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Families of Transitive Primitive Maximal Simple Lie
Subalgebras of diff,

L. Michel and P. Winternitz

ABSTRACT. Transitive primitive Lie algebras, corresponding to pairs (L, Lo),
where L is a classical complex simple Lie algebra and Lg is a maximal parabolic
subalgebra of L, are constructed as subalgebras of diff,, for all finite values of
n. All such realizations of sl(N,C) are shown to be maximal in diff,. Mutual
inclusions involving realizations of orthogonal and symplectic Lie algebras are
pointed out.

1. Introduction

The purpose of this article is expressed in its title, namely we construct, in a
systematic manner, certain infinite series of finite dimensional classical simple Lie
algebras that are maximal subalgebras of diff,,, the algebra of vector fields on C™.
In other words we construct certain Lie algebras that are realized by vector fields
of the form:

. n o
(1.1) Xi:l;fi"(z)éz;, 1<i<r<oo, zeC" fieC".

We are thus addressing two related problems going back to Sophus Lie [11, 12, 13].
They can be stated as follow:

ProBLEM A. Classify all finite dimensional subalgebras of diff,, into conjugacy
classes under the action of the group Diff,, of local diffeomorphisms of C™ and
construct a representative of each class.

PrOBLEM B. Construct all dynamical systems

dz,

(12) _di— :T)“(E,t), teR, Ze (Cn, 1< pu<n,

allowing a fundamental set of solutions, i.e. having a superposition formula
(1.3) Z(t) = F(Z1(t), ..., Zm(t),c1, -1 n),

expressing the general solution Z(¢) in terms of a finite number m of particular so-
lutions z,(¢) and n significant constants ¢1, ..., ¢,, specifying the initial conditions.
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The direct relation between Problems A and B is expressed in a theorem, proven
by Sophus Lie [13]. Namely, a necessary and sufficient condition for a fundamental
set of solutions to exist is that the right hand side of (1.2) should lie in a finite
dimensional Lie algebra, i.e. we must have (with 1 < k,¢,m < r < o0):

(14) '(zt) = > Ze)€i(2), Xe= > (2)0, [Xp, Xe] = Zf,?;x
k=1 p=1

Lie’s study of differential equations [11] led him to give a realization of all classes of
finite dimensional subalgebras of diff,, for n = 1 and 2. He summed up the results,
when studying the case n = 3, in Abtheilung II of a book with Engel [12].

For n =1 the result is very simple: the only finite dimensional subalgebras of
diff; are sl(2) and its subalgebras, aff;, and C, of dimensions 3,2, and 1, respectively.
For n = 2 the situation is already quite different. The algebra diff has infinitely
many different, mutually nonconjugate finite dimensional subalgebras and their
dimension r can be arbitrary. Lie classified all of them into a not too large number
of different types.

Among the infinite series of subalgebras of diff; we mention as a type those
that are contained in the Abelian infinite dimensional algebra A_(xl.) consisting of all
vector fields f(x)d, (we denote temporarily z,y the two variables of diff5, instead

of z1,2;) where f(z) are all (e.g. analytic) functions of z. Notice that AL has
finite dimensional subalgebras of any dimension; none of them is maximal: indeed
we can always continue indefinitely any increasing chain of Agi) subalgebras a; C
az Caz C....

Another type corresponds to an interesting infinite series of subalgebras of diffs;
it contains the symmetry algebras of the equations y("™)(z) = 0 for m > 3. Let us
denote them by W, ; their dimension is dim W,, = m +4 and a basis can be chosen
to be (with 0 <k <m —1):

~ ~ m—1
X1 =0,, Xo=ux0, +—-yd,,

(15) . 1 - 2= A+ 5 Y yA

X3 =220, + (m — Dxydy, X4=yd,, Y= mkay.

Each subalgebra W,,, is actually a maximal finite dimensional subalgebra of diff,,
which has only two more maximal finite dimensional subalgebras: sl(3) and sl(2) &
s1(2) (see Section 3 and [10] for more details).

The number of different types of finite subalgebras of diff,, increases rapidly
with n and it seems hopeless to try and proceed beyond n = 3 by dimension. We
address a more limited problem, namely the following one:

ProBLEM C. Classify all maximal simple or semisimple finite dimensional sub-
algebras of diff, into conjugacy classes under the action of Diff,, and choose a
representative of each class.

This problem is also out of reach of the present mathematical methods although
we know that for each value of n the number of solutions is finite. There is a natural
grouping of these algebras into infinite families. Those we will construct are defined
by the title whose technical meaning will be explained in Section 3.

Lie himself already knew two families of maximal simple finite dimensional
subalgebras of diff,, (each with one representative for each n). One family contains
O, 42 realized in Eq. (5.23) as the Lie algebra of all local conformal transformations:
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the other family contains sl(n + 1) realized as the Lie algebra of all local projective
transformations of C™. This series was used in the context of Problem B to construct
and solve systems of projective Riccati equations [1, 2].

It was pointed out [15, 16] in the context of Problem B that it is important
to first construct “indecomposable” systems of ordinary differential equations with
superposition formulas. These are systems of n equations from which it is not
possible to split of n; < n equations that themselves have a superposition formula.
Decomposability occurs if the variables z can be split into two subsets

(1.6) 2= (21,02, Tny s Y1, Y2y - -1 Yny)y N1 T N2 =1,

such that all infinitesimal operators X satisfy:
ni n2

(1.7) X =Y 0i(2)0ee + Y E(@.9)yp,
a=1 b=1

i.e. the coefficients of 0. depend only on the variables z.

It was shown [15] that the system of equations (1.2) is indecomposable, if and
only if the algebra (1.4) is transitive, primitive and effective, i.e. it is defined by
a pair of Lie algebras Ly C L where Lo is maximal subalgebra of L and does not
contain a proper ideal of L. Ref. [15] was devoted to constructing indecomposable
systems of ordinary differential equations with superposition formulas. This has a
significant relation to Problem C, formulated above.

From Eq. (1.7) we see why constructing the transitive primitive Lie algebras
is a crucial step towards solving Problem C. Indeed, assume that we have already
introduced the coordinates (1.6) and that no further subset of the coordinates
(z1,...7,,) can be split off. Then the “truncated” vector fields

(1.8) Xy =Y ni(@)0pa,
a=1

realize the same Lie algebra L as do the fields (1.7), but in n; < n dimensions. In
this lower dimensional case we have a transitive primitive Lie algebra (L, L), where
Ly C Ly C L and L, is maximal in L. This provides a method for constructing
the imprimitive Lie algebras, once the primitive ones are found. Indeed, we start
from the primitive ones in dimension n;, then add the second sum in Eq. (1.7)
for the chosen value of ny. The coefficients n(z) are to be determined from the
commutation relations: a lower dimensional and simpler task.

In [15] families of classical simple Lie algebras were constructed as subalgebras
of diff,,. The present paper can be viewed as a continuation of Ref. [15], in that we
integrate the results into a systematic solution of Problem C. Moreover we address
a question, not posed earlier [15], namely that of maximality of the algebra within
diff,, and possible mutual inclusions and equivalences among various finite simple
subalgebras of diff,,.

The problem of finding all maximal simple subalgebras of diff;, is of considerable
mathematical interest as it stands. As far as physical motivation is concerned,
it comes from several directions. One is the above mentioned study of ordinary
differential equations with superposition formulas (Problem B). Another is the fact
that in studies of quantum mechanical systems with degeneracies, Lie algebras
usually occur as algebras of differential operators. They may of course have a more
complicated form than given in (1.1), i.e. involve nonderivative terms and higher
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derivatives. Solving Problem C is however definitely an important ingredient in the
study of algebras of quantum mechanical operators.
Throughout this article we consider all Lie algebras and Lie groups over C.

2. The Lie Algebra diff,, of Vector Fields on C" and Some of its
Subalgebras

The aim of this section is to establish the notations and recall some definitions
and some basic properties of diff,,.

A point z € C" is given by the set of its n coordinates ziy, 1 < i <n. We denote
by T, the tangent plane to C™ at the point a. All functions we shall consider are
analytic. We distinguish between the maps (e.g. ¢) from C” to itself and those
from C" to C (e.g. f):

(2.1) cr&cer, oL

The coordinates of ¢(z) are denoted by ¢;(z). The differential d,¢ of the map ¢
at a point a is a linear operator:

da i
(22) T, =%, ola) 5‘(57(0’)’
whose matrix is called the Jacobian of ¢ at a. If d,p is invertible, that is if
det(9;p/0zj)(a) # 0, then ¢ is called a local diffeomorphism at a. We have a
diffeomorphisms on C™ (respectively on the open set © C C") when d, is invertible
at every point of C" (respectively of ). We emphasize that in this paper we
generally consider local diffeomorphism, i.e. defined on the neighbourhood of a
regular point. The diffeomorphisms on the same domain form a local group. The
action of the diffeomorphism ¢ on the function f is

(23)  pf=fop !l = (p-NE)=Ffle'(2); e(p(2) ==

By multiplication (of their values) the complex valued functions on C” form
an associative and commutative algebra. The derivations of that algebra are called
vector fields and are denoted by o = >_; vi(2)0; where 9; is short for 9/0z;:

(2.4) of = Zviaif, o(fg) = (0f)g + fog.

One shows that the Lie algebra formed by these derivations:
(25) [’lA), 12’} = Z(v,ﬁiwj — wiaivj)(?j,

ij
is diff,, the Lie algebra of the group of diffeomorphisms. A linear combination of
vector fields 3, X900 \; € Cis avector field. An m-dimensional vector space V,,, of
vector fields defines an m-dimensional Lie algebra when 0, w € V,, —> [0,w] € Vi
for example:

(2.6) A = R0 1<k <m,

is an m-dimensional Abelian Lie algebra, which is a finite dimensional (nonmaximal)
subalgebra of A&‘Q introduced in Section 1. Notice that if ¢ is a vector field and f
a function, fv is a vector field.

