr, (p, ®L) W . (A5)

Thus the knowledge of W 1is equivalent to that of T (or T) up to

an overall phase,

Indeed given any rank one, positive, Hermitian operator, H ,

it is easy to find a vector |x> such that

H= |x><x| . (46)
For any well defined ordeging of indices in H , let Ap be the
first index for which HX \0 # 0 . Then a possible vector |x3>

is defined by components

te ol /%*OXO . a7)

(Remark that xx =0 for A<)0 , since Hkk = 0 implies

N N
HY, =0 = BY

amplitude reconstruction'", and denote symbolically

for any \') . We call this procedure a "conventional

|x > = cAR (1) . (A7")

Since Eq.(A4) is of the type (A6) with some double indicing, a par-

ticular solution of (A4) is the vector (T)ku
T > = CAR (W) . (A8)

The general solution is obtained by multiplication of this particular

one by an arbitrary phase,
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Let us study now the structure of the T and W matrices des-
cribing two body reactions in which parity is conserved, For this
purpose it is convenient to adopt transversity quantizations, for
which half of the transition amplitudes vanish (we consider the most
frequent case of reactions in which some fermions are present), It
is also convenient to introduce a "separation order" for lines and
columns of the transition matrix (cf. [13]), which segregates the

vanishing from the non necessarily vanishing amplitudes.

For one particle with spin J and parity 1 , such an ordering

classifies the magnetic quantum numbers M in two sets Se and So :

even M E S¢ »
for j -y = (A9)
odd , M€ Sy -

Keeping this ordering, the B-symmetry operator (cf. Section 2.2) for
this particle can be written in block form

Se S“
S
. IB+1/2 0 e
B=mne for j=half odd integer
0 I L1725, (Al0a)
I 0
B=ne inj 3+1 l for j=integer (Alob)
—
]

For a system of two particles with spins j,j' and parities
n,n the separation order classifies similarly the couples (s w")

of magnetic quantum numbers in two sets (c£.[13b))

o even , (uy ") €s,
for J-p+ 3'-u' = ¢ 44 v (uu es_ A1)
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The corresponding B-symmetry operator reads

Se SO
C e 1 I 0 Se
B = oim(i+i") n (A12)
o T, ),
o

where n = %(2j+1)(2j'+1) was supposed to be integer., For our pro-
blem we need two such operators : Be acting on 12 s the initial
spin space of particles 1 and 2 , and Bf acting on 1% , the

final spin space of particles 3,4 ,

Parity conservation in the two body reaction implies

Be T Be+= T |, (A13)

and imposes to the transition matrix T , written in this separation

order, one of the two following block structures,

S S
e e
T = s for e=+1; 7T = sfor e=-1
So So (A14)
where
€=M M, ny M, el +i5"35-3,) . (A15)
By transposition of initial indices, from T+ we obtain T+ , and

~

from T we obtain T » which can be written for both values of ¢

_1_4_2~__e_ T, (se, se)
l-¢ T (s, s)
2 B € o
T = ~ (Al6)
l-¢ T, (so, se)
2
1;5 T_ (SO, SO) .
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Thus, in this separation order for initial and final indices, the

matrix W has the block form
l+e T T+ 0 0 l4e T 'Ff
- T+ T+ = T+ -
2 2
0 U T 51 0
w=T 71 - 2 2 (A17)
0 l-¢ T "1:* l-¢ T 'i"r 0
== T+ - | ==+ 4
2 2
1re 7 7t 0 0 1ie T 77
e - + P — - -
2 2
By further reordering, it could be written as a direct sum of two
blocks, one of which necessarily vanishes:
~ A* ~
2 0 2 0’ 0 ~ ~ o~ .
T_ T+ T_T_
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Number of ghost amplitudes in experiments with unpolarized or

polarized spin 1/2 initial particle*,

We consider now an initial state composed of particle 1 with spin

jl » which will be assumed to be unpolarized, and particle 2 with spin

j2 1/2 , whose polarization will be considered. In the main text
I1
and can be applied to the case jl = 1/2 (nucleon scattering), or to the

=0 , and 1 is the beam, 2 the target. This section is more general

case where 1 is a higher spin nucleus target and 2 a polarized beam. We
also assume that the dimension of the final spin space Hf is not smaller
than 2(2j1 + 1) , the dimension of the initial one Né , and that the

final density matrix 0Py 1is completely observed.

