Part e) shows the polarization transfer from the initial polarization to the final density matrix. Part f) introduces some simple terminology for the transversity and helicity amplitudes which must be B-symmetric (cf. eq. (2.6)), and gives their linear relations for the conventions of sect. 2.1. Finally part g) exhibits the relations between observables and amplitudes. All moduli and relative phases of the transversity amplitudes are easily obtained, even the relative phase between the amplitudes a, b and the amplitudes a', b' can be directly obtained for instance from the expression in brackets . 4.4 Reactions of type $$\pi p \rightarrow K^* \Lambda$$ $\left(0^{-\frac{1}{2}^{+}} \rightarrow 1^{-e} \frac{1}{2}^{+}\right)$ Forty examples of such reactions are listed in table 2b. For each of them, with unpolarized target but with analysis of the joint angular distribution of the final decays, the transversity amplitudes can be reconstructed, up to one ghost phase, following the procedure described in table 8. The determination of the ghost phase needs a polarized target and can be performed following the procedure described in table 9. #### 4.4.1 Experiment with unpolarized target This section is a comment of table 8. Part a) gives the method for measuring the double multipole parameters by a moment analysis of the joint two body decays of K^* and Λ (cf. sect. 2.4.2). Unprimed indices and arguments correspond to K^* polarization and decay while the primed ones correspond to those of Λ . The a priori non vanishing multipole parameters are listed in part b). Of course all other multipole moments of the joint angular distribution can be measured too. Their vanishing is a check of parity conservation in the production and in the K^* decay. From these values of the double multipole parameters, the joint density matrix is easily obtained (cf. eq. (2.9)). In part c) we give explicitly the non vanishing elements of the measurable joint density matrix, in transversity quantization. Upper indices refer to the K transversities and the index e labels elements of the even density matrix; lower indices are twice the A transversities. Remark that since the density matrix elements are linear expressions of the multipole parameters, they could be obtained directly, by the method of moments, as mean values of similar linear expressions of spherical harmonics. This method reduces the errors on density matrix elements and should be applied when amplitude reconstruction is intended. Nevertheless one should first perform the parity checks mentioned above. The positivity and rank 2 conditions of the total 6x6 density matrix (the measured part plus the ghost part) imposes to its measured elements the constraints written in part d). The two equalities are the rank constraints. They are rather cumbersome but they constitute a new check and furthermore they have a diacrital function. Indeed they contain the square root of a complex number Δ (function of 4th degree in density matrix elements); the constraints decide which of the two possible roots must be chosen, since they will be satisfied for one of the roots and not for the other. This choice eliminates any discrete ambiguity in the reconstruction of the transversity amplitudes. Of course the check of these rank constraints and the possibility of discriminating the two roots require accurate experimental results and hence high statistics. Part e) introduces some simple terminology for the transversity and helicity amplitudes which satisfy the B-symmetry conditions (cf. eq. (2.6)). We give also the relations between these amplitudes when the conventions of sect. 2.1 are used. Finally we give the relation between our transversity amplitudes and those introduced by Byers and Yang, who use a cartesian basis for the spin 1 particle and a transversity quantization axis which violates the Basel convention. Part f) shows the expressions of the measured observables as functions of the defined transversity amplitudes, and part g) gives the inverse expressions which allow an algebric reconstruction of the amplitudes. Of course the relative phase between the two sets of amplitudes a, b, c and a', b', c' is ghost and therefore the moduli of the helicity amplitudes cannot be determined with unpolarized target. Remark also that the determination of |b| and |c| from P and Q, and similarly for the primed quantities, contains a discrete ambiguity indicated by the sign ϵ or ϵ' . These signs can nevertheless be fixed by the last inequalities of part g), when the choice of the complex square root of Δ can be done as discussed above. Another method for amplitude reconstruction is to fit the expressions in part f), imposing for instance that a and a' be real. A mixed method would be to obtain directly by the method of moments the moduli $|a|^2$, $|b \pm c|^2$, $|a^{\dagger}|^2$, $|b^{\dagger} \pm c^{\dagger}|^2$ and to fit afterwards the relative phase between these sets of amplitudes by using the values of Im Q, Im Q', S₁ and S₂. #### 4.4.2 Experiment with polarized target The determination of the ghost phase requires a polarized target. Table 9 shows the method for measuring all the observables and introduces the corresponding generalized spin rotation parameters (for comparison see sect. 4.1). Part a) shows the combined production and joint decay angular distribution for an arbitrary target polarization (cf. sect. 3.3.2). Its moment analysis yields the polarization transfer joint multipole parameters. In part b) we list those which are not a priori vanishing. They are 48 and are set according to the way they are measured: the first line (12) can be measured with unpolarized target, the two following lines (24) with transverse target polarization, the last line (12) with longitudinal one. Of course, all other (48) parameters can be measured and should be found compatible with zero. Part c) shows that among those 48 transfer multipole parameters there exist 16 linear constraints (cf. sect. 3.2.2) so that, besides the unpolarized differential cross section $\sigma_{_{\scriptsize O}}$, 31 generalized spin rotation parameters can be defined. The real P's and the complex Q's and S's can be measured with unpolarized target. In addition to these, a transverse polarized target allows the measurement of 16 more parameters the T's, R's and U's, and a longitudinal polarized target yields the R's and A's, i.e. 12 more than with unpolarized target and 4 more than with transversal polarization. These parameters are the coefficients of the polarization transfer to the final joint density matrix as shown in part d). Part e) gives the expression of the observables in terms of the transversity amplitudes defined in table 8e). The ghost phase between the two sets of