
Commun. math. Phys.27. 195—222 (1972)
© by Springer-Verlag 1972

Central Decomposition of Invariant States
Applications to the Groups of Time Translations

and of Euclidean Transformations
in Algebraic Field Theory

D. KASTLER and M. MEBKHOUT
UER Pluridisciplinaire de Marseille-Luminy. Universite d'Aix-Marseille II et Centre de

Physique Theorique, CNRS, Marseille, France

G. LOUPIAS
Physique Mathematique

Equipe de Recherche Associee au CNRS, Departement de Mathematiques, Universite des
Sciences et Technique du Languedoc, Montpellier, France

L. MICHEL
Institut des Hautes Etudes Scientifique, 91440 Bures-Sur-Yvette, France

Received March 15, 1972

Abstract. With 2ί a C*-algebra with unit and geG-+ag a homomorphic map of a
group G into the automorphism group of G, the central measure μφ of a state Φ of 31 is
invariant under the action of G (in the state space of $ί) iff Φ is α-invariant. Furthermore if
the pair {$1, G} is asymptotically abelian, Φ is ergodic iff μφ is ergodic. Transitive ergodic
states (corresponding to transitive central measures) are centrally decomposed into primary
states whose isotropy groups form a conjugacy class of subgroups. If G is locally compact
and acts continuously on 5ί, the associated covariant representations of {51, α} are those
induced by such subgroups. Transitive states under time-translations must be primary
if required to be stable. The last section offers a complete classification of the isotropy
groups of the primary states occurring in the central decomposition of euclidean transitive
ergodic invariant states.

Introduction

The general setting of this paper is the one encountered in algebraic
field theory: we are given a C*-algebra 21>(in physics the "quasi-local
algebra", norm completion of the set of local obervables) and a locally
compact group G acting as automorphisms of S2I (one of the invariance
groups of the physical theory). We recall that the states of $ί (normalized
positive functionals) are interpreted as the states of the physical system.
The states of 2ί invariant under G are of particular interest both mathe-
matically and physically. Mathematically they provide a "non com-
mutative generalization" of the invariant measures basic in ergodic
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theory; the representations of 2ί which they generate are "covariant"
in the sense that the G-automorphisms are implemented by a unitary
representation of G in the representation Hubert space. The non com-
mutative analogues of the ergodic invariant measures of classical
ergodic theory are the extremal invariant states, the so called ergodic
states. Physically the interest of invariant states resides in the descrip-
tion of thermodynamical equilibrium states of infinite quantum systems,
whereby G is either the time evolution group or some other invariance
group of the physical theory, e.g. the euclidean or the gauge group. The
most basic role in connection with equilibrium states is played by the
time translation group: physical equilibrium states are by definition
time-invariant and we expect them to be ergodic if they represent pure
thermodynamical phases. On the other hand invariant ergodic states
with respect to other symmetry groups (e.g. the euclidean or the gauge
group) seem of interest for physics because a wide class of them is shown
to be integrals of states with lower symmetry, i.e. invariant only under
a subgroup of G [1, 2, 3]. Such states "with broken symmetry" frequently
occur in nature as equilibrium states of physical systems, e.g. ferro-
magnets, crystals, superfluids, superconductors.

In this paper we study with the above motivation the central decom-
position of invariant, and especially of ergodic, states. Given an arbitrary
state Φ of the C*-algebra 21 one can define a unique "central decom-
position of Φ" into primary1 states

Φ=\ψdμφ(ιp). (*)

This decomposition corresponds to the unique central reduction of the
representation of 91 generated by Φ and assigns uniquely to each state Φ
of 9ί its "central measure" μφ which can be characterized by properties of
(*) making no reference to the central reduction of representations
[5, 6]. After a first section recalling the main properties of the central
decomposition as well as some known equivalences between definitions
of continuity for the action of G on 2ί, we describe in Section 2 the basic
features of central decompositions of invariant states: we show that Φ
is G-invariant if and only if μφ is invariant under the transposed action
of G on the state space S of 91 and moreover that in the case of asymptoti-
cally abelian systems, Φ is ergodic if and only if μφ is ergodic (in fact the
restriction to the asymptotically abelian case can be avoided if we define
ergodicity of states as the feature that G acts ergodically on the center of
the associated representation rather than as e.g. convex extremality).
The latter result provides an immediate classification of ergodic states

1 A state is called primary whenever the weak closure of the set of representatives in
the representation it generates is a von Neumann factor.



Central Decomposition of Invariant States 197

into transitive ergo die states (having transitive ergodic measures) and
the ones which are not. The first, more elementary, type is considered
in Section 3 where one shows that the central decomposition (*) can then
be effected by integrating over a homogeneous space of G, namely the
orbit of G (in the state space 6) on which μφ is concentrated. We further-
more show that the covariant representation of 2ί associated to Φ is an
induced representation, whereby the inducing subgroup is the stabilizer
(isotropy subgroup) of the points of that orbit.

The last two sections provide physical applications. Section 4,
devoted to the group of time-translations, offers a discussion of the
connection between primariness of an ergodic transitive invariant state
and a "stability" property. Section 5 contains a classification of all
homogeneous spaces of the euclidean group which carry a bounded
invariant measure. One finds, of course, amongst them, those correspond-
ing to the "crystallographic groups", but also other cases some of which
at least occur in nature.

A first version of the initial sections of this paper was distributed a
few years ago as a preprint under the co-authorship of Rudolf Haag, who
decided to our regrets to withdraw from the present final version. In fact
the whole project initiated in an attempt to answer the following question
raised by Prof. Haag: why is it that in all physically meaningful known
models equilibrium stages turn out to be primary? We would like to
express our hearty thanks to Prof. Haag for the incentive the provided
to this paper and we hope to give a satisfying answer to this question
in our Section 4.

§ 1. Generalities

Let 2ί be a countably generated C*-algebra with unit /, 2ί* its
topological dual space and S the state space of 21 (i.e. the set of elements
Φ e 21* such that Φ(A* A)^Q for all A e 21 and Φ(I) = ||Φ| - 1). Under the
w*-topology inherited from 21* (with neighbourhoods of zero the
UεΛAι] = { Φ ε < 5 \ \ Φ ( A i ) \ < ε 9 i= 1, 2, ...n}, ε>0, Al9 A2,... AneW, n arbi-
trary integer), S is compact with a countable basis of open sets and thus
metrisable. We denote by 21** the bidual (enveloping Von Neuman
algebra [7 § 12]) of 21 and by 3 the center of 21**.