According to Eq.(Al2) the B-symmetry operator of the initial state,

Be , decomposes in two blocks for a separation order of indices :

ATGED) ® (-1 ) . (A19)

N1My Be = 1123'1+1 2j,+1

The number NU of real ghost amplitudes, for unpolarized initial
state, is the number of parameters of the set of matrices U which
transforms T into TU but leaves the observables unchanged, i.e.,
TU(TU)*.= TT+ . This transformation must preserve the B-symmetric
structure of T ; since furthermore we disregard the overall phase of

T , the matrices U must satisfy the conditions :
UU'*‘=]1,BeU BY =U , det U=+1, (A20)

Because of the structure of B, Eq. (A19), these conditions imply that
U belongs to the group S[U(2j1+1) ® U(Zjl + 1)] . The number N, of
ghost amplitudes is the dimension of this group

_ . 2
NU = 2(2_]1 + 1)° -1 . (A21)

= .
This section summarizes published and unpublished work of Simonius,

cf [9].
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In the case of an experiment with polarized spin # initial
particle, in addition to Eq.(A20), U must satisfy the new condition

(v, nzj1+1 ®p,] = 0 , (A22)

for the density matrix P, of particle 2 , Condition (A20) and
condition (A22) for arbitrary Py (we assume that the experiment with
longitudinal and transverse polarization is performed) are equivalent

to

vf =1, decu, =1, 8 Bt =u (A23)

1 U

u=0,@® 1, , U

1 2 1 1" 1-

Because of the structure of B1 » Eq.(A10) , these conditions imply
that U belongs to the group S[U(jl+1) ® U(jl)] for j, integer,
or to the group S[U(jl+i9 ® U(jl+i9] for jl half odd integer,

The number NP of real ghost amplitudes in these cases is given by

the dimension of the groups

. 2 .2 . .
(Jl+1) +3]-1-= 2jl(jl+l) for integer iy
N_ = (A24)
2(j1+i:)2 -1 for half odd integer i

Table Al gives the value of NU s NP for the low values of jl.

It also gives NR = NU - NP » the number of additional amplitudes

which can be reached by using a polarized spin 1/2 initial particle,
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The matrices pa of polarization transfer from spin 1/2 initial

particle .,

We consider further the case of an initial state composed of an
unpolarized spin jl particle and a spin j2 = %’ particle whose po-
larization is described by the density matrix Py With the usual

expansion for Py
p2=%(ll+x"rx+y'ry+z'rz) , (A25)
the final density matrix can be written
opf=oo(po+xpx+ypy+zpz) s (A26)

where 0b

polarization for an unpolarized initial state, and the matrices

and py are the differential cross section and the final
pi(i = X, ¥y, z) add the information on the polarization transfer.

, Tge po;arization domain of Py is the Poincaré sphere
x +y +2z <1 ; the linear map w transforms this sphere into
an ellipsoid centered at % P - The principal axes of this ellip-
soid are the new observables which can be measured when the initial
state is polarized. They are noﬁ arbitrary but must satisfy some con-
ditions, e.g. when rank p, = 1 (total polarization) rank Pe = 23,41,
and hence the density matrix o pf is on the surface of the cone C
of positive matrices acting on Hf (we assume dim ﬁf > 2j1+1) .

