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Introduction,

The interest for studying polarization is obvious, When a cross section
has been measured in a high energy physics reaction, the measurement of polari-
zation in the same kinematical conditions ylelds, for each independent polari-

zation parameter, as much information, i,e, the value of a Hermitian form of the

amplitudes,

The dependence of cross sections on energy, momentum transfer etec.,,,
has already given several beautiful and simple physical laws or mechanisms (e.g.
rising of cross section as s log s , pomeron or Regge poles exchange); there is
still a lot to discover on the dependence of polarization on this same variables;
and generally the study of polarization is the best tool for studying the impor-

tance of angular momentum transfers,

It is true that hadrons are composite systems so the trend of elementary
particle physics is to go away from pure hadronic physics as it has historically
gone away from molecular, atomic and nuclear physics. Of course these branches of
physics are still very lively (and their polarization effects are well studied!),
One can doubt that CERN will use only neutrino beams and forget its other potentia-
lities! I would guess even the contrary; as elsewhere CERN will also do more and
more sophisticated hadronic physics (not to forget that the ISR are unique up to
now); this includes the use of polarized targets (already well developped here)
and the use of polarized beams. In some respect these experiments are fascinating:
indeed it is more exciting to find unexpected results; and for the last ten years
most of the measured polarization effects have flatly contradicted the current
(and too much simple) theoretical models, Presently there are unexpectially
large polarization effects in some inclusive reaction; in p-p reactions different
measured polarization parameters, such as Cnn have an extraordinary dependence

on momentum transfer, It is ansubjective attitude, but physicists are usually
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fascinated by what they do not yet understand,

For the unified weak and electromagnetic interactions, polarization
is as much important, All neutrinos and antineutrinos are polarized (respecti-
vely left and right circular polarization) and electrons and positions are also
very easily polarized in storage rings. Strongly polarized high energy photons

beams have been obtained in Stanford from lasers and the electron beam,

Finally, one can even say that some measurement of polarization cannot
be avoided in high energy physics! Indeed, whatever the beam and the interaction, .
all produced resonnances are recoqnized only by their decay modes, and to observe
them is to observe partially their polarization., It seems that such polarization
measurements are not fully exploited, One of the reason might be that most physi-
cists (especially outside CERN) do not know the polarization domain corresponding

to their experiment when particles of spin > % are involved,

Indeed for each experiment physicist determine the domain of obser-
vable values of the energy momenta of the involved particle imposed by energy
and momentum conservation (this is the Dalitz plot or a generalization of it). QIP
Similarly for each experiment in which polarization is observed, there is a

Polarization Domain imposed by angular momentum conservation, It is a great handi-

cap for the experimentalists not to know the polarization domain of their experi-
ment; mainly it is a loss for the physical interpretation of the experimental
results, Indeed the distribution of the data inside the polarization domain gives
tﬁe significance of the experiment, Different part of the polarization domain
correspond to different mechanism for the reaction, Of course theoretical physi-
cists cannot ignore the polarization domain, as they usually do. Not to speak

of a healthy, and to me absolutely necessary scientific curiosity, every theorist



interested by the success of a model should know how much stronger than those
of the great conservation laws are the predictions of the model, The smaller is
the domain of model predictions inside the polarization domain, the better is
the corresponding experiment for testing the model, Fig, 1 illustrate some of

those points,

These five lectures cannot deal with every aspect of polarization, We
shall of course recall the essential of the covariant description of polarization,
But the main ailm of these lectures of %he Academic Training program will be to
help physicists to determine themselves the polarization domain of the experiment
they consider or they perform, Paradoxically it is not easy to find this help in
text-books or even in the printed literature, For the simplest strong interaction
reactions, the polarization domain for particles of spin 1 and 3/2 observed
by strong two body decays (p, K+, @, and A ) was, to my knowledge, first published
respectively by Pierre MINNAERT [66] and Manuel DONCEL [67) , in 1966 and 1967.
Since, we joined our efforts for a systematic study of polarization domains
implied by general conservation laws, including hadronic internal symmetry, and
some general model predictions, We gave together a set of lectures at the "Ecole
d'Eté de Physique des particules" (Gif-sur-Yvette, 1970) which edited our 300
page lecture notes, Of course, the overlap between these notes and the present
ones will be relatively small, The present lectures, less technical, will main-
ly survey some of the published or unpublished work we have done together since
1970, I thank CERN for inviting me to give these lectures and present some

work of Doncel, Minnaert and I,
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Fig, la

-1

Fig, 1b

Flg. lc
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Caption of Fig, la, b, c.

These three Figures are taken from: M, Daumens, C, Massas, L. Michel,
P, Minnaert, Nucl, Phys, B 53 (1973) 303 . They are based on an experimental
paper, published in CERN (collaboration of seven groups) where it is claimed
that the polarization measurements of Y*' (1385) in:

+ 3 - - % %* - *
Tp-= K+Y + or K pf* m Y + and n+pf* Y ++... or K pf* Y ++,.,,,

(the last two are inclusive reactions) are in favour of the quark model, Seven
polarization parameters can be measured, so dim 8 = 7 ,These figures show a

two dimensional cut of $§ and of E% (the confidence % ellipsoid in a Xz-test)
by the 2-plane determined by the 3 points: pexp s Peps Po (= unpolarized state),

Fig., la is for both exclusive reactions together; the statistics is very poor
the errors are as large as the size of the polarization domain, volume