For a Φ G S, πφ denotes the representation of 21 obtained from Φ by
means of the Gelfand-Segal construction [8, 9] (acting on the Hubert
space jtfϊφ with cyclic vector Ωφ such that Φ(A) = (Ωφ \ πφ(A) \ Ωφ), A e 21).
Φ and πφ have unique σ-continuous extensions to 21** [7, § 12] for
which we use the same symbols Φ, πφ. Furthermore we denote by μφ

and Aφ the respective central (Radon) measure of Φ and corresponding
central homomorphism with the following defining properties: μφ is a
regular measure on the compact set 6 such that one has, for each A e 2ί



198 D. Kastler, M. Mebkhout, G. Loupias, and L. Michel:

and Z e 3,

Φ(ZA) = f ΛΦ(Z) (ψ) ιp(A) dμφ(ψ)

(D
(= (μφ, ΛΦ(Z)-A) with A(ψ) = ψ(A\ψε&)

where ΛΦ:Z-+AΦ(Z) is a (σ-continuous) *-homomorphism of 3 onto
the Von Neumann algebra L°° (6, μφ) of essentially bounded μ-measurable
functions on 8. As shown by Sakai in [5] this definition ensures the
existence and uniqueness of the pair μφ, Aφ, to each Φ 6 3. The measure
μφ is moreover concentrated on the Borel subset J^ of primary states of
91: μφ(J^) — μφ(3) (the primary states of 91 are those for which the weak
closure of πφ(9I) is a factor in the sense of Von Neumann; they form a
Borel set according to [10, 10a]).

Remark. The kernel of the mapping Aφ is the intersection of 3 and the
kernel of πφ. In other terms the statements AΦ(Z) = 0 and πφ(Z) = 0,
Ze3, are equivalent and, consequently, there is an isomorphism
πφ(Z)<-*/lφ(Z) between the center of πφ(9I)" and the Von Neumann
algebra Lx(£, μφ): AΦ(Z) = 0 implies namely that Φ(ZA) = Q for all
A e 91 and thus that 0 - Φ(A1ZA2) = (Ωφ\nφ(Al) πφ(Z) πφ(A2)\Ωφ) for all
Aί,A2e

<Ά whence πφ(Z) = 0 by the cyclicity of Ωφ; and conversely
πφ(Z) = 0 implies that Φ(Z*Z) = ||πφ(Z) Ωφ\\2 = 0 whence, setting A = I
in (1), <μφ, |ΛΦ(Z)|2> - 0, whence ΛΦ(Z) = 0.

Let now gEG-^ag be a homomorphism of the group G into the
automorphism group of 9ί(αyf \&2 = α~ 1 a92, <?1 5 g2 e G). The isometric
linear operator α g , £ / e G , [7; 1.8.3] has a vv*-continuous isometric
transposed α^ in 91* and a σ-continuous bitransposed αf

g

r in 91** Further,
since ag is an automorphism of 91, ofg leaves invariant the state space
S ^ 91* (or, equivalently, acts on 91* in an order-preserving manner) and
ΰfg is an automorphism of the Von Neumann algebra 91** [11; Lemma
(2,4)]. On the other hand the mappings g e G-^α^-1 and g e G->α^ are
group-homomorphisms. The following Lemma, which we do not claim
to be original, gives equivalent formulations of the action of G on 91 or 9Ϊ*.

Lemma 1. Let G be locally compact. The following are equivalent:

(i) G acts on 9ί in a weakly continuous manner, i.e. g E G->Φ(ag(A})
is continuous (at g = e, the unit element of G) for all Φ e S (Φ e 91*) and
AeW.

(ii) G acts on 91 in a strongly continuous manner i.e. g<ΞG-^ag(A)
is norm continuous (at g — e) for all A e 91.

(iii) The functions g e G-»α^(Φ), Φ e S (Φe9I*), are equiconlίnuous
(at g = e).
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(iv) G is a topological transformation group of S, i.e. the mapping

(g, Φ) £ G x S -> αf

g(Φ) G 6

/s continuous from the topological product G x S ίo S.

Proof. Since g -> αg is a group homomorphism, continuity properties
at g = e imply the same continuity properties at any spot in G. On the
other hand condition (iii) and (iv) can be stated either for all Φ e S or
equivalently for all Φ e 21* since the latter are linear combinations of the
former [7; 2. 6. 4]. Condition (ii) obviously implies (i). The converse is a
known fact in the theory of group representations on Banach spaces
[12; 10.2 corollary] and [12a].

Condition (iii) on the other hand means that to each g e G and

entourage ϋf^(Aι} = {(φi, ^2)!^! ~ 9 2 E ^.{A,}} °f ^ there is a neighbour-
hood V of g in G such that (ofg(Φ),ofg.(Φ))Ei^ΛAι} for all #'eF and
Φ e 3. The last condition reads

ε > Sup |{<(Φ) - oψ(Φ)} (Λ)l ̂  Sup \Φ(xg(Ak) - αg,(Ak))\
ΦeS ΦeS

= ||α,Uk)-α^U fc)||, fc=l,2,...n,

which shows the equivalence of (iii) and (ii). Now (iv) is obviously stronger
than (i). On the other hand if we write

\{ofg(Φ) - oφ(Φ')} (A)l - IK(Φ) - <(*')} (Λ) + {αf

g(Φ') - <,(Φ')} Uk)|

^ |{Φ - Φ'} (α,(Λ))l + I^K(Λ) - <vU*))l

we see that (iii) implies (iv).

§ 2. The Central Decomposition of Invariant States

Our first result states the transformation properties of central
measures and central homomorphisms under automorphisms of 21.

Lemma 2. Let Φ e S and let α be an automorphism 0/21 wiί/i transposed
of in 21* and bitransposed a" /n 21**. T/zβ central measure of the state a f(Φ)
is gfίf en by

) (2)

(^(S) zs ί/?β seί 0/ continuous functions on S). For ί/ie corresponding
central homomorphism one has

Ayt(φ)(Z) = (Aφ = a") (Z) c (a')- 1 , Z e 3 - (3)
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In particular, for a state Φ invariant under α (i.e. such that of(Φ) = Φ)
the measure μφ is invariant under αr :

(4)

and the homomorphism Λφ is such that

Proof. We have by (1) and by the definition of α", for A e 21 and Z e 3

α r(Φ)(Z/lHΦ(α ίΓ(Z)α(/l))

= j Λφ(α"(Z)) (tp) ψ(a(A)) dμφ(ψ) (6)
<5

= ί {(/tφ ' α") (Z) o oΓ '} (α'(ψ)) {α'(ψ)} (A) dμφ(ψ)

with Z-+(ΛΦ ~ α ί r) (Z) = α' 1 a σ-continuous homomorphism of 3 onto
L^fS, μφ) due to the continuity of αr, the σ-continuity of α" and the
automorphic property of the latter. Thus (6) is of the form (1) with Φ
replaced by of(Φ\ so that (2) and (3) follow from the uniqueness of the
central measure and central homomorphism associated with the state
of(Φ). Formulae (4) and (5) are specializations of (2) and (3) for states Φ
such that of(Φ) = Φ.

Corollary. Let Φ e 2> with associated central measure μφ and let α be
an automorphism of 21 with transposed od in 2Ϊ*. The state Φ is invariant
under α (in the sense that Φ(a(A)) — Φ(A) for all Ae^Ά) if and only if the
measure μφ is invariant under of (in the sense of fulfilling (4)) .

Proof. If (4) holds we have from (1) where Z = / and A is arbitrary in 21

Φ(A) = j ψ(A) dμφ(ψ) = j (of(ψ)} (A) dμφ(ψ)

thus Φ is invariant. The converse is the statement that (4) results from
y!(Φ) = Φ in the previous Lemma.