For parity conserving two body reactions it is easy to prove that
the joint density matrices pb and p, are B-symmetric, while px and
py are B-antisymmetric., Indeed the B-symmetry operator for particle

2 [cf. (A1) ],
2 = -1n2 T3 B (A27)

decomposes the matrix p, of (A24) into
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+
f27 Pt P 5 By pzi B

with

Py = (1 +z1) p2_=§(x7x+y'ry) .

Since the density matrix

sition matrix T are B-symmetric, if we call

Opp, = T(p1®p2+) T+ s

we obtain

t .
By 0 pg, By =t 0P

and

O P, = oo(p0+z pz) s O P =

oo(x P Ty py) .

(A28)

(A29)

Pp = nzj 41 / (Zjl + 1) and the tran-

(A30)

(A31)

(A32)



- 52 -

Amplitude reconstruction for reactions with spinless beam and spin 1/2

target when the final polarization is completely observed,

We suppose for the beam spin jl = 0. Then the initial state density

matrix is that of the target, p. = p

R s with dimension, dim Né =2

z

The most general form for the operator W on H: ® ﬂf is

W = Za To. ® X a s (A33)
since T =1 s Ty T, 0T form an orthonormal basis on ¥*
a x> 'y 'z e

Substitution in Eq.(A5) of the expansions (A33) of W and (A25)

of Po s use of the identity tr To, TB = 2 6aB ; and comparison with

the definition (A26) of pa , yield Xa = ob pCL s il.e.,

(A34)

which is Eq.(3.9) of the main text. Using the ordinary representation
of the Pauli matrices, this equation reads

P+ P, Py + 1 Py
(A34")

RO B pz

The separation order is superfluous for the initial spin space,
W = 1/2 GSe and My = -1/2 ESO .

are then identical to the matrices 'I‘+ . If we

since there are only two indices :
The matrices f;
introduce the separation order for the final spin space, we may iden-
expressions (A32)and (A34')

block expressions for the polarization transfer matrices :

Alo Ao C
po = s pz = . s px = s py = e
O}B 0 |-B C

tify the two W and we obtain the following

(A35)
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with
= = =
A=T T| » 20, B = T_ TJ s 20, C=T T | (A36)

The sign ¢ is the function of parities and spins given in (Al5).
Remark that A,B,C are rank one matrices, and A,B are Hermitian and

positive. The so called '"reaction polarization' is
P, = tr p, = €(tr A - tr B) , (A37)

Let us study the amplitude reconstruction in the cases in which
the final joint polarization can be completely measured, i.e,, when
one observes % Po in the experiment with unpolarized target ,

o, p. and ¢ Py in the experiment with transversally polarized
z

tgrget, and gb p in the exper;ment with longitudinally polarized
target., In this case, with unpolarized target, all the transversity
amplitudes I+ and T_ can be reconstructed up to the overall phase
and one ghost phase, as proved by Simonius (cf., Section 2, and Table

Al for j; = 0) . Indeed, by the "conventional amplitude reconstruction"

(cf. Section Al), from the observed matrices % A and 00 B we can

obtain

la> = car (20, 4) , |p>= car (20, B) , (A38)

which are T+ and T_ wup to arbitrary phases, The Simonius ghost phase
©, is the relative phase between T and T_ . It can only be
obtained from C , which is observable in experiments with either
transverse or longitudinal target polarization. From Eqs (A36) and
(A38), we see that the observed matrix % C must satisfy

2g, C = la> <b," et? s (A39)

and that the amplitude vectors |a> and e o |b> can only differ
from I+ and T_ by an overall phase, which we disregard,

The number of amplitudes is given by the dimension of T . The
number of observables and of their linear and non linear constraints in

experiments with different target polarizations are easily obtained frem
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the dimension, Hermiticity and rank properties of the matrices
A, B, C . The dimension of the one column matrices T+ and the

square matrices A, B, C 1is
n o= Q2+1) G+ H (A40)

where £ and j are the integer and half odd integer final spins. We
recall that a n X n Hermitian matrix depends on n2 real parameters,
If the matrix has rank k » these parameters satisfy (n - k)2 cons-

traints of degree k + 1 ., The results are summarized in Table A2,

For 4 =0 equivalent numbers are presented in Table 1 , For
£=0 and j =3/2 , the explicit amplitude reconstruction is pre-

sented in Section 4,2. of the main text and in Tables 5-6 .,
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Number of real amplitudes and of polarization observables for

usual types of two-body reactions with meson beam and with

unpolarized or polarized target. The rea

are boxed will be studied in the text.