E%‘N 7 X volume § ; nothing is measured, so the Xz-test is good with any model,
For the exclusive reaction, the theoretical domain & is the intersection of ®
by a 4-dimensional subspace eth ; and pth is taken as the nearest point from
pexp in 8th (i,e. the orthogonal projection of pexp on 8th) ; volume E% /
volume § 1is respectively ,1 and .02 for 1b and lc; the data is much more signi-
ficant, However the better the data, the poorer the agreement with the assumed
predictions of the quark model: in lc the disagreement cannot be worse, This
imposes two remarks:

i) it is unlikely that the simplest predictions of the quark model used by the
author apply to their inclusive reaction and the truth is that this paper 1is not
a test of the model,

1i) In general the data of inclusive reaction is well inside 8§ (see part II),
The fact that it favours the boundary of the domain is very striking and begs

explanation,
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I. What is polarization? How to measure it,

I.1 The polarization of a particle with a known energy-momentum P

(with 22 = m2 in units c¢=f=1) is what has to be still observed in order to

know completly the state of the particle,

This can be extended to a set of several particles (e,g. those pro-

duced in a collision) of known energy-momenta PRy 5 we then speak of the joint

polarization of the particles; this is a much reacher concept that the set of

the polarizations of each particle separately because it includes the polari-

zation correlations.

We are interested only by a relativistic theory of polarization, but
o begin withthe simplest notion, we first consider the polarization of a single
particle of spin j ( 2j integer 2 O) and mass m > 0 and known energy momentum
P . We can therefore choose a frame where this particle is at rest, Then its
Hilbert space of state vectors ﬂj is finite dimensional: dim Hj = 2j+l and

every Hermitian operator on ﬂj is a polarization observable!

Invariance under the connected# Poincaré (= Lorentz inhomogeneous)
group P1. requires for a particle of energy-momentum p the global invariance

of its set of states by the "little group" £p of Lorentz transformationg%

leaving p invariant,

t -
£p={A€£+,A.p—,p}. (1)

f We will deal later with space and time reflections

d

'8'Here Lorentz transformations means simply elements of the Lorentz group,

-3
To speak of a pure Lorentz transformation of velocity v , we will say a Lorentz
boost or simply a boost, Note that this is not a covariant concept: it depends

on the chosen frame,
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For a particle at rest, the little group Sp is the rotation group S0(3)
and Poincaré covariance is reflected by the action of S0(3) on ﬁj : the space

of state vectors of a particle of spin j at rest carries the 2j+1 dimensional

irreducible linear representation, up to a phase, of the rotation group,

Wigaer has shown us that it is equivalent to consider the 2j+1 dimensional irrep

(= irreducible linear representations) of SU(2), the covering group of S0(3) , *

All useful formulae concerning these representations will be given in
the appendix AI, of this chapter, We just recall here that the rotation of angle 8
->
around the oriented axis of unit vector n 1is '"covered" in SU(2) by the uni- .

tary matrices + u(g, 8) with

i, =7
- '—9 n,0 * ¥*
2 = @, O = u@, -8) 2)

u(g, B) =e

=
where 0o = {ci , 1=1,2,3} are the three Pauli matrices.

Note that

u(@, 2m) = -1 = ( ) . (3)

Of course SU(2) and S0(3) have same Lie algebra whose generators J; » satis- .
fy:
[Ji, Jj] =1 15k Tk (4)

are the observable of angular momentum,

I,2 Spin % particles,

| « The rotation groups

(51\

The space E% is the space of spinors £ =

acts by (2) on this space, The four matrices I , O1s Oys 04 form a complete basis
of the space S(H%) of linear operators, A pure polarization state is represented

by a normalized state vector € ﬁ% , defined up to a phase,
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<E,E>=EF & =1 (5)

The angular momentum, which 1s pure spin angular momentum since the particle ig

- - -
at rest, is j =% 0 ., However O 1is also called the polarization vector and

its expectation value

3=<§,3g>=trg§><§=éa8’a8§6 (6)
satisfies, from (5)
s =1 (7)

To summarize, we see that totally polarized states (= pure states) of a spin %
particle at rest form a 2 dimensional sphere 52 of radius 1 in the 3-dimensional
space, There 1s also a one to one correspondance between the pure states, the

point of S2 and the rank one Hermitean projectors on ﬁ%

* 2
p=p =p tr p =1 (8)

Indeed P =E><E =21(I +5.0) (9)

Often the polarization state is not completly known; for instance in an experi-
ment we may know, thanks to a homogeneous vertical magnetic field, that the

-y
polarization vector s 1is vertical, but with a probability c, to be up and

¢ to be down (c+;> 0 c +c_= 1). Then we will say that the particle is

partially polarized with the polarization

- - -
s=c s, tc_s_ ; (10)

this state is also called technically a "mixture" , It cannot be represented by

a state vector, but it is represented by the density operator

- - -5 - . - -
p=c 8> <8 4c_E><g_ = g—*(1+ O.s )+ %"(I-%O's_): 5(I+s.0) (11)
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-
satisfy (7), and c¢_+ c_=1, then 82 <1).

where ® satisfy (10) (indeed K 4

+

To summarize, the polarization states of a particle of spin Z at
rest are in one to one correspondance with the points of the unit ball, Indeed

each density operator p defines a vector:

S =trpo with s2s1 (12)

The points of the surface ;2= 1 represent the totally polarized (= pure)

states, The points of the interior represent the partially polarized states
(mixtures) The center : = 0 represents the unpolarized state, The length '
\sl s is the degree of polarization, it is an invariant for rotationms,

There is also a one-to-one correspondance with the '"density" operators, that

is the positive operators

*
p=p 20 (13)
of trace one,

Let us recall that an operator on a Hilbert space ¥ 1is positive iff
(if and only if) its expectation value for any vector x € ¥ is =2 0 ; .
< xlp x >2 0, It is equivalent to say that p 1is Hermitian# and has all its

eigenvalues = 0 ,

The ball g € 1 1is the polarization domain., As (10) shows, it is the
convex hull of the set of pure polarization states, This is a general remark valid
for any spin, We also note that every pure polarization state : s, with ;2 =1
can be transformed into any other pure polarization state by a rotation., However

this is only true for spin j = % (although the contrary is sometimes claimed in

books on quantum mechanics),

# Indeed the antihermitian part would have a pure imaginary expectation value,
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The dimension of Hj is 23+ 1 and 2(2j+l) real parameters are

necessary to fix a vector of ¥, . If it is normalized toone and since an

3

overall phase is arbitrary, 4j real parameters are necessary to fix a pure

state or a rank one hermitian projector (they form the points of

P(2j, @) the complex projective space of dimension 2j,

Since the rotation group SO0(3) has only three parameters, it cannot
transform every pure state into every pure state for j 21, For instance if

Iz > € ﬁl , it has 3 complex coordinates zg =% + i Yy and

=2 =2 LT
‘zizi‘ = lx -y + 21 x,y|| is rotationally invariant; it varies between O and 1 3
- = -2 =2

it is zero for circularly polarized state x,y = 0, x =y and one for longitu-
- =

dinal states x X y =0 ,

A useful geometrical representation for the pure states of polarization of a

spin j particle has been given by H, Bacry [64]. These states are in one to one

correspondance with the constellations# of 2j points on the unit sphere 82 .

It generalizes directly the case 2j = 1 , To choose a quantization axis corres-

ponds to the choice of a diameter on 82 . The basis states |j; m > 1s represen-

ted by j+m points at the North pole and j-m at the South pole of this diameter,

For instance for j=1 , pure circularly polarized states are represented by

2 points together and longitudinal states by two points at the two extremities of

a diameter, The action of the rotational group on S2 is the usual action: for

instance for spin j=1 all pure circularly polarized states can be transformed

into each other; this is also true of longitudinal states., But other states cannot

be transform into a basis states ‘j;m> by a choice of coordinates! More gene-

rally pure polarization states form by two isometrical patterns of 2j points

on S2 are on the same orbit of the rotation group,

* i,e, any set of 2j points not necessarily distinct,
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The polarization domain of the polarization states of a spin-j

particle at rest has dimension

dim 8, = (2 + 121 = 45(5+1) (14)

There is no simple geometrical visualization of this domain, but we will later
study all its relevant properties, Now we just give a parametrization of this
domain, by expanding density matrices in a convenient basis, It must take into
account the action of the rotation group, Let R = Dj(R) the 2j+1 irrep (= irre-
ducible unitary representation) of SU(2) on ﬁj . The corresponding action on

@

E(ﬁj) , the space of Hermitian operators on H; is given by:

R.p ~ Dj(R) pDJ.(R)'1 = Dj(R) ij(R)* (15)
i.e, (R.p)kc = Dj(R)kk, Dj(R)LL, Prerg (16)

It is well known to physicists that Dj(R) , the complex conjugate of the

irrep Dj(R) , 1s equivalent to Dj(R)

3 ; (17)
and that therefore the tensoriel product decomposition into irrep for S0(2)

is

D (18)

This means that the action of the rotation group on the space E(Ej) of obser-
vables on Hi decompose into a direct sum of 2j + 1 inequivalent irreps of
respective dimension 2L+1 with O < L € 2§ , This corresponds to the decomposition

of each density matrix into multipoles:

=L 2j (L)
s ZL=1 P (19)

the scalar is fixed by the normalization tr p=1,L=1 1is the dipole,

L = 2 the quadrupole, etc,
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i) Expansion in Cartesian tensors, Since the three generators Ji of the

rotation group generated also the algebra of operators on Hj , 1t seems very

intuitive to use cartesian coordinates, In that case

B - (1) (2) e 08 24 (L)
Pog h 8y g d 5y Sy e Rl T4 B, sil..iLJilJiz"JiL
(20)

the irreducible tensors of rank L are completely symmetrical in their indices

and traceless

(L) (L)
s =g ; B8 =0 (20'")
p(il,..iz) 11...12 ii i,. .1,

The equations (20) are simply a generalization of equation ( 9) establieshed

-
for spin 3 (with the notation % 0 = T) .. However ‘for larger spin, they become

more and more cumbersome,

ii) Expansion into Irreducible spherical tensors, It is themost frequently used

by physicists; indeed the matrix elements of these irreducible spherical tensors

are easily obtained from tabulated Clebsch Gordan coefficients or 3j Wigner-

coefficients,

Let us first recall that the (complex) vector space &£(H) of linear operators
on the n dimensional Hilbert space ¥ , is itself a n2 ~dimensional Hilbert

space with the Hermitian scalar product:

3
<A,B>=trAB , (21)

In a spherical basis define the matrices Tﬁ whose elements are

m
oy

” o ™ < jmljn, M > (Clebsch-Gordan coefficients) (22)

(T

These are not Hermitian:

L % M_ L
T, = DYrh (23)
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They satisfy

L L' L* L' 24+
< = =
Ty » Ty > = tr Ty Ty, S o1t S (24)
° =1 (24")
o
Define
L L L
= < > =
Ey Py Ty tr p Ty (25)
Then
2] 21+1 L L L
P= T 75q1 = twm T (26)
m=-L
with tg = 1 (27)
Since we expand a Hermitian matrix p into a non Hermitian basis, the
coordinates tﬁ must satisfy a relation:
L M L
ty = (-1) t M (28)
Let p' be the transformed of p by the rotation R
3*
p' = DJ.(R) P Dj(R) (29)
L L
its coordinates tﬁ are related to the ty by
L L M
1 =
thye = ty DL(R) M (30)

iii) The real multipole parameters

It is paradoxical and a little akward to choose a basis of non Hermi-
tian Operators Tﬁ for studying the density operators, elements of €(H) the
real vector space of Hermitian operators on Hj . The space €(H¥) 1is an Eucli-

dean space with the real scalar product (identical to (21) for Hermitian matrices)



To choose a basis of Hermitian matrices, we can take the real part and imagi-
L
nary part of the TM . Moreover D,M,M, (Doncel-Minnaert-Michel) have proposed a

more convenient normalization:

Q(I; q2L+1 Tg (32)

*
M>0 Q§ = DY Vo1 2 (T; + Tﬁ ) (32")
2
- *
M< 0 QEM = (-1) 2L+1 —% (Ta - T; ) (32")
1 1
so (Qﬁ s Qa,) = tr Q; Q;, = (23+1) 5LL' 6MM' (33)
then
_ 1 2j (L L L
P =37 (I+L‘£1 M‘:“_L Ay Q) (34)
where qﬁ = (p, Q;) = tr p Q; (35)

This formalism generalizes directement what we wrote for spin z

s = 1 1 _ 1 _ 1 _
J 2 QO 03 s Ql Ul 3 Q—l 02 (36)
For instance we can define the degree of polarization dp by
= Ly (qL)2 = 2 tr(p-p )2 (37)
) 2j M 2j 0
LM
where o is the density matrix of the unpolarized state,
by = 5r I (38)
0 2j+1

That is d is proportional to the distance of p from po and reach its

maximum for the pure states
2
pP=p =p , trp=1 (39)

(These are the conditions for Hermitian projections of rank one),
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iv) The matrix elements. 1In many papers p 1is simply given by its matrix

elements, This obscure the rotational covariance by it has some advantages for

the geometrical point of view we will develop., We just remark that

p'ij pzj (40)

(p's ") = T
1j

Finally, we end this long section by some remarks. Not only these different

kind of basis are choosen in the physics literature, but to give numerically

the expansion coefficients or the matrix elements one has also to choose a

coordinate frame in space-time, and even much more, as we will see, for the .
covariant description of polarization., The great variety of choice which appears

in the literature makes the life much more difficult for the physicists., Some

have tried to impose a universal convention (e,g, Madison convention in nuclear
physics), This dictatorship is ridiculous: every choice of convention has advan-
tages and nuisances depending on the type of experiment., But one must always

remember that physical laws are independent from the choice of coordinate systems !
Naturally we will essentially use here the intrinsic characteristic of matrices

e.g. their spectrum = set of eigenvalues, their rank = nb of non zero eigenvalue, .
their kernel, their support, their image etc, Similarly we will present the pola-

rization domain geometrically with minimum of reference to coordinate systems,

I. 4 Polarization of light,

Light polarization is the oldest known; indeed it was discovered by
Malus [09] in 1808, However we did not start from photon polarization because
their are essential differences between the m=0 and m#0 cases, Let us stress
first the similarity, A formalism equivalent to 2 X 2 density matrix was made

by S okes [52] in 1852 for light polarization (and this much before quantum
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mechanics!) while the description by the Poincaré sphere [92] was introduced

in 1892, The surface of the sphere represent totally polarized states, Choose

a pole axis; the North and South pole represents repsectively right and left
circular polarization while the equator represent elliptical polarization (the
shape and orientation of the ellipse depend respectively on the latitude and the
longitude). The inside of the sphere represents partially polarized states, the

center representing the unpolarized state,

The same sphere, the same formalism of 2 by 2 matrices deal with both
cases: massive spin 3 particles and massless spin 1 as the photon. Why? To under-
stand plainly, we have to consider special relativity, While Lorentz transformations
can induce on the spin %, m#O polarization sphere any rotation, they induce on the

Poincaré sphere for light polarization only rotations around the pole axis,

I.5 Covariant description of Polarization: The polarization operator.