Let us now return to the system {21, α} of a C*-algebra 21 and a
homomorphism g e G-+ug of a group G into the automorphism group of
21. Let Φ be a G-invariant state of 21, i.e. a state such that c^(Φ) = Φ for all
g e G (or else such that Φ(ug(A)) = Φ(A) for all geG and A e 21). In
addition to the representation πφ of 21, Φ determines a unitary representa-
tion Uφ of G on the same Hubert space with the properties [13, 7; 2.12.11]

πφ(ag(A))=Vφ(g)πφ(A)Uφ(gΓi

 r Λ
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We will denote by τ% and UG the respective sets {πφ(A)\A e S2ί} and
{Uφ(g)\gE G}, by $, the von Neumann algebra generated by π^ and UG

and by E0 the projector in 2tfφ onto the Uφ-invariant vectors. For a
state Φ of $ί invariant under G one can consider the following different
notions of "ergodicity" of which each implies the following (for the
stated results we refer to e.g. [4]).

1) EQ has rank one (equivalent to the "weak clustering property"

Mg(Φ(Aag(B)) = Φ(A)Φ(B) for all A,BeM

where Mg denotes the Godement mean).

2) Φ is extremal invariant (equivalent to 3% irreducible, or else

3) St is a factor, or else ^r\^' = ̂ r^π^r\U'G = {λl}.

4) πϊ lnπi lnί/G(=πφ(3)nl/^)={Λ/}.

Conversely one has the implication 4)=> 3) in the case of a "large group
of automorphisms" as defined by Stormer [17] (or more generally,
see [4]); and 3)=>2)=> 1) in the case of G-abelianness [2], that is if E0π^E0

is abelian.

The preceding properties relate to the central decomposition of the
state Φ through

Theorem 1. For a state Φ of 21 invariant under α, Property 4) above
is equivalent to the ergodicity of the (invariant) central measure μφ

of Φ. In other terms the central measure μφ of Φ is ergodic if and only
if the G-invariant elements in the center of π(% are the multiples of the
identity.

Proof. The ergodicity of μφ can be stated as the fact that the only
G-invariant elements of L°°(S,μφ) are the constant functions. Since the
mapping Aφ is onto, this is in turn equivalent to the requirement:

Aφ(Z)- ofg = Aφ(Z) for some Ze3 and all gεG=>Aφ(Z) = λ

(λ = some complex number). Using (5) we see that the left hand side of
this implication is equivalent to Aφ(ofg(Z)) = AΦ(Z) or to πφ(α^ (Z)) = πφ(Z)
whilst the right hand side means that πφ(Z) = λl (cf. Remark in Section 1).
Since we have πφ(α"(Z))= Uφ(g)πφ(Z) Uφ(g~l) the ergodicity of μφ

is converted into the property:

UΦ(Q) nφ(Z) = πφ(Z) Uφ(g) for some Ze3 and all g e G=>πφ(Z)

is a scalar or else πφ(3)^ UΦ(G)' = {λl}.
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In view of the results stated above we then have the

Corollary. For an ^-invariant state Φ of a G-abelian system {̂ 1, α}
(in particular, in the case of weak asymptotic abelianness) any of the
"ergodic" properties 1} through 4) above is equivalent to the ergodicity of
the central measure μφ.

In the absence of an asymptotic abelian property we shall henceforth
call an invariant state ergodic whenever its central measure is ergodic,
i.e. if it fulfills property 4) above.

§ 3. Transitive Ergodic States

From now on we assume that G is a locally compact separable2 group
acting on our separable algebra with the continuity properties of Lemma i.
Furthermore we take the system ($1, α} to be weakly asymptotically
abelian [3, Definition 1]. Since the invariant states over such systems
can be uniquely decomposed as integrals of ergodic states [i, 15], their
investigation essentially reduces to that of ergodic states. Owing to
Theorem 1 above, the latter is in turn converted into the study of the
ergodic central measures, a problem in classical ergodic theory.

Generally, ergodic measures fall into two types, the transitive and
intransitive type. In the present section we will discuss the single case of
transitive central measures on S, i.e. the measures concentrated on
orbits. Specifically, given a φ e S, the orbit Θφ of φ under G is defined as
the set {^g(φ) |g e G}. (9φ is a Hausdorff space under the topology induced
by 6 and the mapping φ, ge(9φx G^ofg(ιp)eΦφ is, owing to (iv) of
Lemma 1, continuous from the topological product (9φ x G to (9φ. Thus
the stabilizer Sφ of φ (defined as the set of g E G such that ofg(φ) = φ} is a
closed subgroup of G and the mapping g e G ^> ofg(φ) e &φ, constant on
the left cosets module Sφ, determines a one-to-one continuous map of the
left coset space G/Sφ equipped with the quotient topology, into 2ί* and
onto the orbit (9φ [18; §7,19]. Now if we equip the topological spaces
under consideration with the Borel structures underlying their topologies,
the homogeneous space G/Sφ is, as G, locally compact with a denumerable
basis of open sets and therefore standard [23, § 3] 3. On the other hand
the unit ball of the dual space 21* of our separable 91 is compact metrizable
[7;B7] and thus (complete and) standard. By [23; Theorem 3.2]
(quoted in [7; B 21]) the one-to-one continuous and thus Borel mapping
considered above has a Borel range Oφ and is Borel isomorphic from
G/Sφ onto (9φ. We thus conclude that (9φ as a topological subspace of 6
and the homogeneous space G/Sφ can be identified as Borel spaces.

2 I.e. with a countable basis of open sets. In that case G is metrizable.
3 G/Sφ is polonais as an open set of its Alexandroff compactification which is metrizable

complete of denumerable type [18, § 8.19] [7, B 15].
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A regular measure μ on S invariant under G is now called transitive
if there exists a φ e S such that μ((9φ) = μ(S) (or in other terms such that
Gφ is of μ-negligible complement - in that case μ is said to be concentrated
on &φ). Transitive invariant measures are ergodic. Accordingly the
G-invariant states of 91 with transitive associated central measures are
ergodic and we will call those states transitive. The transitive (invariant)4

states are the easiest type of ergodic states and they seem to be of wide
occurrence in physics. Note that μ is a Radon measure on the homo-
geneous space G/Sφ since Sφ and G/Sφ are Borel isomorphic and G/Sφ

is polonais [19; Proposition II- 7-3].

Covariant Representations Generated by Transitive States. Let Φ be a
transitive state with associated central measure μφ concentrated on the
orbit Oφ of φ e 3. The state φ is by definition invariant under the subgroup
Sφ of G and thus determines in the familiar way [13, 7; 2.12.11] a co-
variant representation (πφ, Lφ) of the system {2ί, α|S^} where a\Sφ

denotes the restriction of α to Sφ. We will now discuss the relationship
of (πφ, Lφ) with the covariant representation (πφ, UΦ) of {91, α} determined
by Φ.