ctions whose numbers

OBSERVABLES

AMPLI~-
TYPE OF REACTION TUDES
UNPOLARIZED POLARIZED TARGET
TARGET
TRANSVERSAL LONGITUDINAL
U
T L
mp > TN (O, *e) 3 X 2 + 0
KA (0, 3 ) 3 2 3+3 + 2
1
PN (1° 28) 11 4 + 2
 op NS S By 11 11 + 25 + 12
AN (2€° 19) 19 9 18 + 6 + 6
N0 e |
K**A (2% 1) 19 18 + 12 19 + 71 + 30
1
u:e,é-e) 4(22+1)-1 (2 T (2+41) (32+2) T +2(R41)
+ 0
(ze,% ) | 4(28+1)-1 2(R+1) (22+1) || 6(2+1) (24+1) +2(L+1) (24+1)
mp+ mA (O, %ﬁ) 7 4 + 2
kL (0, 5 ) 7 7 + 17 + 8
pA  (12,3%) 23 20 + 16
K oaed) 23 22 + 26 23 + 121 + 48
o ’ ; 4 |
@ ,33) 8(22+1) -1 2(%+1) <3z+2)+ 2(241) (9%45) +2(2+1)(32+1)
(ze,_g_ ) | 8(2841)-1 B(241) (22+1) || 24 (2+1) (22+1) +8(L+1) (22+1)
(2%,3%) | 2(2¢ +1)x (2+1) (3+%) x (£+1) (+%) x (2+1) (3+4) x
x(23+1)-1 x(229+3+%) T x(62j+3j+5)** x(223+9-%)
(zerj) 2(22.+l)x (£+l) (j+l,)x (2_+l)(j+l’)x (+1) (j+‘:)x
x(2j+1)-1 x(20+1) (23+41) ]| %3(22+1) (2§+1) x (20+1X254+1)

t One amplitude is ghost

tt One amplitude is ghost for § = X
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Their transversity amplitudes

* * * % * Kk
Listing of 140 reactions of types 7mp >+ KL , K A, K A, K I
with their isospin relations.

can be reconstructed with unpolarized target up to one phase
(which can be measured with either longitudinally or transver-

sally polarized target).

* T *
a) 30 reactions of type KL . Similar reactions of type K z

changing (mnn'K) - (pw¢K*)++.

*

are obtained by

* — * *
™ > K X KN - n(n I T I =
7r+p ‘o (al) ) - (b4) - (cl)
K p o0 (f) oo (b3) 0 (CZ)
™ p MY -+ (b
OO0 (a3)
AP K n 0 - (V2f) 0 - (b)) - ey
+ a3 -0 (b,)
T n 0 + (a.) 1
2 o /b + 0 (—bl)
n o - (a.) Kp 0 + (V2f) o b.) 0 (c3)
1 1
i + - (—b2) el
“n 00 (f) 00 (-by) 1
-+ (-b,) o ()

+ For their measurement and amplitude reconstruction, cf. tables 5-6.

++ For their measurement and amplitude reconstruction, c.f. table 13.
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* * %
b) 40 reactions of type K A +.Similar reactions of type K A are
obtained by changing (pw¢k*) + (Asz'K**)ff.