Consider a set of m vector fields #¥) = > vf“d—, 1 <k <m, depending on n
variables 1 < i < n.
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DEFINITION 2.1. The functional rank r¢ of the set of m vector fields v*) s
equal to the rank of the matriz of the coefficients of these fields:

2.7 ry = rank v(k), 1<i<n, 1<k<m.
f i

The functional rank can be defined at a point a, in a neighbourhood of a, on some
open domain O C C", or on C™ itself. For a given n, the functional rank satisfies
ry < n. For instance, the m dimensional Lie algebra AP defined in (2.6) has
Sfunctional rank 1 (that explains the upper indez).

The action ¢ - 0 of a diffeomorphism y = ¢(z) on a vector field © is given
explicitly by
-1 p;
(2.8) o (Y vty ) =D (vl (y))E 3y, .
i ij ‘
One can check the properties:
o (M0 +200P) = X 00 + 00003, 0 (F0) = (- (@ D),
and prove from them that a diffeomorphism transforms a subalgebra of diff,, into
an isomorphic subalgebra with same dimension and same functional rank.
It is well know that every nonsingular vector field can be transformed by a

diffeomorphism into 0.,. In other words all dimension 1 Abelian subalgebras are
equivalent. This can be extended to:

(2.9)

LEMMA 2.1. The k-dimensional Abelian subalgebras of functional rank k, k <
n, form one equivalence class [A,(ck)} under the diffeomorphisms of Diff,,.

For instance they can be transformed into {0.,,0.,,...,0.,} or into the set
{210.,,220,, ..., 210, } when z; #0, 1 <1 < k.

Let £ be a Lie algebra and A, B two vector subspaces of £. We denote by [A, B]
the vector space:

(2.10) [A, B] = {[a,b],a € Ab e B}.

For example: [B,B] C B means: B is a subalgebra of £ and [K, £] C K means: K
is an ideal of L. Let us recall the following definitions:

DEFINITION 2.2. Cp(B), the centralizer of B in L, is the largest subalgebra
H C L such that [B,H] = 0; e.g. Cz(L) is the center of L.

DEFINITION 2.3. N.(B), the normalizer of B in L, is the largest subalgebra
H C L such that B is an ideal of H.

If a family of £ subalgebras forms one orbit for the group G, then the same is
true of its centralizers and its normalizers.

For an Abelian subalgebra A C £, one has A C Cr(A); when the equality holds,
A is a mazimal Abelian subalgebra of L. Obviously the n-dimensional, functional
rank n subalgebra {0y, 1 < k < n} is a maximal Abelian subalgebra of diff,,; this
extends to all its conjugates, hence:

LEMMA 2.2. Every n-dimensional, functional rank n algebra ASI” s a maximal
Abelian subalgebra of diff,,.
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Similarly:
1<k<n;

Cuirr, (AV)) = AP @ diff, = Cug, (diff,_x) = diffs .

In this paper we shall restrict the qualification of simple and semisimple to finite
dimensional Lie algebras. By definition a simple Lie algebra has no nontrivial ideals
(i.e. different from itself and from 0) and a semisimple Lie algebra is a direct sum
of simple Lie algebras. We have also to recall the existence and properties of some
of their remarkable subalgebras.

On the N dimensional vector space of a Lie algebra £ there is a natural lin-
ear representation, called the adjoint representation and denoted by adl. The
representant of a € £ is the linear operator traditionally written as

(2.11)

(2.12) aw ad(a), Vrel, ad(a)z=/a,xz|
The Killing form of a finite dimensional Lie algebra is defined by:
(2.13) (a,b) = trad(a)ad(b).

‘We have

(2.13") Vee L, ([z,a],b)=(a,[z,0]).

This property of the Killing form is the infinitesimal expression of its invariance
under the group G. For any semisimple algebra S, its adjoint representation is
faithful and its Killing form is nondegenerate.

DEFINITION 2.4. A Cartan subalgebra of a semisimple Lie algebra S is a maz-
amal Abelian subalgebra H consisting of nonnilpotent elements (i.e. elements h such
that there is no positive integer m such that ad(h)™ = 0). All Cartan subalgebras
form one orbit of S (over C). Egquivalently, a Cartan subalgebra is a mazimal
Abelian selfnormalizing subalgebra of S. The rank of S is the dimension of its
Cartan subalgebra: r(S) = dimH.

There exists a set of common eigenvectors of all ad(h); they span the space L.
Let {e,} be a set of (dimS — r(S)) eigenvectors forming a basis of the eigenspace
with nonvanishing eigenvalues (i.e. complementary to H). Each e, defines a linear
form on H that we can write (using the Killing form) as h + (h,r,). We have

(2.14) ad(h)ey = [h,en] = (h,r4)eq.

These elements r,, € H are called the roots of H. It is easy to prove that —ra (that
we shall also denote by r_,,) is also’a root. By choosing a normalization of the e, ’s
we have

(2.15) lease_o] = Ta-

The last two equations show that in S each root r,,, or each eigenvector e, defines
a unique sl(2),, subalgebra with basis ey, e_,, 7.

Let us choose in the Cartan subalgebra H a hyperplane which contains no
roots. We denote by R, the set of roots on one side of the hyperplane and R_
the roots on the other side. Each set Ry contains (d(S) — 7(8)) /2 roots (d(S) is
short for dim(S)). To each set R, corresponds a set of eigenvectors which generate
a subspace Ny of §. Each space contains only nilpotent elements and forms a
maximal nilpotent subalgebra of S. Their normalizers B+ = H & N, are maximal
solvable subalgebras of S. Such algebras are called Borel subalgebras. A complex
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semi-simple Lie algebra S has precisely one Borel subalgebra up to a conjugacy in
S.

We can prove now a theorem directly related to our problem:

THEOREM 2.1. The functional rank rs(H) of a Cartan subalgebra of a semisim-
ple algebra S C diff,, is equal to rank (S).

ProOOF. Consider a semisimple Lie algebra S of rank r. We choose a root
r € H, a Cartan subalgebra. We take a basis in H: r, hy,...,hy—1, such that
(ryh;) = 0,1 < i <r—1. We need to consider only the sly(es+,r) subalgebra
corresponding to the chosen root. From equation (2.14), (2.15) we have the partial
set of commutation relations in £
1<s, j<r—1,

(2.16) [hi,hi] = [r,hi] = [hi,ex] =0, [res] = x(r,m)es,[eq,e | =T

Assume that S is represented by a subalgebra of diff,, and that the vector fields }/i,
H;, representing basis elements of H are functionally dependent i.e.,

(2.17) R=Y"giHy, with [H;, H;] =0,
k
where the ¢(z)’s are functions (and not constants!). Then
(2.18) 0=[R H] =~ (Hipe)Hy = 0.
k

The other commutation relations are represented by:
(2.19) (Hi,Bi] =0, £(r,r)Es=[R E+] == (Erpp)Hy,
k
and the last commutation relation in (2.16) yields
(2.20) R=[Ey,E_| = ~(r,r) ™Y [(Erpi)Hy, (E_po)H,).
ke

With a possible change of labeling of mute indices and the further use of the first
relation in (2.19), we obtain

221)  (nr)*R=Y_ ((B_px)(EyHypr) — (i) (E-Hypo)) He.
k.t

Equation (2.18) shows that this expression vanishes, so R= 0, which is a contra-
diction. Hence Eq. (2.17) is contradictory. This ends the proof of the theorem. [l

COROLLARY 2.1. Every semisimple subalgebra of diff,, has a rank r < n.

We shall show at the end of this section that the equality » = n can be reached
for sl(n + 1). In the conclusion of the paper we show that it is not reached for any
other simple Lie subalgebra of diff,,.

For convenience, let us relate the Cartan notation for the classical simple Lie
algebras of rank r to the standard notation used for the special linear sl(n), orthog-
onal o(n), symplectic sp(n) algebras in dimension n:

r>1, A, =sl{r+1); r>2, B,=o02r+1);

2.22)
( ) r>3, C,=sp2r); r>4, D, =o0(2r).
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TABLE 1. Lower bounds on n for which the Lie algebra L can be
realized as a subalgebra of diff,,. The rank of L is denoted r.

sI(N) | o(N); N #4,6 | o(6) | sp(2N) | G2 | Fy | Es | B+ | Ex
n|N-1 N -2 3 [2N—1| 5 | 15|16 | 27 | 57
r|N-1 (%] 3 N 2 14,16 |78

There exist the following isomorphisms:
(2.23) o(3) ~sl(2) ~sp(2); o(4) ~sl(2) @sl(2); of5) ~sp(4); o(6) ~sl(4).

Notice that O(2) is a 1-dimensional Abelian Lie algebra and o(4) is not simple.
Among the simple Lie algebras over C, the only ones which have a simple subalgebra
of the same rank are:

r>3, o2r+1)D>o(2r);

G2 Dsl(3), FyiDo(8), E7;Dsl(8), FEsDsl(9), Eg>o(l6).

There is another limitation for the minimum value of n such that the simple Lie
algebra G' can be realised a a subalgebra of diff,,. Indeed in this realization it
acts locally on a manifold of dimension n and the minimum n value corresponds
to a (locally) transitive action. This can occur only if L has a subalgebra Lq of
codimension n = dim L — dim Ly. For simple Lie algebras L over the field C the
algebra L¢ of maximal dimension is always one of the maximal parabolic subalgebras
of L.

In Table 1 we give a list of the minimal values of n of the homogeneous spaces
G /Gy, together with the rank r of L, for all complex simple Lie algebras. From the
Table we see that for sl(n) (including o(3) ~ sl(2), 0(6) ~ sl(4)) we have n = r. In
all other cases we have n > r.

The dimension n is obtained according to the formula n = dim L —dim P where
P is the highest dimensional maximal parabolic subalgebra of L. The dimension
of a maximal parabolic subalgebra is obtained as dim P = r + n; + n, where n,
is the number of positive roots of L, n; the number of positive roots of a regular
maximal simple subalgebra S of L and r is the rank of L. The numbers n; and ny
can be read off from tables [4, 5].