With πφ the representation of 91 (on the Hubert space 3tfψ) determined
by ψ 6 $φ, {^}^eCφ and {nψ}ψeC)φ are respectively a Borel field of Hubert
spaces0 and a Borel field of representations of 91. Thus corresponding
to the decomposition

Φ(A) = f ψ(A)dμφ(ψ)9 Λ e S l (8a)
<sφ

we can define the following direct integrals

®
(8b)

π= f πφdμφ(ψ) (8c)
ffφ

(these integrals extended to Θφ coincide with the same integrals extended
to 6 since μφ is concentrated on Θφ).

The representation π defined by (8c) is unitarily equivalent to πφ

via the unitary mapping V from J^φ to Jf defined by

VAΦ=] A*dμΦ(ψ), X e 9 l , (9)

4 The term "transitive state" implies that the state under consideration is invariant
under G.

5 For this notion see [7; A 96]. In our case the set Γ of Borel vector fields consists of
the vector fields {ξ^, e ̂ }ψe&φ such that the complex function ψ-»(£φ|,4ψ) is Borel for all
A e $ί [6] (Av = A mod9tφ, see below). The field of representations {πv}φeC?<p is Borel in the
sense that {πψξv}ψe(5φ εΓ whenever {ξv}ψeβφeΓ [6].
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where Aφ e J^φ and Aψ e J ,̂ denote the classes of A modulo the respective
left ideals 9lφ and 91 v of Φ and ip (V is isometric on W/yi0 due to (8 a) and
thus extends to 34fφ by continuity; the intertwining property πV= Vπφ is
immediately checked from the definitions of π, πψ and πφ; and V is onto
3f due to the fact that μφ is a central measure as can be read off [5] - see
also [6]). Further, if we identify πφ with π, (8c) is shown in [5, Theorem 2]
to effect the central decomposition of πφ Uφ(g), g e G, is then identified
with U(g) = V Uφ(g) V~l, whose action on J^ is determined by

e 91 . (10)

The preceding situation can be given an equivalent description using
a direct integral of Hubert spaces all of which coincide with Jίfφ : to this
end we choose a regular Borel section ψ e @φ-*g(ψ) 6 G of G with respect
to Sφ in the sense of [20, Lemma 1.1] : ψ-*g(ψ) is a Borel map of(9φ onto
G such that

α'fl(ψ)(φ) = t/> 6 , τ / > e 0 φ ; (11)

and we define a unitary mapping Wφ from ĵ , to .tffφ by

(12)

(βφ, ψεθφ, denotes as above the class of B E S2ί modulo the left ideal 91 ψ

of t/λ Since

(12) defines an isometric linear mapping from 2I/9lψ onto 9I/ϊlφ whose
continuous extension to J^φ is thus unitary). To each vector field
ξ = {ξψ e JfΨ}φe&φ we now associate the vector field Wξ given by

Wψξψ (13)

with values in the constant Hubert space jjfφ - W maps the set Γ of
Borel fields used for the definition of J^ onto the set of all Borel maps
from Θφ to 3fφ : since Wψ is unitary one has namely, for all fields ξ

and one concludes from this that ξ e Γ holds if and only if ψ E (9φ

-^(Wψξψ\Aφ)^φ is a Borel function for all A e S I or equivalently if
6 ^(φ) = Bnψ where B is as in loc. cit. Lemma 1.1. where one takes left instead of right

cosets and ψ = ̂ (φ) is identified with the left coset gSφ. The map ψ^*g(ψ) is Borel due to
[23, Theorem 4.2].
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ψ 6 @φ-^(Wψξψ\u)#> is Borel for all u e jjfφ. Furthermore

J \\ξψ\\JrψdμΦ(ψ)= J \\Wψξψ\\2 dμφ(ψ) (14)

thus W is a unitary mapping from Jf to the Hubert space Lξφ((9φ, μφ) of
square-integrable maps from Θφ to 3tfφ. Transporting via W the covariant
representation (π, C7) of (8c) and (10) one gets operators acting on
η e lfφ((9φ, μφ) in the following manner

(Wπ(B)W~1η)w = πφ(oίq^)(B))η , £e9ί, (15a)

sg(as(ψ))-1)ηΛ8(ψ)9 sεG. (15b)

It is enough to check those formulae on the dense set of elements of
the form @

η=W ] Av dμφ(ψ) , A e 91 ,
<9

for which (8c) and (10) give

whence by (12)

from which (15 a, b) follow using the definition of πφ and Lφ and the fact
that g(ψ)sg(us(ψ))eSφ owing to (11).

Formulae (15 a, b) express the fact that (πφ, UΦ) is unitarily equivalent
to the covariant representation of {91, α} induced by (π^, Lv) in the sense
defined by Fell, Zeller-Meier, and Takesaki in Refs. [25] through [28].
We will now show this in a more direct way making contact with [28,
Definition 3.2]. As is well known an important class of group representa-
tions can be described following Mackey as induced by a subgroup
(Refs. [20] through [22]). A natural generalization of Mackey's theory
allows to describe in an analogous way a wide class of covariant repre-
sentations of a system {91, α} as induced by representations "with lower
symmetry" 7, i.e. covariant only with respect to a subgroup (Refs. [24]
through [28]). Specifically, the representation (π, U) of {91, α} induced by
(πφ9 Lφ) is defined as follows:

(i) the corresponding Hubert space $ is that of Borel maps η(J'.g-^ηg

from G to j^φ fulfilling the identity 8

ηyg = Lφ(y)ηg, geG, yeSφ, (16)

7 Or "with spontaneously broken symmetry" in the physicist's terminology.
* in what fol lows we use the notation /(</) for the function c / e G->/(#), the roofed

letter cj indicating a dummy variable
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and square integrable in the sense that

IkίU = ί lklUΦ dμφ(ψ) < GO (17)

(here ψ = at

g(φ)', due to (16) the norm ||τ?J^φ of ηg in $ depends only
upon the left coset ψ = g S φ ' , ( Π ) is shown to define a Hubert space norm).

(ii) U is the representation of G induced by Sφ\

(U(s)η)g = ηgs, g.seG. (18)

(iii) One has

AeM,geG. (19)

We first set up a unitary map S from j^Φ to $ by defining

Sπφ(Z) AΦ = ΛΦ(Z) (α^ίφ)) oζUf , A e 21, Z e 3 . (20)

Let us check that the right hand side of this equation is an element of
J"f . First it is a Borel map from G to fflφ since α^(φ) is continuous, and
thus Borel, from G to 6 AΦ(Z) e L°° (8, μφ) can be chosen to be a Borel
function; and %()(A) is continuous, and thus Borel, from G to ttffφ due to the
assumed property (ii) of Lemma 1. On the other hand property (16) is
fulfilled since, for all A e 31, Z e 3> 0 e G and y e S ,̂ using the definitions

r = ΛΦ(Z) (ofg(φ))

Finally, we have, by (1)

Γ||^- $ ΛΦ(Z*Z)(θit

g(φ))φ(QLg(A*A))dμΦ(ψ)
cφ

A*A) = Φ(ZA}*(ZA)=\\πΦ(Z)AΦ\\^φ

and thus (20) defines S as an isometric linear mapping from 2I/9lφ into
Jf which extends to j^φ by continuity. To show that S is onto ffi it
suffices to check that the set C of elements of the form (20) where A runs
through 31 and Z through 3, is total in $. But this follows from [20,
Lemma 3.3]: condition (a) of this Lemma has already been verified;
condition (b) holds with ρ& = 1 because, due to (5)

ΛΦ(Z) (<

condition (c) follows from the fact that AΦ is onto 1.̂ (6,^); and con-
dition (d) from the separability of 91.