* *
N - K A K I
n+p + + (al)
_ + - (az)
T p 00 (£) o0 (a3)
+ 0 (a.)
+ 3
T n + 0 (-£) o+ (a.)
2
n—n o - (al)
KN+ fu(g)A o A b (4) 1 oz K" =
+ = W
Kp [ 00 (5) [ o0 () |00 (5 |oo ®h [+~ (&)
3 00 (c.)
-+ (b)) 2
2
K n -0 (V2F) | o- (/2g) | O (b (c])
- (b))
K p +0 (V2£) | 0 + (V2f) o+ (b)) +0 (e
+ -  (=b.)
- 2 + - (c,)
x’n oo (-f) | oo (f) 00 (f) 00 (-by 2
- (-—b4) 00 (cl)

Triangular isospin relations between the amplitudes of the reactions

c)
in a) and b)
a =a,+ ¢5a3 /Ebl = 2(by+b;) = b,b, = ~2(b+b,) e + ¢,

t For their measurement and amplitude reconstruction, cf. tables 8-9

t1 For their measurement and amplitude reconstruction, c.f. table 11.
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Table 3 - Listing of 112 reactions of types mp > mA, pN, A2N, pA
with their isospin relations. Their transversity amplitudes
can be reconstructed (completely or up to one phase) with

transversally polarized target.

a) 34 reactions of type mA *.Similar reactions of type pA are
obtained by changing (mnn'K) - (pw¢K*)+f. In both cases the
amplitudes can be completely reconstructed.

™t > | 1 A nin') A
+ (=Y
n+p * ( Zdl) 0 ++ (/Ef)
0 ++ (Vﬁhl)
) + - (d2)
TP o o (d3) o] o] (£)
-+ (d4)
. + 0 (—d4)
T n o + (—d3) 0 + (£)
- ++ (-dz)
- - (-3
" n o) ( 3dl) o _ (/3£)
- o (24,
1
KNt > K A KN4 K
K+p + o+ (£) K—p o o (£)
0 ++ (-39 - (-£)
ot + 0 (£) —_. o - (V3£)
o + (-£) - 0 (-£)
Kop + 0 (f) Rop o + (£)
o + (-f) -+ (-V3p)
+ - (V3f) -0 o o (£f)
°n K'n
o0 O (-£) - + (-£)

t For their measurement and amplitude reconstruction, cf. table 7.

tt For their measurement and amplitude reconstruction, c.f. table 14.
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b) 22 reactions of type pN

obtained by changing (pw¢k*) - (A_f£'k**) T,
transversity amplitudes can be refonstructed up to one phase.

+.Similar reactions of type A_N are
In both cases the

TNt > p N w($) N
W+P + (al)
_ O o (a3)
T p 0 (0] (£f)
- (a,.)
2
n+n + 0 (a2) 0 + (~£)
o + (a3)
T n - 0 (al)
- P 3
KNt - K N KN+ > K N
e 1]
K'p + o+ (c.) K p °© ° )
3
- + (c2)
+ + 0 (cz) -
Kn o + (Cl) K n - 0 (c3)
o + 0 (cl) Eop o + (c3)
p o + (c2)
o =0 © © (CZ)
K n 0O O (c3) K'n _ + (cl)

c) Triangular isospin relations between the amplitudes of the reactions
in a) and b)

al = a2 + 2a3

= e - = - = a
dl ¢§d2 d3 6d2+¢§d4 d3+J3 4

+ For their measurement and amplitude reconstruction, cf. table 10.

tt For their measurement and amplitude reconstruction, c.f. table 12.
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Amplitude reconstruction for reactions of type Tp *> KA

(Comparison with the PRA parameters and the spin
flip and non flip helicity amplitudes).

a) Combined production and decay angulaf distribution and measurement of
the polarization transfer by the

method of moments.