We end this section by giving for every n the realization of the simple Lie
algebra sl(n + 1) of rank n as a subalgebra of diff,,.

We recall first that the n x n complex matrices form the Lie algebra gl(n, C)
when the Lie bracket of two elements is their commutator [a,b] = ab — ba. Let us
denote by e;;, i # j the matrices whose all elements are vanishing except the one
of the i-th line and j-th column which is equal to 1. In this basis for the vector
space of n x n matrices the Lie algebra law is:

(2.24)

(2.25) leij, exe] = 6jreie — biger;.

The multiples of I, form the center of gl(n). So the algebra sl(n) is faithfully
represented by the n x n traceless matrices. The diagonal matrices represent a
Cartan subalgebra H: indeed they are nonnilpotent matrices and they form an
(n-1)-dimensional maximal Abelian subalgebra. Eq. (2.25) shows that the e;’s,
k # ¢ are the eigenvectors of ad(h), h € H and the corresponding root is ep; — e.
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The upper (respectively lower) triangular matrices form the Borel subalgebra B
(respectively B_). The antisymmetrical matrices represent the subalgebra o(n)
which is a simple algebra when n = 3 and n > 5. Notice that for n > 2 this
representation of o(n) is irreducible. The identity —[a,b]" = [~a',~b"] shows
that a — —a' represents an automorphism of sl(n) which reduces to the identity
on the subalgebra o(n). So this automorphism of sl(n) is an outer automorphism
for n > 2 and an inner one for n = 2 (conjugation by the Pauli matrix o3).
From the commutation rule of vector fields:

(2.26) (2,05, 210¢) = 8k 2:0¢ — 6302105,

and the comparison with (2.25) one sees that the map e;; — z;0; gives a realization
of the Lie algebra gl(n) as subalgebra of diff,,. This realization can be extended to
the rank n simple algebra sl(n + 1), with 1 <4, j,k,¢ < n:

D= E 2i0;, e — 205,
(2.27) ;
ent1,j 05, €ing1 = —2D, eppinyr— —D.

This example was known to Lie for any n. It shows that the equality can be reached
in Corollary 2.1.

We have shown above that a — —a' is an outer automorphism of any sl(m)
algebra. That automorphism transforms into itself the sl(n) of (2.26) as a subalge-
bra of sl(n + 1) realized in (2.27) and it exchanges the two n-dimensional Abelian
subalgebras A7 (9;), AL(zd), For n > 1, these two algebra are not conjugate in
diff,, since their functional ranks are respectively n and 1.

It is easy to verify that the normalizer of .A%")(ai) is an affine algebra:

(2.28) aff > ~ Nag, (A7) = A" s gl(n), gl(n) = {2:0;}.

Since the n-dimensional, functional rank n Abelian subalgebras of diff,, form a
unique orbit of the group Diff,,, that is also true of their normalizers in diff,,. We
denote this orbit of affine algebras in dimension n by [aff,/]. while the other orbit
of n dimensional affine algebras is that of

(2.29) afft = AW (z:d) x gl(n),

T

i.e. that of the normalizer of A,(ll)(ziD). The sl(n + 1) algebra is generated by
the two subalgebras aff* satisfying aff; Naff, = gl(n). Since each type of affine
algebras forms one orbit of Diff,, that is also true of the algebras sl(n + 1) C diff,,.

3. Construction of the Homogeneous Spaces and Algebras of Vector
Fields

The method to be applied in this article is closely related to one used earlier
to construct systems of nonlinear ordinary differential equations with superposition
formulas [15].

We are constructing finite dimensional subalgebras L of diff,, so that elements
of L have the form (1.1). The algebra can be integrated to obtain a local Lie group
G of local diffeomorphisms that act on a manifold M ~ C™. We make the restriction
that G acts regularly, that is that it can be stratified into orbits of orbit type G/Gy
where G is a Lie subgroup of G. Its Lie algebra L is realized by vector fields
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vanishing at the origin. Abusing notation, we shall assume that this stratification
has already been performed and we shall consider M to be a homogeneous space

(3.1) M ~ G/G.

Let us assume that G is not a maximal subgroup of G; let G; be a maximal
subgroup of G containing Gy. The orbit g/go is a disjoint union of imprimitivity
cells which are permuted by the action of G. There exists a G-equivariant surjective
map o between the orbits: G/Gy % G/G which projects the imprimitivity cells of
G/Gy on the points of G/G;. Each cell can be considered as an orbit G1/Gy. In the
case of Lie groups, the imprimitivity cells are leaves of a foliation. Here we restrict
all considerations to local ones; Gy is the stabilizer (= isotropy group) of the origin
of coordinates. Transitive group actions have been studied in a geometric context
[6, 7, 8, 9]. In particular a decomposition of the type indicated in eqgs. (1.6)—(1.7)
was shown to correspond to the existence of an invariant foliation on M. Locally
this occurs if the pair of Lie algebras Ly C L does not define a transitive primitive
and effective Lie algebra. We recall their definition:

DEFINITION 3.1. The pair of Lie algebras Ly C L defines a transitive primitive
and effective Lie algebra if Ly is a mazximal subalgebra of L and does not contain a
proper ideal of L.

DEFINITION 3.2. The transitive primitive effective pair of Lie algebras is non-
linear if there exists a nontrivial subalgebra Ly C Lg such that [Ly, L] C L.

DEFINITION 3.3. The transitive primitive effective nonlinear pair of Lie alge-
bras is irreducible if the only subspaces S satisfying Lo € S C L and [Ly,S] € S
are S = Lo and S = L. Otherwise the pair Lo C L is reducible.

DEFINITION 3.4. A parabolic subalgebra of a simple Lie algebra L is any sub-
algebra containing a Borel subalgebra (the unique, up to a conjugation, mazimal
solvable subalgebra). A mazimal parabolic subalgebra is not properly contained in
any other subalgebra of L.

DEFINITION 3.5. A reductive Lie algebra is a direct sum of simple and Abelian
Lie algebras containing at least one simple Lie algebra (but not necessarily any
Abelian ones).

All transitive primitive pairs of Lie algebras over C have been classified [6, 7,
8, 9]. Let us state, without proof, the classification theorem, summing up results
due to these authors.

THEOREM 3.1. Precisely five types of transitive primitive effective pairs Ly C L
of Lie algebras over C exist. They are distinguished by the nature of Ly and L.

1. L is simple and Ly is a mazimal parabolic irreducible subalgebra.

2. L is stmple and Ly is a maximal parabolic irreducible subalgebra.

3. L is simple and Lg is a mazimal reductive subalgebra.

4. L is semi-simple and has the form L = K& K, Ly = Kp, where K is simple
and Ly, isomorphic to K, is the diagonal subalgebra of K & K.

5. L is an affine Lie algebra, either aff,, or an affine subalgebra of it. Then Lg
s reductive and acts faithfully and irreducibly on an Abelian ideal A:

(32) L=Ax L(), [‘4, A] = 0, [/1, L()] = A, {L(), LU} - L().
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With L simple, the types 1,2,3 are effective. This is also true of the other types
when they are realized as subalgebras of diff,, and all are transitive. So from now
on we will use the shorter expression “primitive Lie algebras”.

REMARK 1. A primitive Lie algebra has no center. In Case 5, that is implied
by the faithful action of Ly on A; for the other case it is implied by the definition
of simple or semisimple Lie algebras.

The list of the primitive subalgebras of diffs and diff3 has been given by S. Lie
in [12]. There are 3 of them for dimension n = 2 (Theorem 6, p. 71): sl(3), type
1, maximal finite dimensional subalgebra; aff; and it subalgebra saff;, both of
type 5 and nonmaximal. Notice that sl(2) @ sl(2) = o(4) and the infinite family of
subalgebras W,,,, m > 3 (given in (1.5)) are maximal finite dimensional subalgebras
but they are not primitive. For n = 3 (Chap. 7, Theorem 9, p. 139), there are 8
primitive subalgebras but only 2 of them are maximal: they are of type 1 (sl(4) and
o(5)); the other primitive subalgebras are: 1 of type 2 (another o(5) C sl(4) ~ o(6)),
one of type 4 (sl(2) @ sl(2) C sl(4) ~ o(6)), four of type 5: aff; and three of
its subalgebras. The primitive algebra ([2] p. 134) is interesting; its two factors
K ~ sl(2) are realized by (with d = 29, + yd, + 29.):

(3.3) b1 =0y + 20, g =yd, +20., a3=—20, +yd,
(3.3) by =0, + 0., by =20, +20., by=—20,+zd

Notice that the functional rank of each sl(2) is 7y = 3 for 2y — 2z # 0.
More generally the minimum value of n for the realization of the primitive
algebra (L, Ly) as a subalgebra of diff,, is

(3.4) n =dim M = dim L — dim Lo,

where M is the homogeneous space of the transitive L action. Of course we are
interested only in the minimal n realizations.

REMARK 2. In the Case 5 of Theorem 3.1 we have, n = dim M = dim A. As
we have shown as the end of Section 2, there are only two realizations of aff,, in
diff,, and both are subalgebras of the projective sl(n+ 1). So Case 5 does not yield
maximal subalgebras.

LEMMA 3.1. Let (L, Ly) be a transitive primitive Lie algebra realized as a sub-
algebra of diff,, (with n = dim L — dim Ly). Let K be another finite dimensional
Lie algebra, satisfying L ¢ K C diff,,. Then there exists an algebra Ko C K
such that (K, Ky) is a transitive primitive Lie algebra and we have Ly = L N K,
n = dim K — dim Kj.

Proor. Consider the groups Gy and G, corresponding to the Lie algebras Lg
and L. Locally in the neighbourhood of the origin in C", we have M ~ G¢/G,
the manifold on which G acts transitively. We denote K; C K the subalgebra
of K realized by vector fields vanishing at the origin, and Hy, H the Lie groups
corresponding to Ky and K. Since G acts transitively on M and G C H, H also
acts transitively. Hence we must also have M ~ H/H,. 1f (K, K;) did not define
a primitive Lie algebra, then the local action of H on M would allow an invariant
foliation. Then so would any subgroup of H, in particular G. Then (L, L) would
not be primitive either and we obtain a contradiction.