The invariance group of special relativity, the Poincaré group has
ten linearly independent Hermitian generators: four for the translations: P ,

observablesof momentum (Pi) and energy (P°) and six for the Lorentz transforma-

tions MY = .MM observables of the relativistic antisymmetric angular momentum

tensor: MiJ = eijk Jk s MOi = Ni where Jk is the non relativistic angular

momentum,

The Lie algebra of the Poincaré group § 1is represented by the commu-
tation relations
A
(2, P =0, [P, ¥V = 1M Y - 1Y B (42)
(MY, M) =1 P M _ g M P g g ML g P (43)

(This can be computed directly from the 5 x 5 matrices (g i) which represents

the Poincaré operation: translation by a followed by a Lorentz transformation A) ,

Since the polarization of a particle is what one must observe in order to have
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a complete knowledge of the particle state when one already knows the energy-
momentum, the observable of polarization must commute with the Pk's . We see
that the angular momentum component are excluded, I do not know who found first
the solution and when, It seems ta be Pauli - unpublished#.

Consider the polar tensor ¥ of M , of components

~ - 1 '0)
MH\) 5 eU-VpG Mp (41)

One finds that P“ FLV = :ﬁﬂi ﬁJ (not obvious since P and lﬁ do not commute!

is has to be check) and Pauli denoted it by

=z
=z

W =P, P (42)

Then, from (42 ) and ( 43) one finds that the components of the P's and that

of the W's commute
L W =0 (43)
So P.W =W.P ; but from ( 42) W.P = -BW , hence
PW=0=up (44) ®

W 1is therefore the good condidate we are looking for and we call it the

Polarization operator, It is an axial vector operator, Finally one finds that

22 and Ez commute with all Px and Mxv and therefore will all observables

one can built from P and M (i.e, the kinematical observables),

One can prove even that Px and W generate the center of the algebra of
polynomial in Pk s Vi i.e, the universal enveloping algebra of the Poincaré Lie
Algebra, The carrier space of irreducible representations of this algebra are

the spaces of state-vectors of one particle X ., For such irreducible representa-

tion P2 and w2 are multiple of the unit operator i.e, P2 = m2 I, m2 =20,

#The first printed quotation of it, quoting Pauli, is Lubanski [42],
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Let us calculate w2 . We follow here Bargmann and Wigner [48] . The strategy

A
is that the W must generate the little group £p for the states of the

particle with energy momentum p .,

The wl's do not commute among each other:

Consider a particle state with a fixed energy momentum

tetrad n:ta)(p) such that
n(a). P_(B) - gCLB

with right handedness

GAvp (@) (@) _(v) R @) o JoByd
A M v p

By completion one has

@) () _
gaBnu "y Hav

We define operators S(a)(p) by

@ _ _ n(a).ﬂ

so from (47)

(@)

= (o)
W= $7(p)n

(p)

(45)

and define a associated

(46)

(46")

(47)

(48)

(49)

i.e, the S(a) are the components of W in the tetrad and

W =35 %h)g, s®p)

We must now consider two cases,

175 case M # 0 . We choose of course
E(O) - o/m

so from (44) and (46), (49), (50)
$© =0 ana = s?

i=1

We can now compute, with the help of (45), (49),

(50)

(51)

(52)
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(D, 51 2 a DD [y - g M, W,

(o)

For the particle state we consider n P

obtain

() s (k) (k)

(from 51) using now (46') we

(53)

This is the commutation relations of the generators of the little group £p

All physicist know how to deduce from it the value of the Casimir

Hence we deduce from (51)

E2

n? §GHDI

2

an case P 0

In that case p 1s light like, so

g.n(o) =E, p= E(n(O) + n(3))

Hence from (48) and (44)

(o)

S + S =0

and, from (50)

2 2
E2 = s @)

operator %
i

(55)

(54)

(55)

(56)

Taking on account (55) one can again compute the commutation relations of the

(1)

SR ICNCTIPENCY (s, @y 1y s @) (@

The commutation relations of the generators of the little group of SP define

(57)

the Lie algebra of E(2) , the two-dimensional Euclidean group where S(l) s

(3)

1
generate the translations and E S the rotations, We have two cases to con-

sider,

S

(2)
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a) w2 <0

This case corresponds to a mass zero particle with an infinite number
of degrees of freedom for polarization when p 1is fixed, It was study in detail

by Wigner [39],[48]; such type of particle is unknown in Nature

8) w=o

This case 1s in some respect the limiting case of m = O (see e,g.

2 PW = E2= 0 1implies,

(53)). Then P
W=AP (58)

Since P 1is a vector and W an axial vector, A is a pseudo-scalar,

It is the helicity, It is the eigenvalue of % S(B) . Since the Poincaré group

has at most a double covering representating the eigenvalue of the rotation

generator in E(2) must satisfy
2\ 1is integer (59)

When the space of one-particle states is not invariant by parity, we have only

one possible sign for A e,g,

A = -% for neutrinos, A\ =% for antineutrinos,

But for the photon A =+ 1 , for the gravitation A = + 2 ,

I.6 Relativistic invariance and Polarization

The fondamental paper on this subject is Wigner [39] . But this deep
and long paper is not easy to read, We just gives here some glimpses in order
to show the relations between the different preceeding sections, For the particle
at rest, of spin j we needed a 2j+1 dimensional space uj to describe its pola-

rization, For a covariant theory we will need a copy of this space for each energy
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momentum p , Here is the rigourous way to do it, Let uj be a finite dimen-

sional Hilbert space of dimension 2j+1 if m# 0, 2 or 1 if m= 0 ; let

Q; be the mass shell .p?‘ = m2 20, p0 > 0 , The one particle state is the

Hilbert space )‘( of functions %Y from Qm to Iﬁj H
o= af X %) (60)