—_— —_— —_—

1 E 2: L L X Y. L
A i = T C + + +
(¥, 69) 5 L G i [1:M e (cosy t, * siny ty P tM]YM(qu)
L y. L L
+ = £ >
c(r) (t, P tM) Yy (6¢)
z L L
=_ <2 >
C(L) PT tM cosy YM (6¢)
x L . L
= < >
C(L) PT tM 2siny YM (6¢)
with; c(0) = 1//4am, C(l) = GA//ZW (all other C coefficients
vanish)
b) The 8 real observables in transversity quantization
g tl
o o
Ze iz '1 b S x. 1
P = to, to' Re tl, Im tl
1 1
Re Ytl , Im ytl
L
(M = even for tL F th, and odd for xtL, Ve by B-symmetry;
M M M M
L M L
Bl ST kR

c) The 4 linear constraints and the 3 spin rotation parameters

1 1 1 2 At 1
O = = - = - —(1+P)
P,= 5 [2 /3'1:0] 5 [p+/3 R -
1 1 -1 /P & A 1
1 = -— = = — e = ! ol = - l-P
pl= 3 [1 /Eto ] el g A S P! = S(1-P)
P+P' =1 ¢+ 1
o o R = —(R+iA)
e A M ! s Al
R= 3 et es-v6 "t ]1=8R
+ The two first constraints imply /S.ti =p, V3 ztl =1
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Table 4 - cont'd
d) The non linear constraint
2 2
[R [“=p p' P >0 P+ r% 4% o
o O o o}
e) Transfer of polarization
0 = 0_ (l4Pz)
o
= P + =
0P, 9 o (1+z) oz 9, (P+z)
o =0 P' (1- =
p__ o o (1-z) 0X o (Rx+Ay)
op,_ = % Ro (x~-1iy) oY = 00 (-Ax+Ry)

f) Transversity amplitudes and the usual spin non flip and spin flip
helicity amplitudes
Ap
2 e e -
+% [ a F G
= T = H
- a ZXA,ZXP < F 2AA,21p
a="F + iG
a'=F - iG
g) Expression of the observables of c) ,e) as functions of the

transversity amplitudes

2
2 O, P, = la |
20 ' = [a]?
c 0
20 R = aa'

wifalPrlarP= p e

o =
o

Go = &(fa]2-la'!2)= 2 Im FG

0 R= Re aa' = {FIZ—IGJZ

o

o A= Im aa' = 2Re FG
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* - 1+
Table 5. Amplitude reconstruction for reactions of type mp - KI (O 5"*0
with unpolarized target

a) Angular distribution of the z* decay and measurement of the even
multipole parameters by the method of moments.

_ TL L
1(8,¢) = ZL:C(L) % ty Yy (©:9)

L L
c(L) ty = <YM(9:¢)>

with : C(0) = 1/Vam, C(2) = -1/V4r (all other C coefficients vanish)

*
b) Cascade angular distribution of I decay and measurement of all

multipole parameters by the method of moments.

T . J L
= 1
1(e,9,0,¢,) é;il C(LIL,) g%%l <JL1NM1|LM> ty ¥ (6:4) YMl(el¢l)
L _ J Ly
C(LIL)) t, = g&l <JL1NMl|LM> <y (8,¢) YMl(el,¢l)>
with : C(000) = 1/4m c(l0l) =-v¥5/9 aA/4n
C(220) = -1/47 c(121) =-/2/45 o, /4T

(all other C coefficients vanish) C(321) v71/5 aA/4w

c) The 8 real observables in transversity quantization

2 2 1 3 3 3
Oo, to, Re t2, Im to, to, Re t2,_:_[_x.n t2.

L
M even by B-symmetry, tEM = (--l)M tM)

d) Observable density matrix elements in transversity quantization

P, 20y =1/4 [1 - /g.ti + V/3/5 ti - V/63/5 ti]

PlEp . =1/4 101 - /5 ti - V3/5 ti + V63/5 ti]

P, Zp_, = 1/4 [1+vEt§—/mti-/77§tg]

Pz o,y =1/4 [1+ V5 ti + V27/5 ti + V775 ti]

