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I. INTRODUCTION

It has been suggested by several authors(l—
5) that the various breakings of SU(3) may be of
bure dynamical origin. A theory invariant under
a group G, will be said to be dynamically broken
when there is more than one type of invariant SO-
lutions, and those arising from a variational
Principle all belong to a special type. For in-
stance, it has been proposed that stable solutions
of an SU(3)-invariant problem might only be ob-
tained in special directions in the octet space
SBo This is indeed the case if stable solutions
come from a variational principle on an SU(3)-in-
Variant function on €g- The nature of these solu-
tions does not depend upon the dynamical details
of the theory but reflects the geometrical proper-
ties of €g- In order to show this (Sec. III) we will
discuss in Sec. II the geometry of €g. In Sec. IV we
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will examine whether it is possible by using a si-
milar variational problem to find the geometrical
relations between the directions preferred by the
three SU(3)-breaking interactions. We show that
this is not possible if the function to be varied
(the S-matrix for example) depends linearly on the
external electromagnetic field, and on the lepton

&

currents.

ITI, GEOMETRY OF THE OCTET

1. We denote by 88 the octet space, that is, the
eight dimensional real vector space on which SU(3)
acts linearly and irreducibly.

It can be realized by the set of traceless
(tr x = 0) hermitian 3 x 3 matrices. The action
of 3 x 3 unitary unimodular matrix u € SU(3) on a

688 is

a. Muau—l . (1)

2. One can define on 88 a Lie algebra structure :

-1
XAY T = (xy - yx) , (2)
which 1is that of the SU(3) Lie algebra.
88 can be given a euclidian space structure

with the scalar product

(x,5) = % trxy = (v,x) (3)
which is the Cartan-Killing bilinear form of the
SU(3) Lie algebra. Through the action (1), SU (3)
is a group of automorphismsof the Lie algebra (2)

and leaves invariant the scalar product (3),
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ufpy) W= wxwT) Ay uT) ()

1

(uxul, uyu?d) = (xy) . (5)

3. There is also on €g a commtative (non-associa-

tive) algebra

XYy = %- (xy + yx) - % tr xy
1

= & (xy + yx) - % (%,5) » (6)
which has SU(3) as group of automorphisms.
4, A function of n vectors of €g 1s invarlant by
SU(3) if for every u € SU(3)

-1 -l)

fluxg u e, ux U = f(xl,o.o,xn) “(7)

The scalar product (3) is an example of a bilin-
ear invariant function. We will use the trilinear

invariant function(5)

(X:Y:Z) = (va,Z) = (X:y VZ)

- % (tr xyz + tr xzy) (8)
[X,U.,ZJ= (x/\y,z) = ( ERN z)
= :%. (tr xyz - tr xzy) . (9)

5. To continue our study of the action of SU(3)
on 88 we needIbwa few genemral concepts concerning
transformation groups.

Consider a group G acting on a set M. For
every a € M we denote by Ga the 1little group of a,
i.e. the subgroup of G which leaves a invariant.

An orbit of G on M is a subset of all points
which are the transforms by G of a given point a.
If a and b are on the same orbit of G there is a
U € @ such that b = u(a) and the little group of
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a and b are conjugated in G

-1
G, =uly U s (10)

Thus the classification of types of orbit of a
group G reduces to that of the subgroups of G, up
to a conjugation.

A layer of G on M is a subset of all points
of M whose 1little groups are conjugated in G.
Thus the action of ¢ on M divides 1t into layers.
Tn turn, each layer is decomposed into orbits of
the same nature.

We will be interested in the case where G 1s
SsU(3) and M a manifold on which G acts differen-
tially. A layer with the same dimension as the
manifold will be called general. Tn all examples
we shall meet 1in this paper the general layer is
dense in M. The other layers will be called sin-
gular.

Here we take 88 as the manifold M, and give
directly the results in 6 and 7.

6. Let %3 - y(x) x - p(x) =0 > (11)

be the characteristic equation of X & 88’ One
checks that

v(x) = (x,x) = tr x°
' 1

w(x) = % (x,%X,X) 3 tp x0 = det x| (12)

i noj -

The functions y(x) and w(x) are invariant by
SU(3), hence they are constant on every orbit.
gince x is hermitian and tr x = 0 all roots of
(11) are real, thelr sum is zero. It is easy to

verify that the set of roots of equation (11 oT»
N
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what 1s equivalent, the set of values of the pair v (x)
sud  p(x) classify completely the orbits of SU(3)
an 68.
7. €g 1s decomposed by SU(3) into 3 layers.