In other words, if (L, L) is primitive and L is properly contained in K C diff,,.
the (K, Ky) is also primitive. O
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COROLLARY 3.1. Assume that (L, Lg) is a primitive algebra realized as a sub-
algebra of diff,, with n satisfying (3.4); then the centralizer Caig, (L) is trivial.

Assume the contrary. Since L has no center (Remark 1) LN Cyig, (L) = 0. Let
a be a vector field of the centralizer; L’ = L & Ca is an algebra containing L. From
the preceding lemma, it is primitive and from Theorem 3.1 it is not. End of proof
per absurdum.

COROLLARY 3.2. sl(n + 1) is a mazimal finite subalgebra of diff,,.

Let us assume the contrary: there exists H such that sl(n + 1) ¢ H c diff,,.
From the preceding lemma, H is primitive. From Remark 2 and the end of Section 2,
Case 5 of Theorem 3.1 is excluded. So H is semisimple and from Corollary 2.1,
rank H = rank sl(n + 1) =n. Case 4 of Theorem 3.1 is excluded: the rank of such
an H has to be larger than n. From (2.24) there are 3 values n = 2,7, 8 for which
there exists a simple H of rank n containing sl(n+ 1), but Table 1 shows that these
simple algebras cannot be realised in diff,,. So cases 1,2,3 of Theorem 3.1 are also
ruled out and the corollary is proven.

LEMMA 3.2. Assume that (L, Lo) is a primitive Lie algebra realized as a sub-
algebra of diff,, with n satisfying (3.4), and that L is a proper subalgebra L C H C
diff,, of the finite dimensional maximal subalgebra H of diff,,. Then H is simple.

PRrROOF. From the previous lemma we know that H corresponds to a primitive
algebra. Since it is maximal we know from Remark 2, that it cannot belong to type
5. We prove in three steps that it does not belong to type 4, i.e. H =S & S, S
simple. We have Lo C L C H C diff,,. First assume that L is simple (type 1,2,3).
If L were a subalgebra of one of the factors S of H the other factor S would be in
the centralizer of L; that contradicts the Corollary 3.1. So L has to be a subalgebra
of the diagonal S € S@ S. Then n = dim M = dim S > dim L > dim M which
is self contradictory. Now assume that L is semisimple, i.e. L = S’ @ S’ of type 4,
then n = dim M = dim S = dim S which implies S = S’, hence H = L. Finally, if
L is of type 5, we have shown L C aff,, C sl(n+ 1) and we have shown in Section 2
that aff,, is a maximal subalgebra of sl(n+ 1) and Corollary 3.1 has shown that this
simple algebra is maximal in diff,,; That concludes the proof of the lemma. O

This article is devoted to classical simple Lie algebras, so we will only encounter
the first three types of transitive primitive Lie algebras listed in Theorem 3.1. The
coordinates in the first two cases are easy to construct. For both of them the
homogeneous space M is a Grassmanian of r-planes. If the group G acting on
M has an invariant metric (i.e. G is O(N) or SP(2N)), then we shall deal with a
Grassmanian of null planes.

(a) If the maximal parabolic subalgebra Ly is irreducible, then coordinates can
be so chosen that the coefficients of the vector fields (1.1) are second order
polynomials.

(b) If Ly is a maximal parabolic reducible subalgebra,then the coefficients of the
vector fields can again be chosen to be polynomials but their degree may be
higher than 2. For the classical simple Lie algebras and for g, [3] the degree
of the polynomials is at most 4.



TRANSITIVE PRIMITIVE MAXIMAL SIMPLE LIE SUBALGEBRAS OF diff, 463

(¢) If Lo is a maximal reductive subalgebra, the coefficients of the vector fields
are not necessarily polynomials (in any coordinate system). The construc-
tion of the homogeneous spaces M is less uniform than for the case of max-
imal parabolic subalgebras.

The following sections are devoted to the specific construction of the homoge-
neous spaces M, corresponding to the two first cases of Theorem 3.1. We construct
convenient coordinate patches in the neighbourhood of the origin. Then we obtain
realizations of sl(V) in Section 4, of o(N) in Section 5, of sp(2N) in Section 6. In
Section 7 we find the list of those which may be, up to an equivalence, subalgebras
of others. Excluding them, we obtain several large families of nonequivalent and
independent realizations of these classical simple Lie algebras by vector fields.

4. The Homogeneous Spaces M = SL(N,C)/P(r,s)

In order to present explicitly the complete list of maximal parabolic subalgebras
of sl(V), we realize this Lie algebra of the Lie group SL(NV) by the matrices

(4.1) Wz{(_‘g _g)}, r+s=N, 1<s<r<N-1,

(4.2) CeC™, AeC*, DeC, BeC, trB=trC,

where A, B, C, D represent all possible matrices satisfying conditions (4.2).

For each different possible set of values of r, s, the elements of W with A =0
form a maximal parabolic subalgebra Lo ~ p(r,s) C sl(V); they are all irreducible.
For N > 2 there are two inequivalent N-dimensional representations of sl(/N') which
are transformed into each other by the outer automorphism W « —W . We no-
tice that this outer automorphism exchanges r and s in the decomposition of W.
However, these two inequivalent representations have the same image; since the
construction which follows depends only on the representation image, the subalge-
bras p(r, s) and p(s,) lead to equivalent results; that justifies the convention s < r
made in (4.1). We realize the homogeneous space

(4.3) M = SL(N)/P(r,s), dimM =rs,
as the Grassmannian of r-planes in CV.

Following Ref. [15] we first introduce (redundant) homogeneous coordinates as
the components of a matrix in CV>**in which the action of G = GL(N) is linear:

oo (1)@ )6 6)-6a) amao

The origin is the point (0,7)7. In the neighbourhood of the origin we remove the
redundancy inherent in homogeneous coordinates by introducing (complex) affine
coordinates Z = XY ! in which the action of SL(N) is a fractional linear one:

(4.5) Z=XY"', Z' =(GLZ+G12)(GnZ+Ga) .
The corresponding infinitesimal action is represented by vector fields L:
(4.6) L={tr(A+ZB+CZ+ ZDZ)V'}, where (V)sa = Jaa,

and where A, B, C, D are the matrices figuring in (4.1)-(4.2). Eq. (4.6) is a realiza-
tion of

(4.7) s(N) c diff,, N=r+s, 1<s<r<N-1, n=rs.
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As basis is given by the vector fields
(48) Gga = 6z,my Ba,@ = anazcg’ Cap = Zb’yaza.,, (Zaa = anza'yazca,-

There is a linear relation among the fields b’s and &’s:
(49) Zéaa = Z Zaozaz,m = Zl;aaa

which is related to the last equality of (4 2).

The sets of vector fields denoted a, b, ¢ d in (4.8) generate four Lie subalgebras
of sl(N) that we * denote A, B, C, D, respectively. Evidently A is Abelian; this is
also the case of D. Moreover

(4.10) [A,B|c A, [A,C]c A, [D,BlcD, [D,C)cD.

We also check that B U C is also a subalgebra; from (2.26) we know that it is the
subalgebra sl(r) @ sl(s) @& C.

The Abelian Lie algebra A has functional rank n. Since s < r (see (4.7), we
note that the Abelian algebra D is of functional rank s2; indeed all its n = rs basic
vector fields are different linear combinations with coeflicients linear in Zq~ Of 82
different fields z.,0.. that are linearly independent at each generic point z.,. To
summarize:

(4.11) Ac[A™],  functional rank (D) = s® < n.

The equality holds in the last expression only when r = s = N/2.

When s =1, N = n + 1: we obtain the realization of sl(n + 1) in diff,, already
given in (2.27). When n is not prime, it can be written in different manners as the
product of two integers. We then obtain the realization of more than one sl(N) Lie
algebra in diff,,. We need to study if they are essentially distinct or if one of them,
sl(NV1) can be conjugate to a subalgebra of another one, sl(Ns). That will be done
in Section 7.

5. The Homogeneous Spaces M = O(N)/P(), u, \)

Following Ref. [15] we realize the Lie algebra o(N) of the orthogonal group
O(N) by the set of matrices W with the division into blocks

A —-BT C
(5.1) W = D E B c"=-C; E" =-E; F' = —F,
F —DT —AT
where A, B,C, D, E, F represent all possible matrices satisfying conditions (5.1)
with the dimensions:

(5.2) A,C,FeC** B,DeC*** FEeCH*
The invariant quadratic form is
0 0 I, 7 N
(53) Kn=|0 I, 0], WEKy+KyW' =0, 1<X< {LEJ’
Iy 0 0

0<u<N-2 2X+u=N.

As we shall see, to study the maximality of parabolic algebras, it is easier to use an
equivalent matrix representation of o(N), corresponding to the invariant quadratic
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form represented by the matrix K, with 1’s along the second diagonal and 0’s
elsewhere; i.e.