For a fixed p , x(p) € ¥, where the scalar product is

j

<x'(@), X"(@) > = Za, _x;(p) x;(p) (61)

The scalar product in H is

+
m

<< X!’ X" >> =] < X'(P), X"(P)> dU(P_) (62)
Q

where du(p) 1is the Lorentz invariant measure on Q:n- i.e,

3
di(p) = 8(p%-n®) 6°) dp = % iv_-_%-, (63)
p +m

So the function Y 1is the wave packet, Of course plane waves are not normali-
zable; it would correspond to Y (p) = 6(p-—pfixed). However there exist a notion

of direct integral of Hilbert space and lij(p) du(p) 1is the integrand
5]
X .—.f+ H,(p) du(p) (64)
nm

where ¥ (p) 1is the set of value of the ¥'s at energy momentum R . Every

A
operator on }( can also be written as a direct integral, e.g.
@
P = f 2 I(p) du(p) (65)

where I(p) 1is the identity operator on ¥, (p).

k|
Similarly when a tetrad n(a)(p) is choosen for each p

@
W= % f () 1) au(p) (66)
Q
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This should make very clear the previous section., Indeed Hj(p) , technically
speaking is not a subspace of }{' ; but we will always consider relations among
the integrands and in general, for particles with fixed p , we have to deal

only with finite dimensional spaces and matrices.

Translations by a just multiply the function < by a phase e-i-R'-a—t .
Lorentz transformations A transforment hj(p) into Hj(Ap) and acts on this
space by a unitary matrix depending both on A and p . Some convention has
to be made; it can be reduced to the choice of tetrad, For m#O , some physicists
like to choose a frame at rest (i.e., in their lab, or the center of mass) and
boost this frame for each particle toobtain the corresponding p ; this is for
instance very usual in nucleon-nucleon scattering literature. Another general
method (m = 0) it to determine the tetrad of each particle by using the energy
momenta of the other involved particles, This determination is then independent

of the frame (center of mass, lab, Breit,etc...,); the formalism is more elegant;

we will use 1t,but the least possible,

When tetrads are fixed, the representation of Ep , the covering of the 1itt
group, is completely fixed (up to an overall phase inherent to quantum mechanics),
If we denote by R(n, ¢) the "rotations" around n of angle ¢

and by Zn the reflections through the hyperplane orthogonal to n , we have

for instance

(3) -1
D,(R(n "~ )" = (67)

It will be convenient to introduce the matrices (DMM)

m - j=m m - m _ o .yi-m
(BJ.) o (-1) 6mm' , (Aj) o 5m,-m' (I‘j) o (-1) 6m,-—m'
(68)
2 2 27
B, =1=2A4A =B = (-1 B 69
so B, j Tj 3 Aj (-1) Aj j (69)
The Tj matrix , introduced by Wigner transforms DJ(R) , in spherical coordi-

nates, into its complexe conjugate: (equat, (17)):
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—_— -1
Dj(R) = T Dj(R) T

and satisfy
TownHr |, 2o

Then the '"rotations" of T around the tetrad axis are represented by

(2) (3)

,TM))= e

,m) =T ‘i“ij

p.R@ P ,m) =™ 5 | b Ren D. (R(n
J - ] J - J -

j b

They verify the general relation:
( 2 _ _ 2j
Dj(R(g, ™)~ = Dj(R(Zﬂ)) = (-1
Finally we use the general relation:

Z, = P.R(n, m

where P is the parity operator (reflection through the origin),

So, for instance,
-1imj B

where m 1is the intrinsic parity of the particle,

(70)

(71)

(72)

(73)

(74)

(75)

To summarize, we need only to use the finite dimensional space ﬁj

and matrices for most of our problems. The usual non covariant polarization forma-
lism for m # O can be read in a covariant fashion by replacing rotations and
reflections by the corresponding operations of the little group £p . In other

words the generator of the rotations Ji or the non relativistic spin operator

(1)_ (1)
n

are simply replaced, up to a normalization factor, by S 7= -W.n
m m

(equation

48), For instance, the covariant expression for polarization density matrix,

corresponding to (20) is (Michel [59])

& s

p(p)= 53:3 S —(p) + Sku el S

A, A A
1 L _(2) 1oy 2 2

= = 2j ¥y ¥ ¥
e Tr Z ( 1) Sklxz"' -(p) m(p).....m(p)

(76)
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where wk di(p) 1s the integrand of the operator WA , and s
= (p) hpeeohy

are Minkowski tensors of rang k , completely symmetrical in their k indices,

with zero partial trace and orthogonal to p :

A A

S ‘e =8 A',= Permutation of A\ =0 =0
A A ' ' s S8 P

kl AR A 1.,.X K i i kkz...lk 512...Xk

(77)
(For an explicit covariant multipole expansion of p(p) , see e,g. de Rafakl

[66].)

For instance, for a spin % particle of energy momentum p , its pola-

rization state is completely characterised by the axial vector s , expectation

value of E(p) and satisfying

22 = m? p.s =0 \-s° = degree of polarization. (78)

It is not the place to study here the covariant polarization operator in Dirac

theory (Michel and Wightman [55]) or the covarilant equation for the precession

of the polarization of a particle of spin j moving in a slowly varying electro-
magnetic field (it depends only of the dipole polarization s ; Bargmann et al.

[59]). The laterwas the object of an Academic Training course of J.S, Bell.