I. The origin, O, whose little group is SU(3)
itself.

IT. A one parameter family of four dimen-
sional orbits which correspond to a double root

of (11) or equivalently
b(y(x))7 - 27(M§X§)2 £ o0 . (13)

We call "charges" the elements of this la-

-yer. The 1little groups are all the (four parame-

ters) U(2) subgroups of SU(3). It is an excep-
tional layer.

ITT. The eight dimensional layer formed by
a two parameter family

y(x), w(x) with 4(y(x))3 # 27 (u(x))%(13a)

of six dimensional orbits. The little groups are

U(1) Xu(1).
8. Among its three eigenvalues ¢, £, - 2¢ a
charge g has only two different ones so it satis-

fies a second degree equation

0= (qg-¢1) @3+—égﬂ) which reads

ava=-£aq . (14)

This equation characterizes a charge.(6)
9. Sub-algebra v generated by an element

If q is a charge, equation (14) shows that it
generates a one dimensional sub-algebraVv, If x 1s

not a charge, since its minimal equation is of the
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third degree, x generates a two dimensional sub-
algebra that we denote by CX. We easily compute

xv(xvx) = avivx = = y(x) %, (15)

(xvx) v (xvx) = p(x)x ‘%-v(x) XX . (152a)

10. We introduce the name "special' for the ele-
ments of the orbits w(x) = O (the eigenvalues are
A, -A, 0). Equation (15a) 1is of the type (14), i.
e.

s special = svs is a charge. (16)

11. CX defined in.g 9, is also the Lie algebra of

the little group of x, when x 1is not a charge.

The 1little group of a charge q is a U(2), whose Lie
algebra we denote U(Z)qo It is also a sub-algebrav.

It is easy to prove

a € U(Z)q and aax = 0= C c U(2),. (17)

IIT. DYNAMICAL BREAKING

We now want to apply the formalism developed
in the previous section to study the following
problem.

ILet f be a function which describes a system
of strongly interacting particles. In particular
f could be the S-matrix or the Lagrangian for the
system. We shall assume that £ is invariant un-
der SU(3) and that it depends upon a vector x € g
This dependence represents the effect of the
symmetry breaking.




ON THE DYNAMICAI EREAKING OF SU(3) o5

We want to investigate if x has to satisfy
any condition in order that f(x) be an extremum.
This question is answered by the following mathe-
matical theorem

Iet G be a Lie group acting on a manifold M
and let its action be differentiable. Then any
invariant function on the manifold (which is thus
a constant on every orbit of the group) has extre-
ma on the special 1ayers.(7) In the case of the
octet we have seen that besides the origin there
is only one singular layer, that of the charges.
Hence whatever the details of the dynamical theo-
ry, one can predict that at least a charge orbit
will appear as a solution of every SU(3) invari-
ant variational problem on the octet space.( )
Clearly the nature of the extremum, which deter-
mines the stability or instability of the solution,
depends upon the detailed nature of the theory.
This result can be easily proved for the action of
SU(3) on the octet space €q. It is essentially
contained in references (1-5),but here we shall
pbrove it in a simpler and more direct way.

Iet f(x) be an algebraic invariant function
on 68, i.e., a function of*x through the invari-
ants vy(x), u(x)(9% the gradient of f is

%g = g% X + %E X\ %
The extrema of f are defined by df/dx = 0, i.e.,

by one of the conditions

(1) x =0
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(1i1) of of RV 0, with (18)
oy oI}
of of

and different from zero
vy S

The third condition is the same as Egq (114)
of sectionIT. Hence in this case the function f
has an extremum when x is on a charge orbit.(lo’
11) This shows that a dynamical breaking occurs
along preferred directions of 88. Thus a dynami-
cal breaking selects on 88 a four-dimensional sub-
manifold which is a charge orbit. The removal of
the remaining degeneracy by choosing one particu-
lar charge on the orbit requires a breaking of the
symmetry (spontaneous or induced).