0 0 K,
(54) m > 0, (K;n)z] = 6i.m+1*j; fV = 0 K;t 0
K. 0 0

Then the set W’ of matrices of o(N) are the N x N matrices antisymmetrical with
respect to the second diagonal; indeed

(5.5) WK +KW'T =0 W'T=-KWK.
The block division of W' corresponding to A, pp with 2A + p = N is:
A/ B/l Cl
(5.6) w' =D E B},
F/ DII A//

where the block matrices A’, B/, C’, D', E’, F’ have the dimensions of the corre-
sponding unprimed matrices given in (5.2) and satisfy the conditions:

A// _ __K/A/TKI, B// _ —K’BITKI, D// — _K/D/TK/,
(5'7) C/ _ _K/C/TK/ E = _K/E/TK/ F = _K/F/TK/
The parabolic subalgebras, candidates for maximality, Lo = p(X, i1, A) are obtained
by setting B’ = 0 = B""T, ¢’ = 0 in (5.7) (correspondingly B = 0, C' = 0 in
(5.1). We recall the dimension of o(\NV) and that of the homogeneous space M =
O(N)/P(X\, 1, A) as functions of X and p:

(5.8) dimo(N) = (];’ ) A2 +2u— 1)+ (’2‘) dim(M) = n = A1 + (;)

Let us compare two different parabolic subalgebras of o(N) for N fixed, namely
po =pA+ 1, u— 2,2+ 1) and p; = p(A, 1, A). The matrix W’ of (5.6) for ps is
obtained from that of p; by adding A\ new elements to the last column of the
old matrix A’ and eliminating ;. — 2 elements from the first row of the old ma-
trix F/. We hence have dimps — dimp; = A — g + 2. Now consider the case
pu = 2. We obtain p()\,2,\) C p(A+ 1,0,A + 1) since in this case, and only this
case, the smaller parabolic subalgebra is obtained from the larger one by setting
a1ai1,---,ay equal to zero, without adding any new elements in the matrix F.
Indeed, we have e;;(new) = ax;1.+1(0ld), e12(new) = 0 (because of the second
relation in (5.7)).

When the exceptional case p = 2 is excluded one has the lemma:

LEMMA 5.1. The parabolic subalgebras p(\, p, \) with p # 2 are mazimal sub-
algebras of o(N).

However, most of the general formulas we will obtain are also valid for p = 2.
When this is not true, we shall state it explicitly.
The matrices W’s with C' = 0, B # 0 form a subspace S satisfying:

(59) L(; = p()\/l /\) L() Q S Q O(A!r)(, [L(hS} - 8, [S,S] = 0(;‘1\/7).
From Definition 3.3, the pair p(A, u, A) C o(N) determines a transitive primitive
reducible Lie algebra unless we have

(a) S=0o(N),ie. A=1s0C=-C" =0;

(b) S=Lp,ie.pu=0so N=2\.B=D=0,E=0.
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In these two exceptional cases (L, Lg) is an irreducible transitive primitive subal-
gebra.

In all cases one can realize the homogeneous space O(N)/P(\, i, A) as a Grass-
mannian of isotropic planes in C"V. Following Ref. [15], Egs. (3.72)—(3.73) we first
introduce homogeneous coordinates

Uy
(5.10) U, U3 € CYN e U=|U|, UKU=0,
Us
which satisfy
Uig
(5.11) Yge GL(\), U' = |Uyg| ~U,
Usg

i.e. U’ and U represent the same point of M. To remove the redundancy represented
by the arbitrary matrix g, we introduced affine coordinates (in the neighbourhood
of the origin with Us = I, U; =0, Uy = 0),

(5.12) Y =UU;Y, Z=U,U;"

In these coordinates the last equality of (5.10) becomes

1 1
(5.13) 2X +2Z"7Z =0 with X = 5(Y’+Y'T), Y = 5(Y' -Y'"N.

That means that X, the symmetric part of Y’ does not represent independent
coordinates; so we will eliminate X in the following computations. The coordinates
on M are thus provided by the matrix elements of the matrices:

(5.14) ZeCN Y =-YT eCMN
Introducing the symbolic matrices:
lfa,bfﬂ, 1Sa7/BS)\7

5.15
( ) (VY)ozﬁ - 8ya,37 Ysa = —Yap, (VZ)aa - azaa 5

we obtain directly the formula corresponding to (3.64) of Ref. [15], that is the
realization of o(/N') as subalgebra of diff,,:

(5.16) L= tr(C +AY +YAT + %(»BTZ +Z"'B)-YFY
+%(YDTZ +Z'DY) + %ZT(DZT ; ZD")z
—ZzT ZFZ' Z) vy
+tr(B +DY +EZ +ZAT - %DZTZ
+ZD"Z - ZFY + %ZFZTZ) A
where the matrices A, B,C, D, E, F' are arbitrary complex matrices satisfying the

conditions (5.1) and (5.2). That symbolic notation simply means that a basis for
the representation of o( V) in diff,, is given by the following vector fields (summation
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over identical indices is assumed):
(5.17) CaB = 3ya6, Aap = 2yg“c’)yw + 2080-,..,

2 1 1
(5.18) fas = yaﬂylg,,ayw — Zza#zaazbgzb,,ayw — zmy,guc“)zw + §Zaazbgzbuazw,

(5.19) dua = ZapYarO

1
Ypr + zauzbazbuayu,, + yauaza“ + Zbazauazbu - "z‘zbaszaza,”

(5.20) Baa = —Zagayuﬁ +0.,,, €ab= Zbua

s — ZapOzp,-

As we did in the previous section, we can denote by A, B ,C, ... the vector spaces
generated by the vector fields a, b,é..... Some of them are subalgebras, e.g; A, c , E
but not B. The sum of those which are of degree 0 or 1 in the variables yag, Zaa
form the subalgebra:

-~ ~ A

CeBoAoE, [C,0)=|C,Bl=[C,E]=0, [EA=0,
(5.21) (C,A]cC, [B,BlcC, [B,E|cB,
(B,A|c B, [E,E|cE, [AAcCA

The centralizer in diff,, of the subalgebra CoBis:
(5.22) Caier, (C® B) = C.

So the centralizer of L = o(n) is trivial (verification of Corollary 3.1).

We study now the two cases of transitive primitive irreducible Lie algebras we
have already announced and also a reducible case, for which the vector fields have
quadratic coefficients.

Case 1 A=1,s0n=p, N=p+2). Then C = 0 from (5.1), ¥ = 0 from
(5.14): there are no y variables and Z is a one column matrix; so we denote simply
by z the n = u = N — 2 variables (see (5.8)). Then we obtain, as a particular case
of (5.17)~(5.20), the basic vector fields (1 <i,j < n = p):

bi = Bzi, a = — E zjaz]. = D, €5 = Zjazi - Ziazj,
J

1
d; = ziD — '2- (Z Z?)azi

J

(5.23)

defines the realization of the algebra o(n+2) C diff,, which is the conformal algebra
on M. Lie found it first for o(5) (n = 3) and quoted Liouville for recognizing it
as the conformal algebra. Later, in [12], he wrote it for arbitrary n. There is a
grading of the conformal algebras by the degree of the polynomial fields:

(5.24) L=LOaLWaer® [O=B [W=AgE L® =D,

with (summation on identical indices is implied)

(5.24°) B=Bb, A=Aa, FE=E;é; D= D

Notice that A represents the dilations on M = C", E the algebra o(n) and L(") = B,
L2 = D are two n-dimensional Abelian algebras of functional rank n, so they are

maximal Abelian subalgebras of diff,, (i.e. of the class [A}]). They are respectively
ideals of LO @ LM, L2 @ LM which are both isomorphic to the similitude algebra
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in dimension n (i.e. the Euclidean algebra with the dilations). The subalgebras L(®)
and L(? generate the conformal algebra. To summarize:

(5.25) B~D~AM™  E~o(n), A=CD~ A,.

Remark that dimsl(n + 1) > dimo(n + 2) with the equality holding for n = 1. In
this case:

n = 1: The conformal algebra o(3) is identical to sl(2), the projective Lie alge-
bra on the line: o(3) ~ sl(2) = {9,, 20.,2%9.}.

n > 1: The conformal algebra cannot be a subalgebra of the projective alge-
bra. Indeed, from (2.27) and (5.25) we note that their intersection is the
similitude algebra in n dimensions. Only linear transformations preserve
this intersection. Then they also preserve the functional rank, rs, of the n-
dimensional Abelian subalgebras formed by the quadratic fields: these r’s
are respectively n and 1, so they are different for n > 1.

Let us discuss some low dimensional cases.

n = 2: We have the conformal algebra o(4) of the plane. Notice that & and
é are 1 dimensional subalgebras The six basic fields can be combined into
hy = —a+ié, by = by +iby, dy = dy + idy satisfying [hi,di] = 2d,,
[hi,lsi] = —23i, [dAi,IA)i] = 2h, and any field with + index commutes
with any with—index. This corresponds to the known isomorphism: o(4) ~
sl(2) @ sl(2); indeed o(4) is semi-simple but not simple.

n = 3: This case was studied by Lie who showed that o(5) is a maximal algebra
and quoted Liouville for recognizing it as the conformal algebra. Later in
his book [12], the conformal algebra o(n + 2) series was given for arbitrary
n.

n = 4: There is another primitive Lie algebra in this case: S = (sl(4),p(2,2)):
its Abelian subgroup formed by the quadratic fields has maximal functional
rank 7y = n = 4. We verify that the conformal algebra Q = 0(6) is identical
(in agreement with the known isomorphism recalled in (2.23)). The two
algebras S, () have the same constant fields: Ly ~ [A§4)]. Their subalgebras
L® belong to the same class [A @ ] and can be transformed into each other
by a linear transformation that we do not compute exphcltly We only
remark that the linear fields in S form the algebra B @ C, [B,B] C B,
[C’, C’] cC, [B, C} = 0, with the two 2 x 2 matrices B, C satisfying tr B =
tr C; this algebra is isomorphic to sl(2) & sl(2) & A; ~ o(4) & A;. So the
subalgebras L(®) @ L(Y) of S and Q are isomorphic to the similitude algebra
in dimension 4.

Casg 2 (£ =0). Then B=D = FE =0, Z = 0. The only variables are

-1
(5.26) YaBd = —Y3a, N = L/\Q——) N=2\ A>3

We have added the last condition because for A < 2, 0(2)) is not primitive and not
simple. The realization of o(2)) is given by:
0(2X): Co30,, ., + 240,450y, , + YapuFroyus0,, .,

5.27 - -
(5.27) e T pe
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or, with matrix notation:
(5.27") 0(2\) : tr(C' + 2AY —YFY)Vy.

We first show that for A = 3,4 we have already obtained these algebras.