amplitudes a, b, c and a', b', c' is contained in the R's, U's and A's parameters and can be measured either by longitudinal or by transverse polarization of the target. In this last case, the measurement of the parameters \mathbf{T}_1 and \mathbf{T}_2 allows a more direct reconstruction of the transversity amplitudes as given in part f). ## 4.5 - Reactions of type $\pi p \rightarrow \rho N$ $(0^- \frac{1}{2}^+ \rightarrow 1^{-e} \frac{1}{2}^{+e})$ In Table 3b) 22 examples of this type of reactions are listed. Their transversity amplitudes can be reconstructed with a transversally polarized target up to one ghost phase and some discrete ambiguities. The experiment with longitudinally polarized target supplies two more observables which allow to check two non linear constraints and to eliminate the discrete ambiguities. But the ghost phase could only be obtained from the polarization of the final nucleon *. Table 10, that we now comment, gives the practical recipes for the amplitude reconstruction, by measuring some generalized spin rotation parameters (cf. Section 4.1). Part a) shows the combined angular distribution of the normal to the reaction plane and the $\,\rho$ decay products (cf. Section 3.3.2). It allows the measurement of the polarization transfer multipole parameters by a moment analysis as indicated in the same part a). The list of these parameters which are not a priori vanishing is given in Part b). Remark that $^{y}t_{1}^{2}$ can be measured only with a longitudinally polarized target. Of course all other moments of the combined angular distribution could be measured and should be found compatible with zero, as a check of parity conservation in the reaction and in the $\,\rho$ decay. Part c) introduces the generalized spin rotation parameters, which are linear combinations of the transfer multipole parameters, and as them could be directly measured by the moment method. This Part c) uses the same terminology as Part c) of Table 9 (reaction type $\pi p \rightarrow K^*\Lambda$). But in the present case we can only measure the polarization of the first particle, i.e. the transfer double multipole parameters with L' = M' = 0. They are given by expressions of the type $P_0 + P_0$ written in the left side equations and of the type $P_0 - P_0$ written in the right side equations in Table 9 c). The parameters U and A correspond to $U_1 + U_2$ and $A_1 - A_2$. Part d) of Table 10 shows the polarization transfer from the target polarization to the final density matrix. That is a simple application of the Simonius theorem (cf. ref. [9] and Appendix). The transition amplitudes in this type of reactions are the same as in the reaction type $\pi p \rightarrow K * \Lambda$. Thus we refer to the simple terminology introduced in Table 8e) for the transversity and helicity amplitudes which must be B-symmetric (cf.Eq.(2.6)), and for their linear relations, when the conventions of Section 2.1 are adopted. Part f) exhibits the relations between the observable spin rotation parameters and the transversity amplitudes. Remark that amplitudes corresponding to opposite polarizations of the final nucleon,
i.e. (a b' c') and (a' b c), are never mixed. Therefore the relative phase between those sets of amplitudes is ghost. The situation is equivalent to that of the reaction type $\pi p \rightarrow K^* \Lambda$ with unpolarized initial state. From the polarization point of view both reaction types are related by crossing of the baryons. Indeed Table 10 f) is obtained from Table 8 f) by means of the substitutions b \Leftrightarrow c', c \Leftrightarrow b', P \Leftrightarrow P', Q \Leftrightarrow Q', S₁ \Rightarrow $\frac{1}{2}$ (U-A), S₂ \Rightarrow $\frac{1}{2}$ (U+A). Therefore in our present case, when all the spin rotation parameters are observed (experiment with transverse and longitudinal target polarization), all the moduli and relative phases (up to the ghost one) can be unambiguously reconstructed, and two non linear constraints can be checked. For this purpose the expressions in Table 8 d) and 8 g) can be used with the substitutions mentioned above. When the experiment is only performed with transversally polarized target, the parameter A and the last expression in Table 10 f) are ignored, and the diacritical constraints are not available. Then, from the Table 10f), the six moduli can be obtained up to two discrete ambiguities for the moduli of b,c and the moduli of b', c'. The two relative phases between these couples of amplitudes are unambigously measurable. The two relative phases between a and b', c', and between a' and b,c can be determined from the expression of U , up to at most a 2^4 -uple discrete ambiguity. ## 4.6 - Reactions of type $\pi p \rightarrow K^{**}\Lambda$ $(0^{-\frac{1}{2}} \rightarrow 2^{+e} \frac{1}{2}^{+})$ Forty examples of this type of reactions can be obtained from Table 2b). Their transversity amplitudes can be reconstructed (up to one ghost phase) with unpolarized target, but with analysis of the joint angular distribution of the final decays. Table 11 gives the practical recipes for this amplitude reconstruction. It is a simple extension of Table 8, which gives the amplitude reconstruction for reaction type $\pi p \rightarrow K * \Lambda$ and has been commented in Section 4.4.1. We refer to these comments, which can be easily applied to Table 11, althoughwe have omitted here the explicit expressions of the 12 non linear constraints and the algebraic expressions for reconstructing the amplitudes. They are very cumbersome and can be obtained from the equations in Table 11 c) by elementary algebra. Anyway the simplest method to reconstruct the amplitudes will be a best fit of these expressions as was commented in Section 4.4.1. The determination of the ghost phase requires a polarized target. The experiments with transverse target polarization and with longitudinal one supplies 72 and 30 new observables including the ghost phase and new constraints. We have not tabulated all these generalized spin rotation parameters. The corresponding Table would be an extension of Table 9. The measurement of only one final polarization is enough to fix the ghost phase (cf. ref. [9]). If only the polarization of K is measured, Table 12 could be used. ## 4.7. Reactions of type $\pi p \rightarrow A_2 N = (0^- \frac{1}{2}^+ \rightarrow 2^{+e} \frac{1}{2}^{+e})$ Twenty two examples of this type of reactions can be obtained from Table 3 b). Their transversity amplitudes can be reconstructed (up to one ghost phase) with polarized target and measurement of the A_2 polarization. Table 12 gives the practical recipes for this amplitude reconstruction. It is a simple extension of Table 10, which gives the amplitude reconstruction for reaction type $\pi p \rightarrow \rho N$ and has been commented in Section 4.5 . We refer to these comments, which can be easily applied to Table 12, although we have omitted here the explicit expressions of the non linear constraints and the algebraic expressions for reconstructing the amplitudes. All this can be obtained from Table 12 f) by elementary algebra. Anyway the simplest method to reconstruct the amplitudes will be a best fit of these expressions by fixing two arbitrary phases (e.g. a and a' real). ## 4.8 - Reaction of type $\pi p \rightarrow K^* \Sigma^* (0^{-\frac{1}{2}} \rightarrow 1^{-e} \frac{3+}{2})$ Thirty examples of this type of reactions can be obtained from Table 2 e). Their transversity amplitudes can be reconstructed (up to one ghost phase) with unpolarized target, but with analysis of the joint angular distribution of the K^* decay and the Σ^* cascade decay. Table 13 gives the practical recipes for this amplitude reconstruction. It is a simple extension of Table 8, which gives the amplitude reconstruction for reaction type $\pi p \to K^*\Lambda$ and has been commented in Section 4.4.1. We refer to these comments, which can be easily applied to Table 13, although we have omitted here the explicit expressions of the non linear constraints and the algebraic expressions for reconstructing the amplitudes. They can all be obtained from equations in Table 13 f) by elementary algebra. Anyway the simplest method to reconstruct the amplitudes will be a best fit of these expressions as was commented in Section 4.4.1. The determination of the ghost phase requires a polarized target. The experiments with transverse target polarization and with longitudinal one supplies 122 and 48 new observables, including the ghost phase and new constraints. We have not tabulated all these generalized spin rotation parameters. The corresponding table would be an extension of Table 9. ## 4.9 - Reactions of type $\pi p \rightarrow \rho \Delta$ $(\overline{0} \stackrel{1}{\cancel{z}}^+ \rightarrow 1^{-e} \stackrel{3+e}{\cancel{2}})$ Thirty four examples of this type of reactions can be obtained from Table 3a). Their amplitudes can be completly reconstructed with transversally polarized target and measurement of the joint angular distribution of the final decays. Table 14 gives the practical recipes for this amplitude reconstruction. It is a simple extension of Table 10, which gives the amplitude reconstruction for reaction type $\pi p \rightarrow \rho N$ and has been commented in Section 4.5. We refer to these comments, which can be easily applied to Table 14, although we have omitted here the explicit expressions of the non linear constraints and the algebraic expressions for reconstructing the amplitudes. All them can be obtained from Table 14 f) by elementary algebra. Anyway the simplest method to reconstruct the amplitudes will be a best fit of these expressions by fixing one arbitrary phase (e.g. a=real). Remark that the amplitudes are here obtained without any ghost phase, up to the overall one. #### APPENDIX #### 1. The matrix W of polarization transfer. We consider the linear map $\,w\,$ from the initial polarization space of density operators on $\,^{1\!\!\!\!4}_{e}\,$ to the final polarization space of density operators on $\,^{1\!\!\!\!4}_{f}\,$: $$\rho_e \rightarrow w(\rho_e) \equiv \sigma \rho_f = T \rho_e T^{\dagger}$$ (A1) There is a complete mathematical similarity between this polarization transfer and the polarization correlation for a system of two particles. It is therefore very convenient and more elegant to describe polarization transfer by a matrix W analogous to the joint density matrix [20]. For an initial polarization density matrix ρ_e and a final analyser of polarization A_f , the transition rate is $$w(\rho_e, A_f) = tr A_f T \rho_e T^{\dagger}$$ (A2) or, writing down the indices (upper = lines, lower = columus) , $$\begin{split} w(\rho_{e}, A_{f}) &= \sum_{\substack{\mu, \mu' \\ \lambda, \lambda'}} (A_{f})^{\mu'} {}_{\mu} T^{\mu}_{\lambda} (\rho_{e})^{\lambda} {}_{\lambda'} (T^{\dagger})^{\lambda'}_{\mu'} \\ &= \sum_{\substack{\mu, \mu' \\ \lambda, \lambda'}} (\widetilde{\rho_{e}})^{\lambda'}_{\lambda} (A_{f})^{\mu'}_{\mu} (\widetilde{T})^{\lambda\mu} (\widetilde{T}^{\dagger})_{\lambda'\mu'} \end{split}$$ where the symbol \sim means transposition in the initial space. The last expression can be written $$w(\rho_e, A_f) = tr(\widetilde{\rho}_e \otimes A_f) W$$ (A3) by using ${f t}$ he polarization transfer matrix ${f W}$, whose elements are $$W^{\lambda\mu}_{\lambda'\mu'} = (\widetilde{T})^{\lambda\mu} (\widetilde{T})_{\lambda'\mu'} . \tag{A4}$$ This matrix represents an observable, rank one, positive, Hermitian operator acting on the spin space $^{\mbox{\#}}_{e} \ ^{\mbox{\#}} \otimes \ ^{\mbox{\#}}_{f}$. The final state density matrix $\sigma \rho_{f}$ is obtained by taking the partial trace in the inital spin space $$\sigma \rho_{f} = \operatorname{tr}_{e} \left(\widetilde{\rho}_{e} \otimes \mathbb{1}_{f} \right) W . \tag{A5}$$ Thus the knowledge of W is equivalent to that of T (or \widetilde{T}) up to an overall phase. Indeed given any rank one, positive, Hermitian operator, H , it is easy to find a vector $|\mathbf{x}\rangle$ such that $$H = |x > \langle x| \qquad (A6)$$ For any well defined ordering of indices in H , let λ^0 be the first index for which H $_{\lambda^0}^{0}$ \neq 0 . Then a possible vector $|_{\rm X}>$ is defined by components $$x^{\lambda} = H^{\lambda}_{\lambda O} / H^{\lambda O}_{\lambda O} . \tag{A7}$$ (Remark that $x^{\lambda}=0$ for $\lambda<\lambda^{0}$, since $H^{\lambda}_{\lambda}=0$ implies $H^{\lambda}_{\lambda'}=0=H^{\lambda'}_{\lambda}$ for any λ'). We call this procedure a "conventional amplitude reconstruction", and denote symbolically $$|x\rangle = CAR (H)$$ (A7') Since Eq.(A4) is of the type (A6) with some double indicing, a particular solution of (A4) is the vector $(\tilde{T})^{\lambda\mu}$ $$|\widetilde{T}\rangle = CAR (W)$$ (A8) The general solution is obtained by multiplication of this particular one by an arbitrary phase. Let us study now the structure of the T and W matrices describing two body reactions in which parity is conserved. For this purpose it is convenient to adopt transversity quantizations, for which half of the transition