The identification of (SπφS'1, S UφS"1) as the co variant representa-
tion (π, U) of {51, α} induced by (πφ, Lφ) now reduces to a straightforward
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verification: we have, for all B e 21

S πφ(B) S - 1 S πφ(Z) A* = S πφ(Z) BAΦ

= ΛΦ(Z) KM) ^(BA)Φ = π(α,(B)) AΦ(Z) (^(

and, for all s e G, by (5)

S Uφ(s) S~l Sπφ(Z) Aφ =

= ΛΦ(^(Z)} (α'») ̂ MA))φ = AΦ(Z)

which checks with (18) and (19) as applied to elements of the total set (20).

We subsume the results of this section in the

Theorem 2. Assume that a is strongly continuous in the sense of (ii)
Lemma ί and let Φ be a transitive (invariant) state of {91, α}, i.e. such that
the associated central measure μφ is concentrated on the orbit

Θφ = { a ί β ( φ ) \ g e G }

ofφe& under G. The canonical mapping of G/Sφ, with

the stabilizer of φ, onto (9φ equipped with the w*-topology, is a Borel
isomorphism. The covariant representation (πφ, UΦ) of {9ί, α} generated
by Φ is unitarily equivalent to the covariant representation (π, U) induced
by (πφ, Lφ) [see (18) and (19)], where (πφ, Lφ) is the covariant representa-
tion of (5ί, oί\Sφ} generated by φ. Other unitarily equivalent versions are
given by the direct integrals π and U defined in (8c) and (10) on the direct
integral Hilbert space (8b), where (8c) is the central decomposition of
π; or by the operators (15 a, b) on the Hilbert space lfφ(Θφ, μφ) of μφ- square
integrable maps from Θφ to .ffφ.

§ 4. Ergodicity of States with Respect to Time Translations.
Stability and Primariness

As a first physical application of the foregoing study we discuss in
this section ergodicity with respect to time translations. Thus 2ί is now
the quasi-local algebra of field theory, G the group of additive reals and
we assume that

i) time translations induce automorphisms ί-xχ, of 91.

ii) The continuity property of Lemma 1 above (which we hope can
be achieved by a proper choice of 91).
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iii) Asymptotic abelianness in the weak sense, i.e.

for each state Φ of 21 and elements A, B e 21 ([ ] denotes a commutator).
The results of the foregoing section relative to transitive ergodic

states now assume a particularly simple form: due to the abelianness
of G (as would be the case more generally whenever the stabilizer S(f)

associated to the state Φ under consideration is a normal subgroup of G),
the quotient G/Sφ is a group and therefore, as equipped with a bounded
Haar measure, compact. Now a compact quotient group of the reals is
either a one-dimensional torus or reduces to a point. The first case
corresponds to a transitive ergodic state of the form

T
Φ= j α !

s ( φ ) c / s , (21)
o

where ds denotes Lebesgue measure and ψ is a primary state of (smallest)
time period T:

= U(ψ), s e l R . (22)

In the second case Sφ is the whole group G, &φ = {φ}, πΦ is the Dirac
measure concentrated at φ = Φ and our invariant ergodic state is itself
primary. In this case Φ is not only ergodic but, as known since long [1],
strongly clustering in the sense that

Φ(A α, (β)) - Φ(A) Φ(αf (β))τ^»0

for all A, Be 21 (this holds in fact for primary states wether invariant
or not, as we shall need below).

Our claim is now that the only transitive ergodic states (for the time
evolution} encountered in physics as simple thermodynamic phases are of
the latter type, and thus primary. We will infer this from the assumption
that one-phase equilibrium states should possess the following property
of ^{-stability.

Definition. Let 21 be a C*-algebra with a one-parameter group of
automorphisms t^xxt. A state Φ of 21 is called 31-st able whenever

in the w*-topoloyy, for all elements A e 21 (we here use the notation

The cogency of this assumption rests upon the view that the operation
Φ— >ΦA corresponds physically (apart from a normalization factor) to a
local perturbation of the state Φ, if A is local; and that local perturbations
applied to genuinely stable (not metastable) states should be evanescent
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in time. (As is evident from continuity, it is immaterial wether we state
the above definition for strictly local rather than for general elements
A of 91).

Our claim follows from the assumption of Si-stability by means of the

Proposition. With the assumptions stated in the beginning of this
section, let Φ be a transitive ergodic state of the form (21), If, for A e 91,
the function t->Φ(A*ut(A* A)A) admits a limit for ί = + oo, the function
t-*ψ(at(A*A)) is constant.

Proof. Suppose that Φ(A*ut(A*A)A) r = + oc >£ then, by assumption

iii) above and the fact that bounded linear forms are linear combinations
of states,

T
Φ(A*Aaΐ(A*A)) = f {of^)}(A*Aoit(A*A))ds-^^L. (23)

Now, since the state cξ(φ) is primary and thus strongly clustering
the function

tends to zero for t= + oo and remains bounded by 2 1| Λ* A ϋ 2 .
Thus, setting u(s) = ψ(<xs(A*A)), the dominated convergence theorem

permits to deduce from (23) that

T
v(-t)= J u(s)u(s +

tends towards L as r~> + oo. Now u, and thus v, are periodic with period
T. Therefore υ(t) = L for all t, and if one denotes by un and vn the respective
Fourier coefficients of the functions u and v on the circle, it follows that
vn= \un\2 = ® f°r all n =NO Thus u(i) is independent of t, completing the
proof.

It is now straightforward that 9l-stable transitive ergodic states must
be primary. A non primary transitive state Φ, thus of the form (1), would
namely, if 91-stable, be such that t -+ Φ(A* xt(A* A) A) would admit a
limit at t = + ex; for every A e 91, implying by the last proposition that
the state ψ would not depend upon time. This would contradict the
assumption that the orbit of ψ is as a set a one-dimensional torus.
Transitive ergodicity and 9l-stability thus imply primariness. Reversely
primariness implies 91-stability as follows from strong clustering and
asymptotic abelianness as stated under iii) above.

We leave open the question of wether 91-stable intransitive ergodic
states are automatically primary under our assumptions. We conjecture
that this is the case.
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§ 5. Transitive Euclidean States

5.1.

In this section, we characterize all the symmetry groups (= stabi-
lizers) of transitive states for the connected euclidean group E9. We have
shown that such a symmetry group H is, up to a conjugation, a closed
subgroup of E for which the associated homogeneous space E/H carries
a finite E-invariant measure. Our classification will of course yield the
crystallographic groups in three dimensions, the groups obtained from
the one and two dimensional crystallographic groups and the closed
subgroups of the rotation group. But we will also find another infinite
family of groups in addition.

In 5.2 we will recall some properties of the Euclidean group E. In 5.3
we will classify the conjugacy classes of closed subgroups of E; in 5.4
we shall divide our problem into a few different cases to be studied
separately.