From the physical point of view it 1is inter-
esting to consider invariant functions on the oc-
tet depending on more than one variable. This 1s
the case if we want to take into account the
preaking of SU(3) due to two interactions. In the
manifold of pairs of vectors of 88 the general la-
yer is the set of all orbits of dimensions eight.
Tt contains all the pairs of non commuting vectors.
If we forget the pairs of colinear vectors (which
would correspond physically to consider only one
interaction) the only other layer 1is made of pairs
of commuting vectors. From the previous result
we know that they are two charges. An extremum of
an invariant function of two vectors should ap-

pear on a (six—dimensional) orbit of this layer.

At Qb v = v UaE T et
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The two known pairs of commuting charges 1like the
electric charge and the hypercharge or the elec-
tric charge and the weak charge are examples of
this situation.

IV. INDUCED DYNAMICAL BREAKING

Instead of considering the general problem
of the breaking of SU(3) due to the three interac-
tions, we shall consider the electromagnetic and
weak interactions as given and investigate their
influence on the semistrong breaking. More pre-
cisely we want to investigate if the breaking of
SU(3) due to electromagnetic and weak interactions
can induce a breaking along a preferred charge di-
rection, the one of the hypercharge.

The electromagnetic interactions break SU(3)
along the direction of a charge q of the octet 88‘
The breaking due to the semileptonic weak interac-
tions occurs along two special vectors C1s Coo
These vectors generate by the A and V law a Ug(z),
where z is the charge C1y Gy OF Coy, Cp (see eq.16).

The electric charge q belongs to U,(z).

We assume that the breaking is such that the
Lagrangian or the S-matrix is a function on the
octet depending on q, Cl’ Co which is invariant
by a change of basis in 68 leading to new vectors
a'y ci, cé. In other words we assume that the the-
ory is described by a function f(y;q,cl,cg) (the
Lagrangian or the S-matrix for example) which is
invariant for simultaneous SU(3)-transformations
on the hadron fields and on the external vectors
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(12)
Ays Cqps Co-
We now ask whether, given f(y;q,cl,cg), it 1is
possible to define in a covariant way the direc-

tion y with the following properties
(1) y 1s a charge

(11) y ¢ U, (z). This is equivalent to

requiring

YA Z £ 0

gy AT
e =) R S LTy R 2

(1) and (ii) are necessary properties for a
vector in the direction of the hypercharge.

If the semistrong breaking in the y-direction
is of a dynamical origin one could hope that the
solution of this problem would arise from an equa-

tion of the form

af

vy - 9

when q, c, are kept fixed.

C
1’ 72
We solve this equation in the case when f
depends linearly on q, Cqs
tified 1f the electromagnetic and weak interactions

Cg.ThiS is perhaps Jjus-

can be treated as first order perturbation. 1In
this case the most general invariant function of

the vectors y, d, Cl’ Ch is of the form

£ =1 +a, (ay) + o (cy,y) + 9% (cpy)

- C (94

+ag(ay ) + oyl v) + og5lepyy ) o
where fo and the a's are invariant functions of y.

The extrema of f are given by

_df _ . . 1
O=3 =Py +tB v v tayy+tb o (19) &
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with a, b € U2(z) and where B, and B, and the
lengths (a,a) and (b,b) of a and b are scalar
functions of y.

From equation(El)of the Appendix, we can de-
duce a necessary condition on y by operating on
(19) with Y- We thus get

%(yvy)/\ a+y, b = 0 . (20)
In this form it is easy to see that if we re-
quire that the solution y be a charge then y ¢ U,(z).
Indeed Eq.(20)becomes

1
yv,\(—év?— a+b)=O
which implies that y commutes with a vector of Ug(z)
and therefore belongs to it gsee 17). Eq. (19) re-
duces to Eq. (24) of Cabibbo if we set a = 0.
In this case, the simplified equation means

beC&Sy el U,(2z)
We conclude that it is impossible to satisfy (i)
and (ii) in this way. An equivalent way to inter-
brete this negative result is to say that the ad-
ditional physical requirement on y,

I\ QT 0,
is only compatible with the values O and 7/2 for

the Cabibbo angle.