amplitudes vanish (we consider the most frequent case of reactions in which some fermions are present). It is also convenient to introduce a "separation order" for lines and columns of the transition matrix (cf. [13]), which segregates the vanishing from the non necessarily vanishing amplitudes. For one particle with spin $\,$ j $\,$ and parity $\,\eta$, such an ordering classifies the magnetic quantum numbers $\,$ μ $\,$ in two sets $\,$ S $_{e}$ $\,$ and $\,$ S $_{o}$: for $$j - \mu = \begin{cases} even & \mu \in S_e \\ odd & \mu \in S_o \end{cases}$$ (A9) Keeping this ordering, the B-symmetry operator (cf. Section 2.2) for this particle can be written in block form $$B = \eta e^{-i\pi j} \begin{pmatrix} n_{j+1/2} & 0 \\ \hline 0 & -n_{j+1/2} \end{pmatrix}_{S_0}^{S_e}$$ for j=half odd integer (AlOa) $$B = \eta e^{-i\pi j} \qquad \left(\begin{array}{c|c} I_{j+1} & 0 \\ \hline 0 & -I_{j} \end{array}\right) \qquad \text{for } j = \text{integer} \qquad \text{(Alob)}$$ For a system of two particles with spins j,j' and parities η , η' the separation order classifies similarly the couples (μ,μ') of magnetic quantum numbers in two sets (cf.[13b]) : for $$j-\mu+j'-\mu'=\left\{ \begin{array}{ll} \text{even} & , & (\mu,\mu')\in S_e\\ \text{odd} & , & (\mu,\mu')\in S_e \end{array} \right.$$ (A11) The corresponding B-symmetry operator reads $$B = \eta \eta' e^{-i \pi (j+j')} \begin{pmatrix} s_e & s_o \\ \frac{1}{n} & 0 \\ 0 & -\frac{1}{n} \end{pmatrix} s_e$$ (A12) where $n=\frac{1}{2}(2j+1)(2j'+1)$ was supposed to be integer. For our problem we need two such operators : B_e acting on B_e , the initial spin space of particles 1 and 2, and B_f acting on B_f , the final spin space of particles 3,4. Parity conservation in the two body reaction implies $$B_f T B_e^{\dagger} = T$$, (A13) and imposes to the transition matrix $\, T \,$, written in this separation order, one of the two following block structures. $$T = \begin{pmatrix} S_e & S_o \\ T_+ & O \\ 0 & T_- \end{pmatrix} S_o , \text{ for } \varepsilon = +1; \quad T = \begin{pmatrix} S_e & S_o \\ 0 & T_+ \\ T_- & O \end{pmatrix} S_o , \text{ for } \varepsilon = -1$$ (A14) where $$\epsilon = \overline{\eta}_1 \ \overline{\eta}_2 \ \eta_3 \ \eta_4 \ e^{i\pi(j_1+j_2-j_3-j_4)} \ .$$ (A15) By transposition of initial indices, from $T_{\underline{+}}$ we obtain $\overset{\thicksim}{T_{\underline{+}}}$, and from T we obtain $\overset{\thicksim}{T}$, which can be written for both values of ε : $$\widetilde{T} = \begin{pmatrix} \frac{1+\varepsilon}{2} & \widetilde{T}_{+} \\ \frac{1-\varepsilon}{2} & \widetilde{T}_{-} \\ \end{pmatrix} \quad \begin{array}{c} (S_{e}, S_{e}) \\ (S_{e}, S_{o}) \\ \end{array}$$ $$\begin{pmatrix} \frac{1-\varepsilon}{2} & \widetilde{T}_{+} \\ \frac{1+\varepsilon}{2} & \widetilde{T}_{-} \\ \end{pmatrix} \quad \begin{array}{c} (S_{o}, S_{e}) \\ \end{array}$$ $$(A16)$$ Thus, in this separation order for initial and final indices, the matrix $\,W\,$ has the block form $$W = \widetilde{T} \widetilde{T}^{\dagger} = \begin{pmatrix} \frac{1+\varepsilon}{2} & \widetilde{T}_{+} & \widetilde{T}_{+}^{\dagger} & 0 & 0 & \frac{1+\varepsilon}{2} & \widetilde{T}_{+} & \widetilde{T}_{-}^{\dagger} \\ 0 & \frac{1-\varepsilon}{2} & \widetilde{T}_{-}^{\dagger} & \frac{1-\varepsilon}{2} & \widetilde{T}_{-}^{\dagger} & \widetilde{T}_{+}^{\dagger} & 0 \\ 0 & \frac{1-\varepsilon}{2} & \widetilde{T}_{+}^{\dagger} & \widetilde{T}_{-}^{\dagger} & \frac{1-\varepsilon}{2} & \widetilde{T}_{+}^{\dagger} & \widetilde{T}_{+}^{\dagger} & 0 \\ \frac{1+\varepsilon}{2} & \widetilde{T}_{-}^{\dagger} & \widetilde{T}_{+}^{\dagger} & 0 & 0 & \frac{1+\varepsilon}{2} & \widetilde{T}_{-}^{\dagger} & \widetilde{T}_{-}^{\dagger} \end{pmatrix}$$ (A17) By further reordering, it could be written as a direct sum of two blocks, one of which necessarily vanishes: $$W = \frac{1+\epsilon}{2} \quad W_O \oplus \frac{1-\epsilon}{2} \quad W_O, \quad W_O = \begin{pmatrix} \widetilde{T}_+ & \widetilde{T}_+^{\dagger} & \widetilde{T}_+ & \widetilde{T}_-^{\dagger} \\ \widetilde{T}_- & \widetilde{T}_+^{\dagger} & \widetilde{T}_- & \widetilde{T}_-^{\dagger} \end{pmatrix}$$ (A18) ### Number of ghost amplitudes in experiments with unpolarized or polarized spin 1/2 initial particle*. We consider now an initial state composed of particle 1 with spin j_1 , which will be assumed to be unpolarized, and particle 2 with spin $j_2=1/2$, whose polarization will be considered. In the main text $j_1=0$, and 1 is the beam, 2 the target. This section is more general and can be applied to the case $j_1=1/2$ (nucleon scattering), or to the case where 1 is a higher spin nucleus target and 2 a polarized beam. We also assume that the dimension of the final spin space \mathbf{A}_f is not smaller than $2(2j_1+1)$, the dimension of the initial one \mathbf{A}_f and that the final density matrix $\sigma \rho_f$ is completely observed. According to Eq.(A12) the B-symmetry operator of the initial state, $\boldsymbol{B}_{\rm e}$, decomposes in two blocks for a separation order of indices : $$e^{i\pi(j_{1}+\frac{1}{2})}$$ $\eta_{1}\eta_{2}$ $B_{e} = \Pi_{2j_{1}+1} \oplus (-\Pi_{2j_{1}+1})$ (A19) The number N_U of real ghost amplitudes, for unpolarized initial state, is the number of parameters of the set of matrices U which transforms T into TU but leaves the observables unchanged, i.e., $TU(TU)^{\dagger} = TT^{\dagger}$. This transformation must preserve the B-symmetric structure of T; since furthermore we disregard the overall phase of T, the matrices U must satisfy the conditions: $$UU^{\dagger} = 11$$, $B_e U B_e^{\dagger} = U$, $\det U = +1$. (A20) Because of the structure of B $_{\rm e}$, Eq.(A19), these conditions imply that U belongs to the group S[U(2j₁+1) \otimes U(2j₁ + 1)]. The number N $_{\rm U}$ of ghost amplitudes is the dimension of this group $$N_{U} = 2(2j_{1} + 1)^{2} - 1 . (A21)$$ This section summarizes published and unpublished work of Simonius, cf [9]. In the case of an experiment with polarized spin $\frac{1}{2}$ initial particle, in addition to Eq.(A20), U must satisfy the new condition $$[U, \mathbb{1}_{2j_1+1} \otimes \rho_2] = 0$$, (A22) for the density matrix $~\rho_2~$ of particle 2 . Condition (A20) and condition (A22) for arbitrary $~\rho_2$ (we assume that the experiment with longitudinal $~\underline{a}\underline{n}\underline{d}$ transverse polarization is performed) are equivalent to $$\mathbf{U} = \mathbf{U}_1 \otimes \mathbf{I}_2$$, $\mathbf{U}_1 \mathbf{U}_1^{\dagger} = \mathbf{I}$, det $\mathbf{U}_1 = \mathbf{1}$, $\mathbf{B}_1 \mathbf{U}_1 \mathbf{B}_1^{\dagger} = \mathbf{U}_1$. (A23) Because of the structure of B₁ , Eq.