We end this section by listing some mathematical results useful for
our problem. For general references, see e.g. [30, 33, 34].

Let G be a locally compact group. Its modular function ΔG is a
continuous homomorphism from G to R x , the multiplicative group of
positive real numbers (see [33], § 1.3; [34], 15.11). Abelian or compact or
discrete groups are unimodular (i.e. V g e G , ΔG(g)=l}. Groups which
have no non trivial abelian homomorphic image are also unimodular.
This is the case of the Euclidean group E.

Eet A, B be closed subgroups of G locally compact and A C B C G.

(i) The homogeneous space G/A is a topological quotient and
moreover, because of the group law, the canonical continuous map
G-^A is open (image of open sets are open). G/A is locally compact
([34], 5.22). If A is compact, ψ is also a closed mapping (the image of a
closed set is closed) ([34], 5.18). If both A and G/A are compact, then G
is compact ([34], 5.25).

(ii) If A is an invariant subgroup of G, we denote by φ the canonical

homomorphism of topological groups G-^+G/A. Then B/A is topologically
isomorphic (i.e. isomorphic as topological group) to the subgroup φ(B)
of GM; we write B/A « φ(B) ([33] § 2.7, Prop. 20, [34] 5.31). Furthermore
the homogeneous spaces G/B and (G/A)/(B/A) are homeomorphic:
we write it G/B ~ (G/A)/(B/A) (see [33] § 2.8, Prop. 22).

(iii) If G, A, B are unimodular, G/A and G/B carry G-invariant
measures (unique up to a factor) denoted respectively mA and mB. The
homogeneous space B/A carries a 5-invariant measure m' such that

9 The case of the physically relevant full Euclidean group (including the space sym-
metries) can trivially be adapted from our results.
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mA = mB (x) m' so that one has for the total measures

mA(G/A) = mB(G/B) - m'(B/A). (24)

We will use repeatedly the more precise Lemma (Mostow [29], Lemma 2.5,
Bourbaki [30], § 2, n° 8 corollaire 2):

Lemma 4. Let G be a locally compact group and AcB closed subgroups
of G. If G/A has a finite G-invariant measure mA, both G/B and B/A admit
finite invariant measures mB and mf of which mA is a product.

(iv) If G/A carries a G-invariant measure and is compact, mA(G/A)
is finite. The converse is not true in general. However if A is an invariant
subgroup and G/A carries a G-invariant measure mA its finiteness implies
the compactness of the group G/A.

Mostow has also shown [29]:
Theorem. When G is a solvable Lie group, for any closed subgroup A

of G, mA invariant finite implies G/A compact.

This is also true when G is the extension of a compact Lie group
by a solvable group. (Mostow's private communication). The euclidean
group E is of this type; our work verifies that it satisfies this extension of
Mostow's theorem.

We conclude this § 5.1 with three important strategical remarks.
Let H be a solution of the problem for E, i.e. H is a closed subgroup of E
such that the homogeneous space E/H carries a bounded ^-invariant
measure:

1) All closed subgroups H' of E such that H C H' C E are solutions of
the same problem; this is due to Lemma 4.

2) All subgroups H" C H solutions of the problem for H are solutions
of the problem for E.

Indeed, since E is unimodular, H and H" are also unimodular, so
E/H" carries an ^-invariant measure and from (24)

mn,,(EIH") = mH(E/H) m'(H/H")

so the finiteness of mH(E/H) and of m'(H/H") implies that of mHn(E/H").
3) Conversely if K is not a solution of the problem for H, it is not a

solution for E.

5.2. Properties of the Euclidean Group

We recall that the Euclidean group E=TOK is the semi-direct
product of K, the connected real orthogonal group SO (3), by the abelian
group T of three dimensional translations. We shall denote ( / , r), t e T,
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r e K, an element of E. The group multiplication law is

( t , r ) ( t ' , r ' ) = (t + r ' t ' , r r ' )

where r r' is the transformed of ΐf in the orthogonal transformation r, i.e.

-1) = ( r - i M ) . (25)

The elements (0, r), r e K, form a subgroup K(0) of E which is iso-
morphic to K.

By recursion, one proves:

//"~ 1 \ \
(0,r)" = MΓ r* U,r" . (25')

\ \ f c - 0 / /

We shall need the value of the commutator of two elements

( a , r } ( b , s ) ( a , r Γ ΐ ( b , s ) ~ ί = (({-rsr'ί)a + r({-sr'ίs~l)b,rsr-1s~l). (25")

We denote by ψ and φ the continuous map T^-E^K = E/T

φ(ί,r) = ί, <p(ί,r) = r . (26)

We remark (see (i)) that ψ is a closed map and φ a homomorphism of
topological groups. We also need some remarks on the compact sub-
groups of £. Such a subgroup C cannot contain a non zero translation
(Z, 0) because it would have to contain all translations: neZ, (nt, 0) and
Cn T would not be compact. Then C cannot have two distincts elements
with same r, indeed (ί, r)(f ' , r)"1 =(t — ί', i) is a translation. So the
elements of C are of the form (τ(r), r) where r ^φ\c = ιp\c is a continuous
map C-^T. The associativity of the group law requires

τ(r1) + r1 τ(r2) = τ(r 1 r 2 ) . (27)

Since C n T = {0}, C ̂  φ(C) C K. (If C were not compact the isomorphism
would not be topological.) One proves that all τ which satisfy (27) are
of the form

τ(r) = ( l- r)a (27')

with a fixed element a e T; so

Every maximal compact subgroup of £ is conjugated to K(0).
A compact group C is unimodular, so the homogeneous space E/C

has a jE-invariant measure m t, and is not compact (since E is not compact,
see (i)). We prove that m^(£, C) is not finite: indeed all E/K(t) are iso-
morphic (as homogeneous spaces) to E/K(ϋ) = T on which the ^-invariant
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measure is the Lebesgue measure mκ\ it is not finite on T and from (24)

m(E/Q - mκ(E/K(0)) m'(K(Q)/C)

hence mc(E/C) is not finite.

5.3. The Closed Subgroups of E

Let H be a closed subgroup of E. Then

TH (28)

is a closed subgroup of T and an invariant subgroup of H.
The list of closed subgroups of T, up to an automorphism of T is

well-known (see e.g. [31], § 1, n° 2):

{0},Z,jR,Z2,Z + #,#2, (29)

Z3,Z2 + K,Z + R 2 ,K 3 (29;)

where we have denoted respectively jR and Z the additive group of real
numbers and integers. We also use the notations Rk or Zp for the direct
sum of k or p groups isomorphic to R or Z. For instance the translation
group T is isomorphic to R3.

We will need also to know the normalizer in E of these closed sub-
groups TH c T: N(G), the normalizer of the subgroup G of E is the set
{g E E,gGg~1 Q G}, i.e. N(G) is the largest subgroup of E which contains
G as invariant subgroup. When G^T H CT, then TcN(TH) since T
is abelian. Elementary geometrical considerations, based on equation
(25) lead to the computation of N(TH) for the different closed subgroups of
Tin (29) and (29'). We list the corresponding quotient groups QH = N(TH)/T
in Table 1. Note that N(TH) is the semi-direct product of QH by T.