Q =p, 5= 1/4 [V10 ;g-— Y14 Zfd, Q' = p, , = 1/4 [v10 t; + /14 EZH

e) Positivity and rank constraints

P20, P20, P 20, PL20, |[Q
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Table 5 - cont'd

f) Transversity and helicity amplitudes

A
P
Apr /2 - 1/2
3/2 | . b B' -B
1/2 a . A A'
= T = H
- . a' , - ,2)
1/2 a 20 % ZAP A' -A 2A %12 0
-3/2 b . B B’
A+ 1A' =-1/2 (a+ V3 b) B+ iB'=-1/2 (/3 a-b)
A-ia" =1/2 (a'+/3 b") B-iB'=1/2 (/3 a'-b")

9) Expression of the observables in d) and e) as functions of the
transversity amplitudes

2 2
2 9 Pl = |a| 2 9 Pi = Ia'l

2 2
20 P, = |o| 20 P)=[p'
20 Q =ab 20 Q' = b'a'
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* - 1+ - 3+
Table 6. Amplitude reconstruction for reactions of type mp + K& (O 5 7 0 g
with polarized target.
a) Combined production and cascade angular distribution for general
target polarization, and measurement of the polarization transfer by
the method of moments
1 Z L
I(y,8,9,0 = = < +
(V,8,0,0 ,¢,) 2 it C(LIL,) M%%dl L NM ) |LM> [t
z L . X L yL J L
+ P +
T (cos tM sin tM) + PL tM] YN(6,¢) YM (el,¢l)
1
L
y L z: J L
C + P = <J > <
(LIL)) (t, ) W LlNMl[LM v (©,4) YM'1 (®,,9,)>
1
z L Z J L
P = < > <
C(LIL)) P "t ) JLlNleLM 2 cos ¥ ¥ _(8,9) YMl(el,¢l)
1
X L z: ) J L
= < <
C(LIL)) P Tty . JLlNleLM> 2 sin y ¥ (8,9) yMl(el,cpl)
with the coefficients C(LJLl) of Table 5b).
b) The 32 real observables in transversity quantization
2 2 2 1 3 3 3
Go' to' Re t2, Im t2, to’ to’ Re t2, Im t2,
z 0 z 2 z 2 z2 z1 23 z 3 z 3
PR - tol tO' Re t2' Im t2, tO, tO’ Re t2, Im t2[
x 2 X 2 x 1 x 1 x 3 X 3 3 3
Re tl' Im tl' Re tl, Im tl' Re tl' Im tl' Re t3, Im t3,
Y, 2 Yy, 2 y 1 y 1 y, 3 vy, 3 y 3 y.3
I .
Re tl' m tl’ Re tl, Im tlf Re 17 Im tl' Re t3, Im t3
L L L
(M = even for tM and th, M = odd for xt; and th by B-symmetry,
tL = (—1)M?‘)
-M M
c) The 16 linear constraints and the 15 generalized spin rotation
para@eters.
1 e 2 3.1 63 3 1 Jo 2,2 ‘/§z1 [63 = 3
== - +4= -v— = =[P - V5 Tt7 +¢4/= -V =P
Pl 4 (1 > to ‘[; to 5 to] 4 ! R o) 5 to 5 to ] 1.
1 2 3 .1 63 3 -1 z 2 3z 1 63 z 3
= = - -Y= + 4= = = [p_ -~ —‘/: +V——-t=P'
Pl 4 (1 Vg-to ‘[; to 5 to] 4 [ R > to 5 to 5 o]
1 2 27 1 7 .3 1 Jo 2 2 27 z 1 7 z 3
= = AR - 4/ - = - 5= - 4= = P
P CR T e S EE L SIS ‘e M I
1 2 27 1 7 3 -1 -z 2 27 z. 1 7 z 3
R +‘L_» +‘ﬁ~ = = [p_+ V5 + =~ +4= “t’] = p!
P2 4 [1+ Vg‘to 5 to 5 toJ 4 [ R £ 5 to 5 o] 2
=1, P -P' +P_ -P!'=p

P+ p! + p'
1 + P2

i
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