(AlO) , these conditions imply that U belongs to the group $S[U(j_1+1) \otimes U(j_1)]$ for j_1 integer, or to the group $S[U(j_1+\frac{1}{2}) \otimes U(j_1+\frac{1}{2})]$ for j_1 half odd integer. The number N_P of real ghost amplitudes in these cases is given by the dimension of the groups $$N_{p} = \begin{cases} (j_{1}+1)^{2} + j_{1}^{2} - 1 = 2j_{1}(j_{1}+1) & \text{for integer } j_{1}, \\ \\ 2(j_{1}+\frac{1}{2})^{2} - 1 & \text{for half odd integer } j_{1}, \end{cases}$$ (A24) Table Al gives the value of N_U , N_P for the low values of j_1 . It also gives $N_R = N_U - N_P$, the number of additional amplitudes which can be reached by using a polarized spin 1/2 initial particle. ## 3. The matrices ρ_{α} of polarization transfer from spin 1/2 initial particle . We consider further the case of an initial state composed of an unpolarized spin j_1 particle and a spin $j_2=\frac{1}{2}$ particle whose polarization is described by the density matrix ρ_2 . With the usual expansion for ρ_2 $$\rho_2 = \frac{1}{2} (11 + x \tau_x + y \tau_y + z \tau_z)$$, (A25) the final density matrix can be written $$\sigma \rho_{f} = \sigma_{O} (\rho_{O} + x \rho_{x} + y \rho_{y} + z \rho_{z}) , \qquad (A26)$$ where σ_0 and ρ_0 are the differential cross section and the final polarization for an unpolarized initial state, and the matrices ρ_i (i = x, y, z) add the information on the polarization transfer. For parity conserving two body reactions it is easy to prove that the joint density matrices ρ_0 and ρ_z are B-symmetric, while ρ_x and ρ_y are B-antisymmetric. Indeed the B-symmetry operator for particle 2 [cf.(A1)], $$B_2 = -i\eta_2 \tau_3$$, (A27) decomposes the matrix ρ_2 of (A24) into $$\rho_2 = \rho_{2+} + \rho_{2-}$$, $B_2 \rho_{2+} B_2^{\dagger} = \pm \rho_{2+}$, (A28) with $$\rho_{2+} = \frac{1}{2}(11 + z\tau_z)$$, $\rho_{2-} = \frac{1}{2}(x \tau_x + y \tau_y)$. (A29) Since the density matrix ρ_1 = 11 $_{2j_1+1}$ / $(2j_1+1)$ and the transition matrix T are B-symmetric, if we call $$\sigma \rho_{\underline{f}\underline{+}} = T(\rho_{\underline{1}} \otimes \rho_{\underline{2}\underline{+}}) T^{\dagger} , \qquad (A30)$$ we obtain $$B_{f} \sigma \rho_{f+} B_{f}^{\dagger} = \pm \sigma \rho_{f+}$$ (A31) and $$\sigma \rho_{f+} = \sigma_0 (\rho_0 + z \rho_z)$$, $\sigma \rho_{f-} = \sigma_0 (x \rho_x + y \rho_y)$. (A32) # 4. Amplitude reconstruction for reactions with spinless beam and spin 1/2 target when the final polarization is completely observed. We suppose for the beam spin j = 0. Then the initial state density matrix is that of the target, $\rho_e = \rho_z$, with dimension, dim $\frac{1}{e} = 2$. The most general form for the operator W on $\frac{1}{e} \otimes \frac{1}{e}$ is $$W = \sum_{\alpha} \widetilde{\tau}_{\alpha} \otimes X_{\alpha} , \qquad (A33)$$ since $\tilde{\tau}_{\alpha} = 1$, τ_{x} , $\tilde{\tau}_{y}$, τ_{z} form an orthonormal basis on $\tilde{\tau}_{e}$. Substitution in Eq.(A5) of the expansions (A33) of W and (A25) of ρ_e , use of the identity tr τ_α τ_β = 2 $\delta_{\alpha\beta}$, and comparison with the definition (A26) of ρ_α , yield X_α = σ_0 ρ_α ,
i.e., $$W = \sigma_0 \Sigma_\alpha \widetilde{\tau}_\alpha \otimes \rho_\alpha , \qquad (A34)$$ which is Eq.(3.9) of the main text. Using the ordinary representation of the Pauli matrices, this equation reads $$W = \sigma_0 \left(\begin{array}{c|cccc} \rho_0 + \rho_z & \rho_x + i & \rho_y \\ \hline \rho_x - i & \rho_y & \rho_0 - \rho_z \end{array} \right) \qquad (A34')$$ The separation order is superfluous for the initial spin space, since there are only two indices : $\mu_2 = 1/2 \in S_e$ and $\mu_2 = -1/2 \in S_0$. The matrices T_{\pm} are then identical to the matrices T_{\pm} . If we introduce the separation order for the final spin space, we may identify the two W expressions (A32)and (A34') and we obtain the following block expressions for the polarization transfer matrices : $$\rho_{O} = \begin{pmatrix} A & O \\ O & B \end{pmatrix}, \quad \rho_{Z} = \epsilon \begin{pmatrix} A & O \\ O & -B \end{pmatrix}, \quad \rho_{X} = \begin{pmatrix} C \\ C \end{pmatrix}, \quad \rho_{y} = \epsilon \begin{pmatrix} -iC \\ iC \end{pmatrix}$$ (A35) with $$2\sigma_{0}^{C} A = T_{+}^{T_{+}^{+}}, 2\sigma_{0}^{C} B = T_{-}^{T_{-}^{+}}, 2\sigma_{0}^{C} C = T_{+}^{T_{-}^{+}}.$$ (A36) The sign $\,\varepsilon\,$ is the function of parities and spins given in (Al5). Remark that A,B,C are rank one matrices, and A,B are Hermitian and positive. The so called "reaction polarization" is $$P_{R} = tr \rho_{z} = \epsilon(tr A - tr B)$$ (A37) Let us study the amplitude reconstruction in the cases in which the final joint polarization can be completely measured, i.e., when one observes σ_0 ρ_0 in the experiment with unpolarized target, σ_0 ρ_z and σ_0 ρ_x in the experiment with transversally polarized target, and σ_0 ρ_y in the experiment with longitudinally polarized target. In this case, with unpolarized target, all the transversity amplitudes T_+ and T_- can be reconstructed up to the overall phase and one ghost phase, as proved by Simonius (cf. Section 2, and Table Al for $j_1 = 0$). Indeed, by the "conventional amplitude reconstruction" (cf. Section Al), from the observed matrices σ_0 A and σ_0 B we can obtain $$|a\rangle = CAR (2\sigma_0 A) , |b\rangle = CAR (2\sigma_0 B) ,$$ (A38) which are T_+ and T_- up to arbitrary phases. The Simonius ghost phase ϕ , is the relative phase between T_+ and T_- . It can only be obtained from C, which is observable in experiments with either transverse or longitudinal target polarization. From Eqs (A36) and (A38), we see that the observed matrix σ_0 C must satisfy $$2\sigma_0 C = |a\rangle \langle b| e^{i\phi} , \qquad (A39)$$ and that the amplitude vectors $|a\rangle$ and $e^{-i\phi}$ $|b\rangle$ can only differ from T_+ and T_- by an overall phase, which we disregard. The number of amplitudes is given by the dimension of $\frac{T}{\pm}$. The number of observables and of their linear and non linear constraints in experiments with different target polarizations are easily obtained from the dimension, Hermiticity and rank properties of the matrices A, B, C . The dimension of the one column matrices T_{\pm} and the square matrices A, B, C is $$n = (2l + 1) (j + \frac{1}{2}),$$ (A40) where ℓ and j are the integer and half odd integer final spins. We recall that a n X n Hermitian matrix depends on n^2 real parameters. If the matrix has rank k , these parameters satisfy $(n-k)^2$ constraints of degree k+1. The results are summarized in Table A2. For $\ell=0$ equivalent numbers are presented in Table 1 . For $\ell=0$ and j=3/2 , the explicit amplitude reconstruction is presented in Section 4.2. of the main text and in Tables 5-6 . #### REFERENCES - [1] M. Abramovich, A.C. Irving, A.D. Martin and C. Michael, Phys. Lett. 39B (1972) 353. (cf. also the Communication num. 200 to the IInd Aix Conference on Elementary Particles (1973)). - [2] M. Aguilar-Benitez, S.U. Chung, R.L. Eisner and R.D. Field, Phys. Rev. Letters 29 (1972) 749. - [3] R.D. Field, R.L. Eisner, S.U. Chung, and M. Aguilar-Benitez, "Transversity Amplitude Analysis of the Reactions K p → (ω,φ)Λ", BNL 17220. (cf. also A.M. Cooper, L. Lyons and A.G. Clark, Communication num. 179 to the IInd Aix Conference on Elementary Particles (1973)). - [4] R.D. Field "Amplitude Analyses of Hypercharge Reactions" BNL 17846 (submitted to Proceedings