Let us denote by KH the topological quotient group H/TH:

KH = H/TH. (30)

Table 1

a)

b)

TH

QH

TH

QH

10}
K = SO(3)

Z3

finite

Z
0(2)d

Z2+R
finite

R

0(2)d

Z + R2

0(2)a

Z2

finite

*3^r
X = SO(3)

Z + R K 2

finite 0(2)a

a The group QH isomorphic to 0(2) contains the rotations around an axis and the
rotations of π around perpendicular axes.
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From (28), (30), (i), there is a natural continuous injective group homo-
morphism:

KH-^QH. (31)

Note that / is not in general a closed mapping.
We recall [30] that if v is a continuous automorphism of T (i.e. a

linear map of Γ), m o d v ^ d e t v , and also that, since Λ^T^) is a semi-
direct product:

A N ( T H ) ( U , r) = AT(a) ΔQa(r) modr . (32)

Therefore N(TH) is always unimodular, since det(r) = i, Qn is compact
and T is abelian.

5.4. The Different Classes of Solutions

a) Cases Listed in the Second Line of Table ί . Consider a discrete
subgroup Z3 C T. Then T/Z3 = ^~3 the three dimensional torus, which is
compact and has a finite T-invariant measure m2(^Γ

3).
The abelian discrete group Z3 is unimodular, so E/Z3 carries an

invariant measure m. Topologically:

£/Z3 = E/T x Γ/Z3 = K x ^3

so E/Z3, product of topological spaces, is compact. Hence, the total
measure m is finite and equal to

m(E/Zs) = mί(K) m2(.r3). (33)

From Lemma 4 all closed subgroups H of E which contain a Z3 C T
are solutions of our problem. Those are the crystallographic groups in
three dimensions (TH = Z3), their generalization for "two dimensional"
(TH = Z2 -f R) and "one dimensional" (TH = Z + R2) crystals in 3 dimen-
sional space. This class of solutions contains also the subgroups of E
which are extensions of a closed subgroup10 of K = SO(3) by the
translation group T (i.e. TH = R3 & T).

To summarize, the solutions of case a) are all closed subgroups H of E
whose TH = H n T is listed in (29'). The inclusion of subgroups Z3 C H C E
implies the existence of a canonical continuous surjective map
£/Z3-^>£///, so E/H, continuous image of a compact, is compact.
Hence in case a) we verify, for E, Mostow's extended theorem.

10 The closed proper subgroups of SO(3) are the finite groups: cyclic of order n : Cn

(rotations oϊ2πk/n around an axis), dihedral Cnh (add the rotations of π around the perpen-
dicular axes), and those related to the regular polyhedrons: tetrahedral, octahedral and
icosahedral. The non finite ones are SO(2) (all rotations around an axis), ^0(2} (add the
rotations of π around an axis _L).
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b) Cases Listed in the First Line of Table /, Except TH = {0}. As we
have seen at the end of 5.3, the N(TH) are unimodular, so E/N(TH)
carries an invariant measure mv. From (ii)

E/N(TH) ~ (E/T)/(N(TH)/T) = K/QH .

Thus, since K/QH is compact, m1(E/N(TH)) is finite. From our second
strategical remark in 5.1, our problem for case b) is transformed into the
problem for the N(TH), i.e. to find the closed unimodular subgroups
H CN(TH) such that Hr\T= TH and the invariant measure mf(N(TH)/H)
is finite. From Mostow's theorem (iv), the last requirement is equivalent
to impose N(TH)/H compact, so in case b) we also verify for E Mostow's
extended theorem.

Case b) now subdivides into

b ί ) QH finite. (TH = Z2 or Z + R).

No solutions. Indeed, using (ii) we have the isomorphism

N(TH)/H*(N(TH)/TH)/KH,

where Kn = H/TH is a subgroup of QH, thus is finite. We shall prove that
(N/TH)/TH is not compact, so that, using (i), N(TH)/H cannot be compact.
The connected component N0(TH) of N(TH) is T and by (i) N(TH)/TH is
not compact because T/TH is not compact; indeed

where y~n is the π-dimensional torus, which is compact; but R is not.

b2) QH*0(2)(TH = Z9RorR2).

We first solve the problem for N0(TH), the connected component of
N(TH): it is a subgroup of index 2. It is the semi-direct product

(34)

where C2 is the cylinder group, i.e. the abelian group generated by the
rotations around the axis u and the translations along this axis. The
universal covering C2 of C2 is isomorphic to R2 :

(35)

and the fundamental group of C2 is isomorphic to Z ̂  Kerp.

15 Commun. math Phys., Vol 21
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The elements of N(TH) which do not belong to N0(TH) contain more-
over the rotation of π around an axis _L u. Case b 2) now splits into the
following three subcases:

b 2 α ) TH = R2.

We look first for unimodular closed subgroups H0 of N0(TH) such
that NQ ( TH)/H0 is compact. Using (ii), F = H0/R2 is topologically isomorphic
to a closed subgroup of C2 such that C2/F is compact and FnRQ = {0}
where jR0 is the subgroup of translations along u.

An equivalent characterization of the F's is

p ~ l ( F ] is a closed subgroup of C2 , (37)

C2/P ~ 1 (F) ~ C2/F is compact , (37)

l ( R 0 ) = Kerp. (37")

Condition (37) requires (use [3 1]) that p~ί(F)^Zp + Rq with 0 ̂  p + q ̂  2,
p, g positive integers. Condition (37') requires p + q = 2, and conditions
(37") require q = 0. So p~ !(F)^Z 2 and the generators /1 ?/2 must
satisfy:

p(/Ί) is a pure rotation of angle ——, k positive integer,

where A M is a non-zero translation along u and rθ is a rotation around
n

M by an angle θ such that — is irrational. Then F « Z + Zk where

Zk - Z/kZ.
The corresponding groups H0 are the semi-direct products R2\Σ]F.

They are solutions of our problem; the other solutions are obtained by
adjoining to those H0 the rotation of π around one (and so all) axis _Lu.

b2β) TH = R. No solutions:

Note first that the connected component of N(TH) has the structure
NQ(TH)^R x E2 direct product of R and £2, the connected euclidean
group in two dimensions. Using (ii):

N0(TH)/H - (N0(TH)/TH)/(H/TH) = E2/KH

our problem is equivalent to finding the unimodular closed subgroup
KH of E2 such that KH contains no translation of E2 and E2/KH is
compact.
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What has been written for the three dimensional Euclidean group
£(3) in 5.2 is valid for all E(n) of dimension n. But the group E(2) has
properties which are not shared by the E(n\ n>2; mainly

— K?t SO (2) is abelian,

— V r Φ 1, 1 — r i s a n invertible endomorphism of T,

— every element of £(2) which is not a translation is conjugated
to a rotation; indeed (see (25'), (26)).