I.7 Polarization correlations,

We consider only two particle-states and let the reader to generalize,

Let Pys By the energy momenta of the particles; then the joint polarization

density matrix p(pl, pz) is a Hermitian positive operator on the space

nj1j2= ujl(pl) ® ujz(pi) of dimension (2j,+1) (2j,+2) (replace 2j +1 by 2
or 1 when m=0), Given the two tetrads E(Q)(Pl) , E?(pz) ve can expand o

in a basis of H . Since it is the representation D, ® D of SuU(2)
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which acts on ¥ , through the little groups £ , &£ , it can be very
313, Py’ Py
convenient for instant to use bimultipoles

25, 23,  (Ly,Ly)

p =z z P (79)
L,=0 L,=0
with
p(Ll,L2)= 211+1 2L2+1 tL1 L2 TLl«g TL2 (o1
MM, 2j1+1 2j2+1 M, M, M M,

L.L L L

1 172 1 2
- T q Q, ® Q (79™)

(231+1)(2j2+1) MM, Mle M M,

The space of linear operators S(Hfg ﬁz) on a tensor product is itself a

tensor product

Sy 8 ¥,) = S(H) ® S(H,) (80)

So given two operators A € £(§1) ; BE S(ﬂz) one can form the operator

A® B on le = Hi ® Hz . Of course this is not the most general case of

operator on ﬁlz ; we call these operator decomposable, General operators on

are linear combination of decomposable operators:

2
X = Z§=1 Ai ® Bi n = min(nl, n2) » = dim ﬂi (81)

ﬁlZ

We recall that for decomposable operators

A® By +A® B, = A ® (Bl+32) s (A1 ® Bl)(Az ® Bz) = AlAﬁg 3152 (82)

and this extends easily to general operators by linear combinations.

Also
® Bﬁ (83)

tr X =%, tr A, tr By (84)

i i
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We will need furthermore a notion of partial trace:

ptr, X =T, A, tr By ptry X =1I; B tr A (85)

S0 tr(ptr1 X) = tr(ptr2 X) = tr X (86)

For the polarization density matrix we will use the short hand,

Py = ptr, P Py = Ptr; p (87)
They have a clear meaning: Py (respectively pz) describes the polarization
of the particle 1 (resp, 2) when one does not abserve the polarization of the
other particle, More generally, let A1 and A2 two polarization analysers for
theparticle 1 and 2 respectively, After the observation Ay (resp, A, ) the

polarization of the particle 2 (resp, 1) is desribed by ptry p(Af@ I) (resp.

ptr, p(1I® Az)); the special case A=I corresponding to no observation at all

of polarization,

Hence we can define the polarization correlation:

c -0 ® P, (89)

12 = P
Indeed if the particle 1 polarization is analyzed by A1 the polarization of 2

is described by
ptr, p(AfE 1) = P, tr pjA + ptr, CIZ(Afg 1) ; (90)

if C12 = 0, this polarization is always p2 , independently of A (the norma-
lizing factor trplA corresponding to the change of flux intensity) and it is
only if ptr, C12(Af8 I) =0 for all possible A , i.e, C;p =0, that the
polarization of 2 is independent from the observation A on the polarizatiqn of 1

i.e, there are no polarization correlations.

The normalization in expansions (79') are so chosen that the multipole

L1 L2 L1 L2
coefficients tM , t or q s q of p and p are given by
M2 M1 M2 1 2

1
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tL1 ) tL1 0 th ) t0 L2 qu ) qu 0 qu _ qO L2 (o1
3 3 3

M2 M1 0 M2 0 M2 M1 M1 0 M2 0 M2
so that the bimultipole expansion of the correlation matrix is

() . :;2 - t;l ;2 - t;l 2 tg ;2 (92)

MM, MM M 2
or the corresponding expression for the q's,
00 L0 0L
If, except for tOO =1, tM10 =0 = to M2 then each particle separate-

ly is unpolarized but there can be a non vanishing polarization correlation since

) Ll L2 (o] .
it is given by t when L1 L2 # 0 . For example in the T decay or the

MM,

So state of positronium annihilation each one of the two Yy is unpolarized when
its polarization is observed separately;but if both polarization is observed in
coincidence there is a maximal polarization correlation: the polarization of the
second photon can be completly predicted from the nature of the analyser which
has observed the first one and it is a pure state if the analyser observes only
photons in pure state, (The 4 x 4 density matrix can be written

p = i(I4 - % 04 ® ) see eg. Bernstein, Michel [60] for details), This%was
pointed out for positronium by Wheeler [46] who proposed an experimental test, QE’
In general experimental correlation of polarization must satisfy Bell's inequali-
ties [64] [71]. They are well checked by the nucleon-nucleon data; that seems to
rule out all proposed deterministic theories with hidden variables,
Experimentally, there is of course no polarization correlations between systems
prepared independently as e.g. a beam and a target, Theoretically an interesting
extension is the thearem: if the partial polarization Py OF Py is a pure state,

there is no correlation (see DMM; it was proven independently by d'Espagnat [ 71]).

Another theorem which is important to know is:

If p 1is a pure state, spectrum Py = spectrum P, up to zeros,
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I, 8. How is polarization measured?