of Int. Conf. on ππ Scattering and Associated Topics. Florida State University, March 28-30, 1973). (cf. also the Communication num. 202 to the IInd. Aix Conference on Elementary Particles (1973)). - [5] N. Byers and C.N. Yang, Phys. Rev. 135 (1964) B796. - [6] R.W. Huff, Phys. Rev. 133 (1964) B1078. - [7] S.M. Berman and R.J. Oakes, Phys. Rev. 135 (1964) B1034. - [8] A.D. Martin in "Two Body Collisions" p. 439, Proceedings of the Seventh Rencontre de Moriond, edited by J. Tran Thanh Van (1972), Paris. - [9] M. Simonius, Phys. Rev. Lett. 19 (1967) 279, and "Theory of Polarization Measurements" I and II, Pittsburgh 1969 (unpublished). - [10] M.G. Doncel, L. Michel and P. Minnaert. "Polarization Density Matrix" PTB Reports No. 35, 37, 44, edited by Laboratoire de Physique Théorique, Université de Bordeaux I, 33170 Gradignan (France). - [11] M.G. Doncel, L. Michel and P. Minnaert "Matrices Densité de Polarisation", Ecole d'Eté de Physique des Particules - Gif-sur-Yvette, (1970) - edited by R. Salmeron, Ecole Polytechnique, Paris. - [12] P. Minnaert "The Polarization Domain" in "Particle Physics" Les Houches Summer School 1971, edited by C. de Witt and C. Itzyksson, Gordon and Breach (1973), New York. - [13]a).M.G. Doncel, P. Mery, L. Michel, P. Minnaert and K.C. Wali, Phys. Rev. D7 (1973) 815. b) P. Mery, Thèse de 3^e cycle, Marseille (1972). - [14] A. Kotanski, Acta Phys. Polon. 30 (1966) 629. - [15] G.C. Fox and C. Quigg "Production Mechanism of two-to-two scattering processes at intermediate energies". Preprint Stony Brook ITP-SB-73-22. - [16] M.E. Rose, "Elementary Theory of Angular Momentum" Wiley, New York (1957). - [17] M. Jacob and G.C. Wick, Ann. of Phys. 7 (1959) 404. - [18] G. Cohen-Tannoudji, A. Morel and H. Navelet, Ann. of Phys. 46 (1968) 239. - [19] K. Gottfried and J.D. Jackson, Nuovo Cimento 34 (1964) 735. - [20] M.G. Doncel and A. Méndez, Phys. Lett. 41B (1972) 83. - [21] L. Wolfenstein, Phys. Rev. 96 (1954) 1654. Table 1 - Number of real amplitudes and of polarization observables for usual types of two-body reactions with meson beam and with unpolarized or polarized target. The reactions whose numbers are boxed will be studied in the text. | TYPE OF REACT | ION AMPLI- | ОВ | SERVABLE | S | | |---|------------------------|--------------------------------|---------------------------------------|---------------------------------|--| | | TUDES | UNPOLARIZED
TARGET | POLARIZE | ED TARGET | | | | | U | TRANSVERSAL
T | LONGITUDINAI
L | | | $\pi p \rightarrow \pi N (0, \frac{1}{2})$ | e) 3 | 1 | 2 | + 0 | | | $K\Lambda$ (0, $\frac{1}{2}$ |) 3 | 2 | 3 + 3. | + 2 | | | $\rho N (1^{e} \frac{1}{2})$ | | 4 | 10 | + 2 | | | $K^*\Lambda$ (1 ^e $\frac{1}{2}$ | .) 11 | 10 + 2 | 11 + 25 | + 12 | | | A_{2N} (2 ^e $\frac{1}{2}$ | 19 | 9 | 18 + 6 | + 6 | | | $K^{**}\Lambda$ (2 ^e $\frac{1}{2}$ |) 19 | 18 + 12 | 19 + 71 | + 30 | | | $(\dot{\ell}^{\rm e},\frac{1}{2})$ | 4(21+1)-1 | (1+1)2 † | (l+1)(3l+2) † | + l (l+1) | | | $(\ell^e, \frac{1}{2})$ |) 4(21+1)-1 | 2(1+1)(21+1) | 6(1+1)(21+1) | +2(%+1)(2%+1) | | | $\pi p \to \pi \Delta$ (0, $\frac{3e}{2}$ | 7 | 4 | 7 + 3 | + 2 | | | $K\Sigma^*$ (0, $\frac{3}{2}$ |) 7 | 6 + 2 | 7 + 17 | + 8 | | | $\rho\Delta$ (1e, $\frac{3}{2}$ e |) 23 | 20 | 23 + 33 | + 16 | | | $K^* \Sigma^* (1^e, \frac{3}{2})$ | 23 | 22 + 26 | 23 + 121 | + 48 | | | (££,3e | 8(21+1)-1 | 2(1+1)(3(1+2) | | | | | (le, 3 | | 8(l+1)(2l+1) | 2(l+1) (9l+5)
24(l+1) (2l+1) | +2(l+1)(3l+1)
+8(l+1)(2l+1) | | | (le,je) | 2(2½ +1)x
x(2j+1)-1 | (l+1)(j+½)x
x(2lj+j+½) † | (l+1) (j+1/2) x
x(6l/j+3j+1/2) †† | (l+1) (j+½) x
x(2lj+j-½) | | | (g ^e ,j) | 2(2l+1)x
x(2j+1)-1 | (l+1) (j+1)x
x(2l+1) (2j+1) | (ℓ+1)(j+½)x
x 3(2ℓ+1)(2j+1) | (l+1) (j+½) x
x (2l+1)(2j+1) | | [†] One amplitude is ghost $[\]dagger\dagger$ One amplitude is ghost for $j=\frac{1}{2}$ Table 2 - Listing of 140 reactions of types $\pi p \to K\Sigma$, $K \land \Lambda$, $K \land \Lambda$, $K \land \Sigma$ with their isospin relations. Their transversity amplitudes can be reconstructed with unpolarized target up to one phase (which can be measured with either longitudinally or transversally polarized target). a) 30 reactions of type $K\Sigma^*$. Similar reactions of type $K\Sigma^*$ are obtained by changing $(\pi\eta\eta^*K) \to (\rho\omega\phi K^*)^{\dagger\dagger}$. | πN → | κ Σ* | | |------------------|------|--| | π ⁺ p | + + | (a ₁) | | π_p | + - | (a ₂) | | " P | 0 0 | (a ₃) | | + | + 0 | (a ₃) | | π'n | 0 + | (a ₃)
(a ₂) | | π n | 0 - | (a ₁) | | KN → | η (η') Σ* | π Σ* | K = * | |-----------|-------------------|--|--| | к р | 00 (f) | + - (b ₄) 0 0 (b ₃) | + - (c ₁) | | | | - + (b ₂) | | | K n | $0 - (\sqrt{2}f)$ | $o - (-b_1)$
- $o (b_1)$ | 0 - (c ₃) | | -o
K p | $0 + (\sqrt{2}f)$ | $+ \circ (-b_1)$
$\circ + (b_1)$ | + 0 (c ₃) | | -o
K n | 0 O (f) | $+ - (-b_2)$
$0 \ 0 \ (-b_3)$
$- + (-b_4)$ | + - (-c ₁) 0 0 (c ₂) | [†] For their measurement and amplitude reconstruction, cf. tables 5-6. ^{††} For their measurement and amplitude reconstruction, c.f. table 13. Table 2 - cont'd b) 40 reactions of type K * † Similar reactions of type K * $^{\Lambda}$ are obtained by changing $(\rho\omega\phi K^{\star}) \rightarrow (A_2 ff'K^{\star\star})^{\dagger\dagger}$. | πN → | к* л | | κ* Σ | | |------------------|------|------|------|--| | π ⁺ p | | | + + | (a
₁) | | π - p | 0 0 | (f) | + - | (a ₂)
(a ₃) | | π ⁺ n | + 0 | (-f) | + 0 | (a ₃) | | π ⁻ n | | | 0 - | (a ₁) | | -KN → | ω(φ)Λ | ρΛ | ω(φ)Σ | ρΣ | K * ≡ | |-----------|----------|-----------|-------------------|---|--| | Кр | 00 (f) | 00 (f) | 00 (f) | + - (b ₄)
0 0 (b ₃)
- + (b ₂) | + - (c ₁)
0 0 (c ₂) | | Kn | | - O (√2f) | 0 - (√2f) | 0 - (-b ₁)
- 0 (b ₁) | 0 - (c ₃) | | ¯°
K°p | | + O (√2f) | $0 + (\sqrt{2}f)$ | + 0 (-b ₁)
0 + (b ₁) | + 0 (c ₃) | | ⊼°n | 0 0 (-f) | 00 (f) | 00 (f) | $+ - (-b_2)$
$0 \ 0 \ (-b_3)$
$- + (-b_4)$ | + - (c ₂)
0 0 (c ₁) | c) Triangular isospin relations between the amplitudes of the reactions in a) and b) $$a_1 = a_2 + \sqrt{2}a_3$$ $$\sqrt{2}b_1 = 2(b_2+b_3) = b_2-b_4 = -2(b_3+b_4)$$ $$c_1 + c_2 = c_3$$ [†] For their measurement and amplitude reconstruction, cf. tables 8-9 ^{††} For their measurement and amplitude reconstruction, c.f. table 11. Table 3 - Listing of 112 reactions of types $\pi p \to \pi \Delta$, ρN , $A_2 N$, $\rho \Delta$ with their isospin relations. Their transversity amplitudes can be reconstructed (completely or up to one phase) with transversally polarized target. a) 34 reactions of type $\pi\Delta$ [†]. Similar reactions of type $\rho\Delta$ are obtained by changing $(\pi\eta\eta^{\dagger}K) \rightarrow (\rho\omega\phi K^{*})^{\dagger\dagger}$. In both cases the amplitudes can be completely reconstructed. | π N ↑ → | π | Δ | | η(η' |) Δ | | |------------------|------|----|-------------------------------------|------|-------|---| | π ⁺ p | | | $(-\sqrt{2}d_1)$ | 0 | ++ | $(\sqrt{3}f)$ | | | 0 | ++ | (√3d ₁) | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | + | _ | (d ₂) | | | | | π p | 0 | 0 | (d ₃) | 0 | 0 | (f) | | | | + | (d ₄) | | | | | | + | 0 | (-d ₄) | | | | | π ⁺ n | 0 | + | (-d ₃) | 0 | + | (f) | | | **** | ++ | (-d ₂) | | | | | π_n | 0 | - | $(-\sqrt{3}d_1)$