So if X has only one generator (α, r) it is a subgroup of K2((l — r)~ 1 a)
and either it is finite so it is compact and E/X is not compact (see (ii))
or it is infinite, so it is not closed in K2((ί — r}~ 1 a) and hence in E. Hence
the group KH that we are looking for must have at least two generators
(α, r), (b, s) r Φ 1 Φ 5 which are not in the same K(t) i.e.

but the commutator

is a pure translation.
So there is no KH, and therefore no H, solution of our problem when

T Ό1H = K.

b 2 y ) TH = Z. No solutions: for we can transform this case into a
problem of case b 2 β).

Indeed H/TH = KH is a closed subgroup ofN(TH}/TH whose connected
component is the direct product

N0(TH)/TH*SO(2)xE2

because R/Z = SO(2). Since 50(2) is a compact subgroup as we noted
in (ii), the canonical continuous map

is closed. So φ(KH) is a closed subgroup of E2.
Set H n JY0(TH) = H0; from the homeomorphisms

NQ(TH)/HQ - S0(2) x E2/KHo = E2/φ(KHo) ,

where KHo = H0/TH, we see that φ(KHo) must be a closed subgroup of E2

with compact homogeneous space. As we saw in b 2 β), this is impossible.
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c) TH = Q. No Solution. The canonical map φ defined in (24") has
kerφ=T, and 0 = HnT implies that the groups H and φ(H) are
isomorphic as abstract groups. The isomorphism is topological, H ^φ(H\
i f f // is compact; then φ(H) is closed. We have seen in 5.2 that compact
subgroups of E cannot be solution of our problem. Hence we have to
look for H such that φ(H) is not closed in K. The closure φ(H\ must be
either 50(2), 0(2), 50(3) (see footnote of case a)). Before studying these
three subcases, we divide the elements of £ into two classes:

class I = {(α,r),α n(r)Φθ}l

class II = {(a, r), α n(r) = 0}J

where n(r\ θ(r] denote the axis and the angle of the rotation r, α denotes
the vector which represents the translation a, and α b is the Euclidean
scalar product.

If (0, r) is in class I, we can decompose a into

α = αjL + α,| with α± n(r) = 0, α ( | = αn (39)

Then (see (25'))
(0, r)n = (nan + (1 - rn) a(r\ rn) (40)

where a(r} is a shorthand for

i.e. the transform of aL by the inverse of the restriction of (1 — r) to the
plane perpendicular to n(r\ If r is of finite order n, rn = 1 and (a, r)n = (na\\, 1).
Since H does not contain translations:

(α, r) in class I => θ(r)/2π is irrational.

We now consider separately the three subcases.

cα) φ(H) is Not Closed, φ(H)&SO(2).

Then all r have the same n(r). If the elements of H are all of class II,
then H CE(2) (the closed two dimensional Euclidean subgroups of E
for a plane perpendicular to n(r)). We have seen that there are no solution
to our problem in that case (see b 2 β)). Hence H has at least one element
of class I. Consider first the case where H is the infinite cyclic group (&Z)
with one generator of class I. It is closed: each point is at a distance
strictly greater than |α||| from the others; it is a closed subgroup (up to a
linear transformation) of all groups solutions of case b 2 α). Let H0

be the smallest one: HQ = R2 Π Z. Then H0/H ~ R2 since the //0-invariant
measure on R2 (which is the Lebesgue measure) is not finite, due to our
third strategical remark (end of 5.1), H is not a solution of our problem.
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More generally this eliminates all closed H' of this case with one
generator of class I and a finite number of elements of class II, since such
H' are subgroups of a group H solution of case b 2 α) with H/H' ~ R2.
Groups H with several independent generators of class I are eliminated
because the commutator of two such generators is a translation (this
argument has already been used at the end of case b 2 /?)).

c β) φ(H) is Not Closed, φ(H) w O(2).

One must add to all subgroups H studied in c α) at least a rotation
of π around an axis perpendicular to n(r) as defined in cα). The same
arguments reject these extended groups as solutions of our problem.

c 7) φ(Ή) is Not Closed, but Dense in K.

In that case H cannot be discrete: indeed one can prove (see e.g. [35],
Lemma 3, 2, 7) that H discrete implies φ(H) abelian. So H0, the connected
component of the identity in H cannot be reduced to a point. Since φ\H

is a continuous injective group isomorphism, φ(H0) is connected and
does not reduce to a point and φ(HO) is a connected closed subgroup of
K: i.e. either 80(2} or K itself. Consider a subgroup A«S0(2)Cφ(Ho).
Then φ(H0)nA is a connected subgroup of A\ this is possible only if
φ(Ho)^A = A^SO(2}. The density of φ(H) implies the existence of at
least r 6 φ(H) such that rAr~1=A'ή=A. Let ri and n be the unit vectors
of the rotation axis oϊA' and A. The set C = AA' A~1 contains all rotations
of axis n" such that n" n — n n' = cosω. The set C' = A'CA'~l con-
tains all rotations of axis n'" such that n'" - n' ^ cos2ω. So C is a neigh-
bourhood of 1 in K generating K. Therefore φ(H} = K, is closed, which
is contradictory to our hypothesis.

5.5. Conclusion

We have established the list of all symmetry groups G of transitive
Euclidean states for the connected Euclidean group E. The extension
to the full Euclidean group E (including space symmetries) is trivial.
G is also a symmetry group of the physical system it is then defined up
to a conjugation in E. These symmetry groups are usually classified up
to a conjugation in the general linear group. We have obtained five
families of symmetry classes.

1. The crystallographic groups in 3 dimensions. They form 230
symmetry classes.

2. The groups generated by the group R of translations along an axis
u and .the Euclidean transformations which induce a 2-dimensional
crystallographic group (17 classes) on the plane JR2 J_ιι; such transforma-
tions contain a discrete group Z2 of translations in R2, and eventually
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rotations around u of angle multiple of —- or — I , rotations of π around
\ J 2 /

an axis in R2, symmetry through the R2 plane or through a plane con-
taining u. This family contains a finite number of classes.

3. The groups generated by

i) the translations in a plane R2,

ii) a translation / L w ( Λ Φ O ) along the direction n _ J _ R 2 ,

iii) and zero, one, two or three of the following generators α, β, σ.

α) a rotation around u of angle rational to π,

β) a rotation of π around an axis in the plane R2,

y) the symmetry through the plane R2 or through a plane con-
taining u.

This family contains an infinity of symmetry classes and among them
the 2 classes of 1-dimensional crystal group.

4. The semi-direct products T Π K' where K' is a closed subgroup
of the orthogonal group in 3 dimensions (an infinity of classes).

5. The groups generated by

i) the translations in a plane R2 (as in 3 i),

ii) a helicoidal transformation (α, r) along the axis wl jR 2 with an
angle θ(r) irrational to π, i.e. a = λu, λ φ 0, n(r) = u, θ(r)/π irrational,

iii) as in 3 iii).

This family is generally forgotten in such a classification. It also con-
tains an infinity of symmetry classes. When the angle θ of the generator
in ii) becomes rational, the groups go from family 5 to family 3. In each
family, some symmetries only are realized in nature. Examples of
symmetries in family 5 or 3 are the cholesteric liquids and the matter in a
helimagnetic state, while ferromagnetism is an example of a broken
Euclidean symmetry in family 4.
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