)\ =3 =n: Any 3 x 3 antisymmetric matrix Y can be written as Yij = €ijryrk
were €, is the completely antisymmetric representation of the permutation
of the three indices and the components of y; (which transform as those of
a vector for SL3) are the three independent matrix elements of Y. Then

(528) ——(YFY)” = - Z €iar5ab55bjtyrfsyt
abrst
- Z (61'661"3 - 6i55br)€bjtyrfsyt = (ya f)Y;J
abrst

Hence —trYFYVT = (f,4)(y;0y,) = fryeD. Thus we have shown that
the quadratic terms L) of (5.27) are identical to those of (2.27). The
L© = {9,,} terms are also identical. Since L and L(® generate the
whole algebra we have proven the identity between the two algebras; that is
a verification of the well known isomorphism sl(4) ~ 0(6).

)\ =4, n=6: We show that the obtained algebra o(8) is the conformal one.
Indeed an explicit computation of the quadratic terms yields:

(5.29) 1<i<6, L% ={yD—pu(yd,}, with .
w(y) = yiys +y2ys +Ys¥s = 5 | ¥s Sy ).
2 I; 0

The linear transformation of variables

CA4i (I il . - - (0 I
(5.30) S = ——\/5 (—iIg I ) satisfies S' =S5, SS = <I3 0),

so it transforms the quadratic form Is (which appears in the last quadratic
form of (5.23) for n = 6) into SST and therefore 1/2(y,y) into u(y). So
the conformal algebra for n = 6 is identified with the Os algebra defined
by (5.27) with n = 6. We recall the triality principle of E. Cartan. The
outer automorphism group of Og is S3 (the permutation group of the three
branches of the Coxeter diagram of Dy); it permutes the 3 inequivalent (the
vector one and the two spinors) 8-dimensional linear irreducible represen-
tations of Og. This leads to three inequivalent monomorphism og — diffs;
however, their images are equivalent subalgebras of diff.

CASE 3 (n=1). Then N =2X+1 and n = A(A + 1)/2. That shows that the
dimension 7 is identical to that of the previous family (that with g = 0) with A
replaced by N = A + 1. The N of O(N) in this case satisfies N = N’ — 1, where
o(N’) was obtained for the same n, but y = 0 (the previous family). We shall show
that this o(2)\ + 1) algebra is a subalgebra of 0(2)\') obtained in the previous family
with g =0, N = A+ 1.

With g = 1, in the general equation (5.1) we have to introduce the following
modifications: E = 0, B and D become one column matrices that we replace by
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the “vectors” b,d. Then (5.1) reads:

A —b C
(5.31) Wiia=[d" 0 b" |, withC"=-C, F'=-F
F —d —-AT

It is straightforward to write the corresponding realization of 0(2)\+1) as a particu-
lar case of the equations (5.16). Indeed, we replace Z " and V' by the A component
column vectors z and 9; for instance —B T Z becomes a rank one A x \ matrix that
we denote by bz" while the matrix DZ T becomes the number (= 1 x 1 matrix)
d'z=(d,z2):

532) tr(C+AY +YAT + 2(bzT — ") YFY + Y(dz") = (2d")Y) |V
2 2 i
+(bT +2TAT +d"Y + (2Td)2" - %(de)zT — 2" FY, az),

where we have (ab”) € CM*, (aTb) € C.

LEMMA 5.2. The algebra o(2\+1) constructed in (5.32) is not mazimal in diff,,
but is a subalgebra of o2\ + 2) constructed in (5.27):

o(2A+1) Co(2X+2) C diff,,, n= &)%12

O(2A+1)/P(A\, 1,A) ~ O(2A+2)/P(A + 1,0, A + 1).

PRrROOF. We consider the algebra o(2XA + 2) realized in the space M ~ O(2\ +
2)/P(A+1,0,A + 1) in the realization (5.27). We relabel all the (A + 1) x (A + 1)
matrices involved as follows:

- (A a ~ ([ C ¢ ~ ([ F f
(534) A - (,’_T a) ) C - (_CT O) ) F — (_fT 0) )
~ Y ~ Vy 0,
(5.35) Y = <—zT g) , VY = (_ayT 0) :
A,C,FY,Vy € C**, a,c, f,z 8. € C*1,

C+C"=0, F+F =0, Y+Y  =0.

Rewriting Eq. (5.27) for 0(2A+2), using the notations (5.34)(5.36) we see that
(5.32) is a subcase of the obtained equations with the identification

(5.37) 2a=c=-b, 2f=-r=d, a=0.

(5.33)

(5.36)

This proves the assertions in Eq. (5.33). O

Finally, let us consider an example when the algebra {L, Ly} is not primitive,
namely L ~ o(N,C), Ly ~ p(\,2,\), N = 2\ + 2. More specifically, we consider
N =6, A = ¢ = 2. The construction (5.16) is valid, just as in the primitive
cases. However, for 4 = 2 we can transform from the coordinates {yns, zaa} to
new coordinates (u,v) in which the invariant foliation becomes manifest. Indeed,
consider the case of the algebra o(6) with coordinates {y1» = y, 211, 212, 221, Zoa}
and put

™

up =y -+ 5(211222 = z12221), U2 = 221 + iy,

(5.38)
Uz = 212 — 1292, Wi = Zi1p + 1222, Wy = 2] — i21)-
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The basis vector fields (5.17), ..., (5.20) (for N =6, A = p = 2) are transformed
into

blo=¢=0y,, by +iby =2i0y,, by —ibiy = —2idy,,
byy — iboy = —ugBy, — 2i0u,, by +ib1a = uady, + 20, ,
a11 = w10y, + U0y, + W20y, @12 = i(u30,, — w10, ),
G91 = 1(—u20y, + w20y, ), Gy = w10y, + U300y, + w10y, ,
€12 = & = i(u20y, + u30y, — W10y, — W20y, ),

d11 + ’I,dgl = 2’[L16u3 + zwz(wlawl + w26w2 s
(5.39)

21,’11,1 — UW1 — 11,3102]81”1,

)
-—dzg + idio = 2u18u2 + 1w (’wlawl + wo Oy, ,2),
idyy + do1 = ug (118, + 28y, + u30y,) + |

[

)+
—id22 + dAlg = U3(ulau1 -+ ’LL28U_2 + U36u3) 2Z’LL1 — UW1 — U3’UJ3 wo s

~ ~ 7
fi2 = f = —u1(u10y, + u20y, + Ug@ua) + wq [ul — §(w1u2 + w2u3 ]
7
+ wy [m — i(wlm + wous ]8,,,2.

The point of the above exercise is that in Eq. (5.39) the coefficients of d,,,
0., and 9,, depend only on (uj,us,u3). Thus, we could have started out from
the transitive primitive case o(6) D p(3,0,3), constructed the n = 3 realization
(with y12 = us3, yos = u1, Y31 = u2) and then extended it to the higher dimension
n = 5 by adding further coordinates wy, ws, labeling leaves in an invariant foliation.
This corresponds to the procedure described in the Introduction for constructing
nonprimitive algebras from primitive ones.

SUMMARY OF THE RESULTS OF THIS SECTION. We have constructed a double
series, A > 1, p > 0 of algebras o(N), N = 2\ + pu, as subalgebras of diff,,,
n = Mg+ AN —1)/2. The series A = 1, which constructs the conformal algebras
o(n +2) (with n = p), was known to S. Lie. For n = 1 and n = 4 they have been
already obtained in Section 4, due to the respective isomorphisms sl(2) ~ o(3) and
sl(4) ~ o(6); for n = 2, o(4) is not a simple algebra (it is maximal in diff;). The
series 1 = 0 starts at A = 3; the corresponding o(6) is identical to the projective
sl(4) and for A = 4 the corresponding o(8) is identical to the conformal o(8). The
series p = 1 gives only subalgebras of the series ;1 = 0 and the series 4 = 2 does not
yield primitive algebras. The vector fields in general have polynomial coeflicients
of order up to four. They are of second order if the primitive algebra is irreducible
(A =1, or p = 0) or if it is reducible, but not maximal, (x = 1) and contained in a
larger irreducible subalgebra (o(2X + 1) C o(2X + 2) C diff,,). O

6. The Homogeneous Spaces M = Sp(2N)/P(\, 2u, \)
The symplectic group Sp(2N) is the subgroup of SL(2N) which leaves invariant

the quadratic form

, 0 Iy e
(6.1) Iy = ("IN (;) satisfying Jy = —Jn.
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In order to introduce maximal parabolic subalgebras, we will use a more refined
block decomposition A, 2u, A:

0 0 I,
(6.2) N=X+pu Jy=|0 J, 0], J =-J,
-I, 0 0

which leads to the realization the Lie algebra sp(2N) of the symplectic group by
the set of matrices W:

A BT C
(63) W=<(|D E LBl Cl=C; F'=F, E'"=J,EJ,
F —DTJM —AT
where A, B,C, D, E, I represent all possible matrices with the dimensions:
(6.4) - A,C,F e CM* B,DeCH¥* EeC

satisfying conditions given in (6.3).

As in the previous section, following Ref. [15] we realize the homogeneous
space M = SP(2N)/P(X,2u,\) as a Grassmannian of isotropic planes in C2?V
(where P(A, 2u, A) is the maximal parabolic subgroup corresponding to the maximal
parabolic subalgebra obtained by putting B =0, C' = 0 in (6.3)). To eliminate the
redundancy of homogeneous coordinates we transform to affine coordinates namely
elements of the matrices

(6.5) Z e CHA Y e CMA,

verifying the relation:
1 1
(6.6) 2X = 7"J,Z with X = §(Y’ YN, v = 5(y’ +Y'T).