$(\sqrt{2}d_1)$ | 0 | name. | (√3f) | | | - | 0 | $(\sqrt{2}d_1)$ | | | (, 31) | | KN↑ → | K | Δ | | |------------------|---|---|--------| | K [†] p | + | + | (f) | | de | 0 | ++ | (-√3f) | | K ⁺ n | + | 0 | (f) | | | 0 | + | (-f) | | к ^о р | + | 0 | (f) | | | 0 | + | (-f) | | к [°] n | + | dana dana dana dana dana dana dana dana | (√3f) | | K n | 0 | 0 | (-f) | | _
KN↑ → | Ē | Δ | | |------------|-------|----|--------| | K p | 0 | 0 | (f) | | | - | + | (-f) | | K n | 0 | - | (√3f) | | | 4000 | 0 | (-f) | | ¯°
K°p | 0 | + | (f) | | - | eater | ++ | (-√3f) | | -o
K n | 0 | 0 | (f) | | | 400 | + | (-f) | [†] For their measurement and amplitude reconstruction, cf. table 7. ^{††} For their measurement and amplitude reconstruction, c.f. table 14. Table 3 - cont'd b) 22 reactions of type ρN . Similar reactions of type A N are obtained by changing $(\rho\omega\phi K^*) \rightarrow (A_2 ff'K^{**})^{++}$. In both cases the transversity amplitudes can be reconstructed up to one phase. | π Ν ↑ → | ρ | N | | ω(φ) | N | | |------------------|---|--------|--|------|---|------| | π + p | + | + | (a ₁) | | | | | π ⁻ p | 0 | 0 + | (a ₃)
(a ₂) | 0 | 0 | (f) | | π ⁺ n | + | 0
+ | (a ₂)
(a ₃) | 0 | + | (-f) | | πn | _ | 0 | (a ₁) | | | | | KN↑ → | K | N | | |------------------|---|---|-------------------| | к ⁺ р | + | + | (c ₃) | | K ⁺ n | + | 0 | (c ₂) | | Kn | 0 | + | (c ₁) | | к ^о р | + | 0 | (c ₁) | | КÞ | 0 | + | (c ₂) | | K°n | 0 | 0 | (c ₃) | | | _* | N | | |------|----|---|-------------------| | Кp | 0 | 0 | (c ₁) | | | _ | + | (c ₂) | | K n | _ | 0 | (c ₃) | | ĸ°p | 0 | + | (c ₃) | | ₹°n | 0 | 0 | (c ₂) | | K II | | + | (c ₂) | c) Triangular isospin relations between the amplitudes of the reactions in a) and b) $$a_1 = a_2 + \sqrt{2}a_3$$ $$c_1 + c_2 = c_3$$ $$d_1 = -\sqrt{3}d_2 - d_3 = -\sqrt{\frac{1}{6}}d_2 + \sqrt{\frac{1}{2}}d_4 = d_3 + \sqrt{2}d_4$$ [†] For their measurement and amplitude reconstruction, cf. table 10. ^{††} For their measurement and amplitude reconstruction, c.f. table 12. Table 4. Amplitude reconstruction for reactions of type $\pi p \to \kappa \Lambda$ with polarized target. (Comparison with the PRA parameters and the spin flip and non flip helicity amplitudes). a) Combined production and decay angular distribution and measurement of the polarization transfer by the method of moments. $$\begin{split} \mathbf{I}\left(\psi,\theta\varphi\right) &= \frac{1}{2\pi} \sum_{\mathbf{L}} C(\mathbf{L}) \sum_{\mathbf{M}} \left[\overline{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}} + \mathbf{P}_{\mathbf{T}} \left(\cos\psi \ \overline{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}} + \sin\psi \ \overline{\mathbf{x}_{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}}}\right) + \mathbf{P}_{\mathbf{L}} \ \overline{\mathbf{y}_{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}}} \mathbf{y}_{\mathbf{M}}^{\mathbf{L}}(\theta\varphi) \\ & C(\mathbf{L}) \left(\overline{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}} + \mathbf{P}_{\mathbf{L}} \ \overline{\mathbf{y}_{\mathbf{M}}^{\mathbf{L}}}\right) = \langle \mathbf{y}_{\mathbf{M}}^{\mathbf{L}} \left(\theta\varphi\right) \rangle \\ & C(\mathbf{L}) \ \mathbf{P}_{\mathbf{T}} \ \overline{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}} &= \langle 2\cos\psi \ \mathbf{y}_{\mathbf{M}}^{\mathbf{L}} \left(\theta\varphi\right) \rangle \\ & C(\mathbf{L}) \ \mathbf{P}_{\mathbf{T}} \ \mathbf{x}_{\mathbf{M}}^{\mathbf{L}} &= \langle 2\sin\psi \ \mathbf{y}_{\mathbf{M}}^{\mathbf{L}} \left(\theta\varphi\right) \rangle \\ & \text{with:} & C(\mathbf{0}) = 1/\sqrt{4\pi}, \quad C(\mathbf{1}) = \alpha_{\Lambda}/\sqrt{4\pi} \quad \text{(all other C coefficients)} \end{split}$$ b) The 8 real observables in transversity quantization $\frac{1}{2}$ $$P = {}^{z}t_{0}^{0}, {}^{z}t_{0}^{1}, Re {}^{x}t_{1}^{1}, Im {}^{x}t_{1}^{1}$$ $$Re {}^{y}t_{1}^{1}, Im {}^{y}t_{1}^{1}$$ $(M = \text{even for } t_M^L , {}^Z t_M^L, \text{ and odd for } {}^X t_M^L, {}^Y t_M^L \text{ by B-symmetry;}$ $t_{-M}^L = (-)^M t_M^L)$ c) The 4 linear constraints and the 3 spin rotation parameters $$P_{o} = \frac{1}{2} \left[1 + \sqrt{3} t_{o}^{1} \right] = \frac{1}{2} \left[P + \sqrt{3} t_{o}^{1} \right] = P_{o}$$ $$P'_{o} = \frac{1}{2} \left[1 - \sqrt{3} t_{o}^{1} \right] = \frac{-1}{2} \left[P - \sqrt{3} t_{o}^{1} \right] = P'_{o}$$ $$P'_{o} = \frac{1}{2} \left[1 - \sqrt{3} t_{o}^{1} \right] = \frac{-1}{2} \left[P - \sqrt{3} t_{o}^{1} \right] = P'_{o}$$ $$P'_{o} = \frac{1}{2} \left[1 - P \right]$$ † The two first constraints imply $\sqrt{3} t_0^1 = P$, $\sqrt{3} z_0^1 = 1$ The non linear constraint $$|R_O|^2 = P_O P_O'$$ $$P_0 \ge 0$$ $P^2 + R^2 + A^2 = 1$ e) Transfer of polarization $$\sigma \rho_{++} = \sigma_0 P_0 (1+z)$$ $$\sigma \rho_{--} = \sigma_{0} P'_{0} (1-z)$$ $$\sigma \rho_{+-} = \sigma_{0} R_{0} (x-iy)$$ $$\sigma = \sigma_{o} (1+Pz)$$ $$\sigma Z = \sigma_{O} (P+z)$$ $$\sigma X = \sigma_{o} (Rx + Ay)$$ $$\sigma Y = \sigma_0 (-Ax + Ry)$$ f) Transversity amplitudes and the usual spin non flip and spin flip helicity amplitudes $$\frac{\lambda_{\Lambda}}{\frac{1}{2}} = T_{2\lambda_{\Lambda}, 2\lambda_{\mu}}$$ $$\begin{bmatrix} \mathbf{F} & \mathbf{G} \\ -\mathbf{G} & \mathbf{F} \end{bmatrix} = \mathbf{H}_{2\lambda_{\Lambda}, 2\lambda_{p}}$$ $$a = F + iG$$ $$a' = F - iG$$ g) Expression of the observables of c),e) as functions of the transversity amplitudes $$2 \sigma_{o} P_{o} = |a|^{2}$$ $$2 \sigma_{o} P_{o}' = |a''|^{2}$$ $$2 \sigma P' = |a'|^2$$ $$\sigma_{o} = \frac{1}{2}(|a|^{2} + |a|^{2}) = |F|^{2} + |G|^{2}$$ $$\sigma_{Q} P = \frac{1}{2}(|a|^2 - |a'|^2) = 2 \text{ Im } FG$$ $$\sigma_{O} = \frac{1}{2}(|a|^{2} - |a'|^{2}) = 2 \text{ Im } FG$$ $\sigma_{O} = Re \ aa' = |F|^{2} - |G|^{2}$ $$\sigma$$ A= Im aa' = 2Re FG Table 5. Amplitude reconstruction for reactions of type $\pi p \to K\Sigma^*$ $(0^-\frac{1}{2}^+ \to 0^-\frac{3}{2}^+)$ with unpolarized target a) Angular distribution of the Σ^* decay and measurement of the even multipole parameters by the method of moments. $$I(\Theta, \phi) = \sum_{L} C(L) \sum_{M} \overline{t_{M}^{L}} Y_{M}^{L}(\Theta, \phi)$$ $$C(L)$$ $t_{M}^{L} = \langle Y_{M}^{L}(\Theta, \phi) \rangle$ with : C(O) = $1/\sqrt{4\pi}$, C(2) = $-1/\sqrt{4\pi}$ (all other C coefficients vanish) b) Cascade angular distribution of Σ decay and measurement of all multipole parameters by the method of