We will only point out that the invariance
properties of the purely hadronic weak interactions
could be explained by the same method as due to a

dynamical breaking induced by the semileptonic
weak interactions.
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V. CONCLUSION

The aim of this paper was to study what in-
rormation about the properties of the SU(3) brea-
king interactions can be obtained from the geomet-

rical structure of the’ internal symmetry space 88

of the hadrons. The following results have been
obtained.

(1) Invariant functions on &g like the S-ma-
trix or the ILagrangian are minima (or maxima) on
the charge orbits. This means that if S depends
upon a vector of 88 this vector must be a charge
if we require that S satisfies a variational prin-
ciple. Thus the most stable case in the case of a
minimum corresponds to an s-_matrix invariant under
a subgroup U, of su(3).

(i1) If the S-matrix depends upon two vectors,
an extremum of S 18 obtained when the two vectors
are two commuting charges. This is the situation
for the electromagnetic and semistrong interactions
and for the electromagnetic and weak hadronic in-
teractions.

(1i1) There seems to be o hope to find the
value of Cabibbo's angle from the solution of a
variational principle, at least 1f we restrict our
considerations to first order effectsin the elec-
tromagnetic and weak interactions.

one of us (L.A.R.) wishes to thank the Insti-
tut des Hautes Etudes geientifiques for the hospl-
tality extended to him during the Fall of 1967 when

most of this work was done.
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These elements can equivalently be mathemati-

cally characterized by the condition : they

are the only operators on 88 : avvéq/\a whose
proper values are the multiple of a fixed num-
ber by 1, 0, -1.

We quote the theorem loosely without giving
a precise mathematical reference because we
would have to go into tro much technical de-
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tail. Strictly speaking the theorem is not
as general as that. For instance, a condi-
tion of compacity should be introduced on M
or on quotient space M/orbits. See footnote

8.

P

Here the space of orbits is the half real
plane p, v > 0 and v = 0, p = O which is
not compact. However, if one 1is interested
only in the "directions" of g (= rays =
vectors up to a factors) they form P(7,R) the
real projective seven dimensional Space. It
is compact. By action of SU(3) there are only
two layers, the general one which is dense,
the singular one which contains only one or-
pbit of SU(3), that of the charges. Then any
differentiable function on the directions

(= rays) of €g, invariant by Su(3), has an

extremum on the charge orbit.

To the best of our knowledge this 1s also

true for infinitely differentiable functions.

This statement is not precise. But it is

of of

easy to be more precise. Since 5§' and -

are functionsof y and p, the charge orbit 1s
; . of 3 of
riven by the equation - + = = 0
S y q 3y v > du K s
D
where v = 3(@/2)”/3. The statement 1s true
if this equation in p has at least one real

solution. We believe this will always be the

case in concrete physical problems ; I
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L i1s then the strength of the breaking.

Brout's letter (ref 3) is probably the first
paper which says clearly that this known re-
sult i1s of a general mathematical nature.
However, it is attributed to the property of
SU(3) to be of rank > 1. This is not the
cause. Indeed the rank one SO(3) can also
divide the space on which it acts into gen-
eral and singular ( # 0) layers. (cf. the
irreducible linear representation j> 1).

This situation is similar to the breaking
of rotational invariance by an external mag -
netic field B in the z direction; indeed the
interaction hamiltonian B . p is a scalar

A

for the rotation group.
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VII. APPENDIX

We will publish in the Annales de I'Institut
Henri Poincare a more detailed account of the geo-
metry of the Octet. We will prove there the fol-

lowing formulae:

For every a,Xe€ €g x A (xva) = xy (xa2)

=2 (xyX) e (21)
3xy (xya) - x/\(x/\a) = a(x,x) (22)

and for every charge q
3 y(a) ana + 4 an(an(ana)) =0 ,  (23)

2(ap)? & = V37 (@) ave + 2 a(a,a)- v(a) e
(24)

With the help of these formulae, we can discuss an

equation more general than (19); that is:
¢y + Yy tayy + bAay +c =0, (25)

where a, b, c U(2)Z. If vy is a charge, it has to
belong to U(E)Zo This can be proved by using (14),
and operating on the equation with

Q(yA‘)é-+./3 Y () v + 2 y(y) one obtains an
equation similar to (19).