That means that X, the antisymmetric part of Y, does not represent independent
coordinates; so we shall eliminate it. That yields for n = dim M:

1
(6.7) nz2Au+§A(A+1), 1<A, 0<pu, N=A+p.
Introducing the symbolic matrices:
1<a, b<2u, 1 <a,B< A,
(VY)QB = ay(,ga Ypa = Yas, (VZ)aa = azaa'

We obtain the formula corresponding to (3.76) of Ref. [15], that is the realization
of sp(2N) as subalgebra of diff,,:

(6.8)

(6.9) L= tr(C +AY +YAT + %(BTZ +Z'B)-YFY
1 -
+§(Y11)TJMZ ~Z'"J,DY) :
+ZZTJ,1(DZT +2ZD")J,Z - ZZTJIJZFZTJ,¢Z> vy
- 1
+ tr(JﬂB +DY +EZ+ZA" + §DZTJHZ +2ZD"J,Z

__ T :

~ZFY - S ZFZ JMZ)V;,

where the matrices A, B,C', D, E, F are arbitrary complex matrices satisfying the
conditions (6.3)-(6.4)).
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Let us now study the two cases when the quartic vector fields in Eq. (6.9)
reduce to quadratic ones.

Case 1 (p=0). Then B =D = E =0, Z = 0 and this corresponds to a
transitive primitive irreducible Lie algebra. The only variables are

(6.10) Vos = Yser m= PAAHD), 2N =2

The corresponding realization of sp(2A) is given by:

(6.11) sp(2)\): tr(C+ AY +YAT —YFY)Vy, C=C", F=F".
‘We notice that

(6.12) ri(ttY FYVY) = n.

For A = 1, n = 1 we simply verify the known isomorphism sl(2) = sp(2). For A = 2,
n = 3; since sp(4) ~ o(5), we have obtained one of the two o(5)’s found in Section 5
and known to Lie. From the value of the functional rank of the quadratic fields,
this realization of sp(4) is the conformal o(5).

There is another series of realizations of symplectic Lie algebras with polyno-
mial vector fields of degree < 2; it corresponds to A = 1. Remark that it is obtained
(for pn > 0) from reducible primitive transitive algebras:

CasE 2 (A=1). 2N =2u+2, n = 2p+1, so 2N = n+ 1. The elements
of the W matrix can be decomposed into 3 numbers: (a,7, ), 4 vectors with
components (b, ', d, d" represented by a f lines, 1 column matrix), and three p x p
matrices: (R, S =ST,T=TT"). Explicitly:

a b VT oy
d R S v
d T -R" -b
o dT —d' -«

(6.13) W=

The n = 2uu + 1 variables are 7, z, 2. We denote by (b.d) = b"d the scalar product
of two vectors. The derivative operators are 9, and two symbolic vectors: V., V..
With this structure for W one finds that the algebra L of (6.9), when decomposed
according to the degree of the vector fields, has only polynomials of degree 0,1,2
(the vanishing of higher degree terms is due to the vanishing of zZ'J,Z = 2X).
The set of quadratic terms is:

(6.14) (—pn—(d'-2)+(d-2))D, withD=nd, +2-V.+2 -V,
where D is the dilation operator. This set of vector fields has functional rank 7, = 1.
So the realization in diff,, of this algebra sp(2p+2) = sp(n+1) contains only linear

combinations with constant coefficients of the basis vector fields of sl(n + 1). We
have arrived at the following result.

LEMMA 6.1. Thesp(n+1) algebra (n odd) constructed in (6.14) as a subalgebra
of diff,, is not mazimal. It is contained in the projective sl(n + 1) realized in (2.27)
for the same n:
sp(n+ 1) Csl(n+ 1) C diff,,,

(6.15) SP(n+ 1)/ P(1n — 11) ~ SL(n + 1)/P(n.1).
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As in the case of o(N) we see that the coefficients of vector fields are at most
second order polynomials, if the parabolic subalgebra is irreducible (¢ = 0) or if it
is reducible, but the algebra is not maximal. Then it is contained in an irreducible
one.

The other symplectic algebras described by (6.9), with A # 1, p # 0 are
represented by polynomial fields of degree up to 4. The smallest values of 2N and
n for these algebras are for A = 2, u = 1; they define sp(6) C diff.

7. Summary and Conclusions

We have explicitly constructed all transitive primitive Lie algebras (L, L),
where L is a classical complex simple Lie algebra and Ly is one of its maximal
parabolic subalgebras. They have all been realized as subalgebras of diff,, for some
value of n. We thus have a list of all such subalgebras of diff,, for all values of n.

The dimension of the corresponding homogeneous spaces are:

SL(N)/P(r,s): n =rs, N =r+s,
(7.1) O(N)/P(A,,u,/\):n:)\(,u—i—)\_—;l), N =2 4+pu, p#2,

Sp(2N)/P(A,2u,N\):n = /\<2,u+ )\—;—1>, N =X+ p.

All such pairs (L, L) are summed up in Table 2 for 1 < n < 20.

We have already seen that some seemingly different realizations are actually
equivalent under local diffeomorphisms. Moreover, not all of the constructed sub-
algebras of diff,, are maximal.

Let us discuss the question of mutual inclusions amongst the constructed alge-
bras somewhat further.

The following lemma is of use in this analysis.

LEMMA 7.1. Let L and S be two classical simple complex Lie algebras and let
us have L C S. Then L can be a maximal subalgebra of S in only two cases:

1. If L has an irreducible representation of dimension N where S issl(N), o(N),
or sp(N) (N even in the last case).
2. If Sis o(N) and L is o(N —1).

PROOF. The simple subalgebra L C S can be imbedded in the defining repre-
sentation of S (and any other representation of S), either reducibly, or irreducibly.
If it is imbedded irreducibly, it leaves no nontrivial subspace of the representation
space invariant. In this case L is maximal in S if it has no centralizer in S.

If L is imbedded in S reducibly, it leaves a nontrivial subspace V of the repre-
sentation space C" invariant. If S is sl(N) the invariant subspace are completely
characterized by their dimension. Moreover, all maximal reducibly imbedded sub-
algebras are parabolic ones. If S is o(N), or sp(N) then any invariant subspace
is characterized by its dimension and the degree of its degeneracy, i.e. the number
of zero length vectors in an orthogonal basis (with respect to the corresponding
orthogonal, or symplectic invariant form). If the invariant subspace is degenerate,
the corresponding maximal subalgebra will again be parabolic.
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TABLE 2. Primitive subalgebras (L, Ly) of diff,, for 1 < n < 20
with L simple classical and Ly maximal parabolic

sI(N)/P(r, s) o(N)/P(A\, 1, A) [ Sp(2N)/P(X,2p, \)
n N 7 s N A o N A m
1 2 1 1 3 1 1 1 1 0
2 3 2 1
3 4 3 1 6 3 0 2 1 1
5 1 3 2 2 0
5 2 1
4 5 4 1 6 1 4
4 2 2
5 6 5 1 7 1 5 3 1 2
6 7 6 1 8 1 6 3 3 0
5 3 2 8 4 0
7 3 1
7 8 7 1 9 1 7 4 1 3
7 2 3 3 2 1
8 9 8 1 10 1 8
6 4 2
9 10 9 1 11 1 9 5 1 4
6 3 3 8 2 4
10 11 10 1 12 1 10 4 4 0
7 5 2 10 5 0
9 4 1
11 12 11 1 13 1 11 [§ 1 5
9 2 5 4 2 2
12 13 12 1 14 1 12 4 3 1
8 6 2 9 3 3
7 4 3
13 14 13 1 15 1 13 7 1 6
10 2 6
14 15 14 1 16 1 14
15 16 15 1 17 1 15 8 1 7
8 5 3 12 6 0 5 2 3
11 5 1 5 5 0
11 2 7
10 3 4
16 17 16 1 18 1 16
10 8 2
8 4 4
17 18 17 1 19 1 17 9 1 8
12 2 8
18 19 18 1 20 1 18 5 3 2
11 9 2 11 4 3 5 4 1
9 6 3 11 3 5
19 20 19 1 21 1 19 10 1 9
13 2 9 6 2 4
20 21 10 1 22 1 20
12 10 2
9 5 4

Let V C CV be nondegenerate. Then the orthogonal complement V* is also in-
variant. The maximal subalgebra leaving V and V* invariant is in general semisim-
ple, namely o(N;) @ o(N»), Ny + N2 = N for S ~ o(N), or sp(N;) @ sp(N2) for
S ~sp(N) (N, Ny and N even).
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The sole exception occurs for Ny = N —1, Ny = 1 when the reducibly imbedded
maximal subalgebra of o(N) is o(N — 1). The reason for the exception is that the
complement o(1) is the Lie algebra consisting of only the null element.

This completes the proof of Lemma 7.1. O

COROLLARY 7.1. Let (L,Lg) and (S, Sp) be two transitive primitive Lie alge-
bras with

(7.2) n=dimL —dimLy = dim S —dim Sy, dimL <dim§.

We can have L C S only if L has an irreducible linear representation of dimension
N, the dimension of the defining representation of S, or if we have L ~ o(N — 1),
S ~o(N).

PROOF. Any subalgebra of S is contained in at least one maximal subalgebra
of L. The maximal subalgebra must be primitive, if L is to be primitive. According
to Lemma 7.1 this is only possible in the two cases covered by the corollary. O

Lemma 7.1, together with dimensional considerations, help us to establish, or
in the contrary, to rule out many possible mutual inclusions. Other cases need a
detailed analysis of the form of the vector fields. This we postpone to a future
publication.

We have seen that for all Lie algebras considered in this article the vector fields
have polynomial coefficients. The order of these polynomials for the primitive Lie
algebras is at most four. '

The polynomials are at most quadratic in the following cases.

1. Lg is a maximal parabolic irreducible subalgebra of L. This covers the cases
[(UN),p(r,s)], [0(2,k),p(k,0,k)], [o(N),p(1,N —2,1)], [sp(2N), p(N,0,N)].

2. Lg is a maximal parabolic reducible subalgebra of L, L is not maximal in
diff,,, but we have

(7.3) L cScdiff,, dimL— dimLo= dimS — dim Sp,

and Sy is a maximal parabolic irreducible subalgebra of S. The only such cases
correspond to the spaces

O(2k+1)/P(k,1,k) ~O(2k+1)/P(k+1,0,k+ 1),
Sp(2N)/P(1,2N —2,1) ~ SL(2N)/P(2N —1,1).