moments. $$\text{I}\left(\Theta, \phi, \Theta_{1} \phi_{1}\right) = \sum_{\text{LJL}_{1}} \text{C}\left(\text{LJL}_{1}\right) \sum_{\text{MNM}_{1}} \left\langle \text{JL}_{1} \text{NM}_{1} \middle| \text{LM} \right\rangle \\ \overline{\textbf{t}_{M}^{\text{L}}} \ \boldsymbol{Y}_{N}^{\text{J}}\left(\Theta, \phi\right) \ \boldsymbol{Y}_{M_{1}}^{\text{L}_{1}}\left(\Theta_{1} \phi_{1}\right)$$ $$\texttt{C(LJL}_1) \quad \texttt{t}_{\texttt{M}}^{\texttt{L}} = \quad \sum_{\texttt{NM}_1} \ \, \texttt{} \ \, \texttt{ \\$$ with : $$C(000) = 1/4\pi$$ $C(101) = \sqrt{5/9} \alpha_{\Lambda}/4\pi$ C(220) = $$-1/4\pi$$ C(121) = $-\sqrt{2/45} \alpha / 4\pi$ (all other C coefficients vanish) C(321) = $\sqrt{7/5}$ $\alpha_{\Lambda}/4\pi$ - c) The 8 real observables in transversity quantization σ_0 , t^2 , Re t^2 , Im t^1 , t^3 , Re t^3 , $\frac{\text{Im}}{2}$, $\frac{t^3}{2}$. (M = even by B-symmetry, $t^L_{-M} = (-1)^M \frac{t^L}{M}$) - d) Observable density matrix elements in transversity quantization $$\begin{aligned} & \mathbf{P_1} \, \equiv \, \rho_{11} \, = \, 1/4 \, \left[1 \, - \, \sqrt{5} \, \, \mathbf{t}_o^2 \, + \, \sqrt{3/5} \, \, \mathbf{t}_o^1 \, - \, \sqrt{63/5} \, \, \mathbf{t}_o^3 \right] \\ & \mathbf{P_1'} \, \equiv \, \rho_{-1-1} \, = \, 1/4 \, \left[1 \, - \, \sqrt{5} \, \, \mathbf{t}_o^2 \, - \, \sqrt{3/5} \, \, \mathbf{t}_o^1 \, + \, \sqrt{63/5} \, \, \mathbf{t}_o^3 \right] \\ & \mathbf{P_2} \, \equiv \, \rho_{-3-3} \, = \, 1/4 \,
\left[1 \, + \, \sqrt{5} \, \, \mathbf{t}_o^2 \, - \, \sqrt{27/5} \, \, \mathbf{t}_o^1 \, - \, \sqrt{7/5} \, \, \mathbf{t}_o^3 \right] \\ & \mathbf{P_2'} \, \equiv \, \rho_{33} \, = \, 1/4 \, \left[1 \, + \, \sqrt{5} \, \, \mathbf{t}_o^2 \, + \, \sqrt{27/5} \, \, \mathbf{t}_o^1 \, + \, \sqrt{7/5} \, \, \mathbf{t}_o^3 \right] \\ & \mathbf{Q} \, \equiv \, \rho_{1-3} \, = \, 1/4 \, \left[\sqrt{10} \, \, \mathbf{t}_2^2 \, - \, \sqrt{14} \, \, \mathbf{t}_2^3 \right], \quad \mathbf{Q'} \, \equiv \, \rho_{3-1} \, = \, 1/4 \, \left[\sqrt{10} \, \, \mathbf{t}_2^2 \, + \, \sqrt{14} \, \, \mathbf{t}_2^3 \right] \end{aligned}$$ e) Positivity and rank constraints $$P_1 \ge 0$$, $P_1 \ge 0$, $P_2 \ge 0$, $P_2 \ge 0$, $|Q|^2 = P_1 P_2$, $|Q'^2| = P_1' P_2'$ Table 5 - cont'd f) Transversity and helicity amplitudes $$\lambda_{p}$$ $$\lambda_{\Sigma^{*}} \quad 1/2 - 1/2$$ $$3/2 \quad . \quad b'$$ $$1/2 \quad a .$$ $$-1/2 \quad . \quad a'$$ $$-3/2 \quad b .$$ $$= T_{2\lambda_{\Sigma^{*}}, 2\lambda_{p}}$$ $$B' - B$$ $$A \quad A'$$ $$A' - A$$ $$B \quad B'$$ A + i A' = $$-1/2$$ (a + $\sqrt{3}$ b) B + i B' = $-1/2$ ($\sqrt{3}$ a-b) A - i A' = $1/2$ (a'+ $\sqrt{3}$ b') B - i B' = $1/2$ ($\sqrt{3}$ a'-b') g) Expression of the observables in d) and e) as functions of the transversity amplitudes $$2 \sigma_{0} P_{1} = |a|^{2}$$ $2 \sigma_{0} P_{1}' = |a'|^{2}$ $2 \sigma_{0} P_{2} = |b|^{2}$ $2 \sigma_{0} P_{2}' = |b'|^{2}$ $2 \sigma_{0} Q = a\bar{b}$ $2 \sigma_{0} Q' = b'\bar{a}'$ Table 6. Amplitude reconstruction for reactions of type $\pi p \to K\Sigma^*$ $(0^-\frac{1^+}{2} \to 0^-\frac{3^+}{2})$ with polarized target. a) Combined production and cascade angular distribution for general target polarization, and measurement of the polarization transfer by the method of moments $$\begin{split} \mathbf{I}\left(\psi,\Theta,\phi,\Theta_{1},\phi_{1}\right) &= \frac{1}{2} \sum_{\mathbf{LJL}_{1}} \mathbf{C}\left(\mathbf{LJL}_{1}\right) \sum_{\mathbf{MNM}_{1}} \langle \mathbf{JL}_{1}\mathbf{NM}_{1} | \mathbf{LM} \rangle \left[\overline{\mathbf{t}_{\mathbf{M}}^{\mathbf{L}}} + \right. \\ &+ \mathbf{P}_{\mathbf{T}} \left(\cos \psi^{\overline{\mathbf{Z}}_{\mathbf{L}}^{\mathbf{L}}} + \sin \psi^{\overline{\mathbf{X}}_{\mathbf{L}}^{\mathbf{L}}}\right) + \mathbf{P}_{\mathbf{L}} \overline{\mathbf{Y}_{\mathbf{M}}^{\mathbf{L}}} \right] \mathbf{Y}_{\mathbf{N}}^{\mathbf{J}}(\Theta,\phi) \mathbf{Y}_{\mathbf{M}}^{\mathbf{L}} \left(\Theta_{1},\phi_{1}\right) \\ \mathbf{C}\left(\mathbf{LJL}_{1}\right) \left(\mathbf{t}_{\mathbf{M}}^{\mathbf{L}} + \mathbf{P}_{\mathbf{L}} \mathbf{Y}_{\mathbf{M}}^{\mathbf{L}}\right) &= \sum_{\mathbf{NM}_{1}} \langle \mathbf{JL}_{1}\mathbf{NM}_{1} | \mathbf{LM} \rangle \langle \mathbf{Y}_{\mathbf{N}}^{\mathbf{J}}(\Theta,\phi) \mathbf{Y}_{\mathbf{M}_{1}}^{\mathbf{L}} \left(\Theta_{1},\phi_{1}\right) \rangle \\ \mathbf{C}\left(\mathbf{LJL}_{1}\right) \mathbf{P}_{\mathbf{T}} \mathbf{z}_{\mathbf{M}}^{\mathbf{L}} &= \sum_{\mathbf{NM}_{1}} \langle \mathbf{JL}_{1}\mathbf{NM}_{1} | \mathbf{LM} \rangle \langle 2 \cos \psi \mathbf{Y}_{\mathbf{N}}^{\mathbf{J}}(\Theta,\phi) \mathbf{Y}_{\mathbf{M}_{1}}^{\mathbf{L}} \left(\Theta_{1},\phi_{1}\right) \\ \mathbf{C}\left(\mathbf{LJL}_{1}\right) \mathbf{P}_{\mathbf{T}} \mathbf{z}_{\mathbf{M}}^{\mathbf{L}} &= \sum_{\mathbf{NM}_{1}} \langle \mathbf{JL}_{1}\mathbf{NM}_{1} | \mathbf{LM} \rangle \langle 2 \sin \psi \mathbf{Y}_{\mathbf{N}}^{\mathbf{J}}(\Theta,\phi) \mathbf{Y}_{\mathbf{M}_{1}}^{\mathbf{L}} \left(\Theta_{1},\phi_{1}\right) \end{split}$$ with the coefficients $C(LJL_1)$ of Table 5b). - b) The 32 real observables in transversity quantization σ_0 , t_0^2 , $\text{Re } t_2^2$, $\text{Im } t_2^2$, t_0^1 , t_0^3 , $\text{Re } t_2^3$, $\text{Im $\text{Re } t_1^3$, $\text{Im } t_1^3$ $\text{$ - c) The 16 linear constraints and the 15 generalized spin rotation parameters. $$P_{1} = \frac{1}{4} \begin{bmatrix} 1 - \sqrt{5} t_{o}^{2} + \sqrt{\frac{3}{5}} t_{o}^{1} - \sqrt{\frac{63}{5}} t_{o}^{3} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} P_{R} - \sqrt{5} t_{o}^{2} + \sqrt{\frac{3}{5}} t_{o}^{1} - \sqrt{\frac{63}{5}} t_{o}^{3} \end{bmatrix} = P_{1}$$ $$P_{1}' = \frac{1}{4} \begin{bmatrix} 1 - \sqrt{5} t_{o}^{2} - \sqrt{\frac{3}{5}} t_{o}^{1} + \sqrt{\frac{63}{5}} t_{o}^{3} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} P_{R} - \sqrt{5} t_{o}^{2} - \sqrt{\frac{3}{5}} t_{o}^{1} + \sqrt{\frac{63}{5}} t_{o}^{3} \end{bmatrix} = P_{1}'$$ $$P_{2} = \frac{1}{4} \begin{bmatrix} 1 + \sqrt{5} t_{o}^{2} - \sqrt{\frac{27}{5}} t_{o}^{1} - \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} P_{R} + \sqrt{5} t_{o}^{2} - \sqrt{\frac{27}{5}} t_{o}^{1} - \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = P_{2}'$$ $$P_{1}' = \frac{1}{4} \begin{bmatrix} 1 + \sqrt{5} t_{o}^{2} + \sqrt{\frac{27}{5}} t_{o}^{1} + \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} P_{R} + \sqrt{5} t_{o}^{2} + \sqrt{\frac{27}{5}} t_{o}^{1} + \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = P_{2}'$$ $$P_{1}' = \frac{1}{4} \begin{bmatrix} 1 + \sqrt{5} t_{o}^{2} + \sqrt{\frac{27}{5}} t_{o}^{1} + \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} P_{R} + \sqrt{5} t_{o}^{2} + \sqrt{\frac{27}{5}} t_{o}^{1} + \sqrt{\frac{7}{5}} t_{o}^{3} \end{bmatrix} = P_{2}'$$ $$P_{1} + P_{1}' + P_{2} + P_{2}' = 1, \qquad P_{1} - P_{1}' + P_{2} - P_{2}' = P_{R}$$