One really understands what is polarization when he knows how it can
be measured, Polarization measurement could be the subject of a thick treatise;
new experimental techniques are found and more will be found. On the other hand,
one gets too often the impression, from general lectures,that the prototype of
polarization measurement is the Stern-Gerlach erperiment, This is far from the
truth, even on the level of fundamental concepts, The principle of the Stern-
Gerlach experiment is used in molecular beam techniques for analysing - or pro-
ducing - polarization, When two Stern-Gerlach experiments are performed successi-
vely on the same beam, for measuring two different components of the spin opera-
tor '3 (I prefer to think covariantly of the polarization operator W ),since
the components 9y (or wk ) do not commute between each other, the results

of the successive experiments depend on the order in which they are performed,

The practice of polarization measurement, at least in high energy

physics, is fondamentally different, Indeed one measures simultaneously several
comboﬁenfs of the polarization i,e, expectation values of the products

A )‘2 ' )‘i

W W, W . In term of Stern-Gerlach this would correspond to splitting
the beam into many identical parts, each secondary beam passing through one different
Stern-Gerléch.\(There 1s no question of non commutativity of observables,)
While Stern-Gerlach apparatus introduce an asymmetry which prefer one polari-
zation state, another pinciple of polarization observation is to transform
polarization into transition probability by a collision (which introduce ne-
cessarily some asymmetry)or a decay, Transition probabilities are always of the
form of expectatioﬁ values: X = trp A, i,e, they are linear 1in p . Since

angular momentum is preserved in the decay, the linear correspondance

A
p > X (p) 1is invariant by £p i.e. by "rotations",

For instance consider a two body decay A - B + C of a polarized
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particle A of energy momentum Py - Energy momentum conservation requires

Py, = Pg + Po SO there are only two linearly independent four vector in the

problem that we choose to be Py and q :
my 2 2
- . -m
q = - : (RB Pe Mg Mg EA) (93)
V A(m2 ,m2 ne) m, 2
A ™B° M A
_ 2,2 2
where A(x,y,z) = x"+y +z°-2xy-2yz-2zx (94)
so By-9 = 0 32 =1 (95)
From (77) (orthogonality with p of the tensors S(L) ), and '"rotational"

invariance (i.,e, invariance by Lp ) , the transition rate A(p) , linear in

p 1is of the form

2j (L)
A(p) = A+ T A Q ee.q (96)
T T Y
(L)
By parity g 1is changed into -q while the tensors S are all invariant,

Hence, if parity is conserved in the decay, )\ 1is a scalar and all XL with

L odd must vanish. Since the transition rate is independent of the odd multipoles

we have the:
Theorem From the angular distribution of the decay products of a two body parity

conserving decay one cannot obtain the odd (multipole) polarization.

Moreover the angular distribution, will be at most of degree 2j in

q 1in any case,

Generally the decay angular distribution d(q) (if you do not like
covariance, take the decaying particle at rest and replace q by 6 , ¢) is

expanded into spherical harmonics,
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L

-L L -L M
(@) = T yy Yy(@) with yo = (-1)7 y (97)
LM
The transition rate p = ) (p) 1s given by a linear map A
A ®
$) —— Y=o 4@ (98)
L=0

from the space of operators on Hj into the space Y of spherical function; for
relativistic invariance this map must commute with the actions of £p (or the
"rotation'"group) on S(ﬂj) and on 4% ; so between each irreducible representa-
tions of dimension 2L+1 , it is a multiple of the identity (this version of
'Schur<1emma is known as Wigner Eckart theorem by quantum physicists); so,

between the expansion coefficients of p and of J(q) one has the relation

L
= = = > i
y:j[ ACpty » C =1, C=0 1f L > 2j (99)

As we have seen, parity conservation moreover implies

i C, =0 for odd L, (100)

W

These coefficients CL are characteristics of the decay and they may depend
or

on its dynamics, However they are purely kinematical and depends only on the spin

n
and parity value when there is only one amplitude in the decay (i.e, DjA is
A
_ W ¢
of multiplicity one in D ® D when m_m, # 0 ) ,
jB jC B C

This is the case, for parity preserving decays, when one of the decay product
has spin zero (M or K , or particlea , etc,..). Numerical tables of the CL

for all the kinematical cases have been gathered in D,M.M,

For two body parity conserving decays into two spin zero particle
e.g. p=22m, P2KK, K*=xKm one can measure only the even polarization

(= even multipoles) sometimes also called "alignment"; when one of the decay
g
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product has spin # 0 , the odd multipoles can be measured through some obser-
vation on this secondary particle polarization; this can be performed by a
successive decays(see e,g, Minnaert E?S], where earlier papers are also quoted,
for the complete measurement of polarization from sequential decays), For
instance the Y¥* polarization can be completely measured from the decay

Y*i > it A° P mt . From parity conserving three body decays, if one

—
observes only the angular distribution of the normal to the decay plane, one obtains
only the even polarization; the magnitude of the odd polarization multipoles

is given as soon as one observes some angular distribution of the decay product

+_- o
into the decay,plane except for vector mesons e,g, w® > i .

The polarization of short lived resonnances, can only be observed
through their decays. For long lived particles, a partial polarization measure-
ment can be obtained by a scattering reaction, or successive scatterings with,
in between, eventually, an electromagnetic field (one '"calibrated" scattering,
is enough for spin 3 particles when the polarization direction is already know),

Indeed unpolarized particles can be polarized by a scattering (this will be one

of the subjects of next part); from time reversal invariance the same scattering

can be used as polarization analyser,
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