Notice that both cases of Lemma 7.1 and its corollary are represented here.
Indeed o(2k + 1) is imbedded reducibly in o(2k), sp(2N) is imbedded irreducibly in
sl(2N).

The situation is particularly simple for the sl(N) subalgebras of diff,,.

(7.4)

THEOREM 7.1. The primitive Lie algebras sl(N) constructed in Section 4 are
mazimal among the simple subalgebras of diff,, for all values of n.

PROOF. Let sl(N') C sl(N) C diff,, NN =X+ < N=XA+pand Ny =
A = n. We can exclude the case N’ = N because that implies ' = A and p/ = p,
i.e. the two algebra would be identical. So n must be the product of two different
pairs of integers; that requires n > 4. From Section 4 we know that N < n + 1.
From the theory of irreducible representations of the sl(N)’s, it is known that N
is the smallest dimension of a nontrivial irreducible representation and that the
next smallest dimension greater than N for an irreducible representation is the
antisymmetric tensor square of the defining (= N-dimensional) representation; its
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dimension is N(N —1)/2. So we must have d = N'(N' —1)/2 < N <n+1. Using
n = X/, an explicit computation gives:

1 1 1
(7.5) d= 5(/\’ + YN+ —1)= —2—/\’()\’ —-1)+ 5//(;/ - +n<n+1
= NN -1)+pp-1) <2
The inequality is incompatible with n = X'y’ > 4. O

The smallest orthogonal representation of sl(N') is the adjoint representation,
of dimension d = N'% — 1 except for sl(4) ~ o(6) (special case that we have already
studied). The largest value of N for o(N) C diff,, is n + 2 (except for n = 3: it
is N = 6; case that we have studied). So we have to study when the inequality
d < n + 2 can be satisfied with N’ = X + v/ and n = \'i/. We obtain

(7.6) d=X?+p?+2m—1<n+2 < N?+4?<3-n & n<l

That shows that no sl(N’) of Section 4 is a subalgebra of o(N) of Section 5 except
for the two isomorphisms already quoted.

The smallest symplectic linear representation of sl(N') has a larger dimension
than the adjoint one except for sl(6) C sp(20). Relation (7.6) applies a fortiori in
the general case and the special case is directly ruled out.

Let us now run through the low dimensional cases of diff,, following Table 2 and
identify all maximal subalgebras, all equivalences and all inclusions. The notation
L/Lg ~ L' /L}, means that the two realizations are equivalent L/Ly C S/Sy means
that L C S and the realization of L is not maximal in diff,,.

n=1 s1(2)/p(1,1) ~ o(3)/p(1,1,1) ~ sp(2)/p(L,0,1)
Maximal in diff,,.

n=2 sl(3)/p(2,1)
Maximal in diffs.

n=3 sl(4)/p(3,1) ~ 0(6)/p(3,0,3)

0(5)/p(1,3,1) ~ sp(4)/p(2,0,2)
0(5)/p(2,1,2) ~sp(4)/p(1,2,1) Csl(4)/p(3,1)
The first two are maximal in diffs.
n=4 sl(5)/p(4,1)
sl(4)/p(2,2) ~ 0(6)/p(1,4,1)
Both are maximal in diff4.
n=>5 sl(6)/p(5,1)
o(7)/p(1,5,1)
sp(6)/p(1,4,1) Csl(6)/p(5,1)
The first two are maximal.
n==6 sl(7)/p(6,1)
sl(5)/p(3,2)
o(8)/p(1,6,1) ~ o(8)/p(4,0,4)
sp(6)/p(3,0,3)
o(7)/p(3.1,3) C o(8)/p(1,6,1)
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The first four are maximal in diffg.
n="7T sl(8)/p(7,1)

0(9)/p(1,7,1)

sp(6)/p(2,2,2)

sp(8)/p(1,6,1) C sl(8)/p(7,1)

The first three are maximal. The sp(6)/p(2,2,2) case is the first
primitive one with quartic coefficients.

n=2=8 All three algebras in Table 2 are maximal.
n=29 sl(10)/p(1,9)

o(11)/p(1,9,1)

o(8)/p(2,4,2)

si(6)/p(3,3)

sp(10)/p(1,4,1) C slsl(10)/p(9,1)

The first four are maximal.

n =10 All algebras are maximal except 0(9)/p(4,1,4) C 0(10)/p(5,0,5).

n =11 All algebras are maximal except sp(12)/p(1,10,1) C sl(12)/p(11,1).
n =12,13,14 All algebras are maximal.

n =15 sl(16)/p(15,1)

sl(8)/p(5,3)

o(17)/p(1,15,1)

0(12)/p(6,0,6)

sp(10)/p(5,0,5)

sp(10)/p(2,6,2)

o(11)/p(5,1,5) C 0(12)/p(6,0,6)

sp(16)/p(1,14,1) C sl(16)/p(15,1)

The first six are maximal; sp(10)/p(2, 6, 2) has quartic coefficients.

For n = 15 we encounter the first case when our simple criteria based on
dimensions and ranks of algebras, dimensions of representations and on the order
of the polynomials involved, are not sufficient to decide upon mutual inclusions.
Indeed, consider the pair 0(10)/p(3,4,3) and o(11)/p(2.7,2). As we know, o(10)
can be imbedded reducibly in 0(11), without having a centralizer. For both algebras,
the coefficients of the vector fields involve quartic polynomials. A different study
is needed to decide whether this 0(10) can be transformed into the o(10) contained
reducibly in o(11).

This problem is typical of the ones that we are postponing to a future article and
that occur for higher values of n. For a given value of n we can have two different
realizations of o(/V), corresponding to two different pairs (A1, 1) and (Mg, p2).
Similarly, we can have two different realizations of sp(2N). Pairs of algebras o(N),
o(N + 1) occur for many values of n. An analysis of inclusions and equivalences
among such algebras is in preparation.



TRANSITIVE PRIMITIVE MAXIMAL SIMPLE LIE SUBALGEBRAS OF diff, 479

Acknowledgements

We thank Dr. J. Patera for many helpful discussions. The authors thank each

others institutions for hospitality during mutual visits. The research of P. W. was
partly supported by research grants from NSERC of Canada and FCAR du Québec.

10.

11.

12.

13.

14.

15.

16.

References

R. L. Anderson, A nonlinear superposition principle admitted by coupled Riccati equations of
the projective type, Lett. Math. Phys. 4 (1980), no. 1, 1-7

. R. L. Anderson, J. Harnad, and P. Winternitz, Systems of ordinary differential equations with

nonlinear superposition principles, Phys. D 4 (1982), 164-182.

. J. Beckers, V. Hussin, and P. Winternitz, Nonlinear equations with superposition formulas

and the exceptional group Ga. 1. Complex and real forms of g2 and their mazimal subalgebras,
J. Math. Phys. 27 (1986), no. 9, 2217-2227; I1. Classification of the equations, J. Math. Phys.
28 (1987), no. 3, 520-529.

. M. R. Bremner, R. V. Moody, and J. Patera, Tables of dominant weight multiplicities for

representations of simple Lie algebras, Marcel Dekker, New York, 1985.

. J. F. Cornwell, Group theory in Physics, vol. II, Academic Press, London, 1984.
. M. Demazure, Classification des algébres de Lie filtrées, Séminaire Bourbaki, vol. 19661967,

19e année, W. A. Benjamin Inc., New York-Amsterdam, 1968, pp. 326-01-326-11.

. M. Golubitsky, Primitive actions and mazimal subgroups of Lie groups, J. Differential Geom.

7 (1972), 175-191.

. V. W. Guillemin and S. Sternberg, An algebraic model of transitive differential geometry,

Bull. Amer. Math. Soc. (N.S.) 70 (1964), 16-47.

. S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. I, J. Math.

Mech. 13 (1964), 875-907; 11, J. Math. Mech. 14 (1965), 513-521.

J. Krause and L. Michel, Classification of symmetries of ordinary differential equations, Lec-
ture Notes in Physics, vol. 382, Springer-Verlag, Berlin, 1991, pp. 251-262.

S. Lie, Klassifikation und Integration von gewchnlichen Differentialgleichungen zwischen x,y
die eine Gruppe von Transformationens gestatten. I, ..., IV, Sophus Lie Gessamunelte Ab-
handlungen, vol. 5, X, XI, XIV, XVI, Teubner, Leipzig, 1924.

, Theorie der Transformationsgruppen, Dritter Abschnitt, Abteilun. I, Unter
Mitwirkung von Pr. F. Engel, Teubner, Leipzig, 1893.

, Vorlesungen tiber continuirliche Gruppen mit geometrischen und anderen Anwen-
dungen, Bearbeitet und herausgegeben von Dr. G. Scheffers, Teubner, Leipzig, 1893.

T. Ochiai, Classification of the finite nonlinear primitive Lie algebras, Trans. Amer. Math.
Soc. 124 (1966), 313-322.

S. Shnider and P. Winternitz, Classification of systems of nonlinear ordinary differential
equations with superposition principles, J. Math. Phys. 25 (1984), no. 11, 3155-3165.

, Nonlinear equations with superposition principles and the theory of transitive prim-
itive Lie algebras, Lett. Math. Phys. 8 (1984), no. 1, 69-78.

. B. Yu. Veisfeiler, A certain property of semisimple algebraic groups, Funksional. Anal. i

Prilozhen. 2 (1968) no. 3, 84-85. (Russian)

INSTITUT DES HAUTES ETUDES SCIENTIFIQUE, 91440 BURES-SUR-YVETTE. FRANCE
E-mail address: michel@ihes.fr

CENTRE DE RECHERCHES MATHEMATIQUES, UNIVERSITE DE MONTREAL. C.P. 6128, succ.

CENTRE-VILLE, MONTREAL. QUEBEC. H3C 3J7. CANADA

E-mail address: wintern@CRM.UMontreal.CA



