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1. TRANSITION RATE FCOR SFONWIANZOUS DECAY

1.1 Relativistic Fhase Space 3

The differeatisl transition rate d)\ ie proportionsl to the
phasaspace volume elament for the transition. Tor one particle, thie
phase~-space volume element is the covariant volurme elenadl dﬂmof the
hyperbcloid of mass m,

4n essy way to obtain it is through the use of Dirac S -function,

Indeed, the positive mass vshee’c of the hyperboloid
i 2 -
B - (P = (P Y- (Y =B~ p=p=m" .. 1)
is given by @(’P_)S(Bl_ ”‘) # O e (2)

(3)

where

) =1 U p*>0 and p>c’
— (O . otherwise e
In the uait ']-D:c =4 , the tredition is tc normelize this

covariant hyperboloid volume element to

d8.,= g | 2000) §(p=m)d'p o @

Q-W)'b{f‘g‘%l" [S(P ‘\“’ ”'ML)""S(P"PLJ-M'ECQP

Fren?

ie. 4 = _| _C_f:f_ whine M2 0 .. (4')

(we have usec, seo @.7. Direc, Foundstion of Quantum Lechaucs, chap. )

606 (-a) = J}(&)é\(a§~a) e (5)
and ‘S("&-*a") _._..,z%.-—‘ [S(x -a) + S(x-i»a,)] .. (5)

1.2 Genersl Formuls.

So for the spcntonecus decay of s particle of energy
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moaentum f: (E)_g}into n, -particles,
ax= o my8(e-L B)Tdfdm, @
=1 {=1

where the invariant coefficient /%) is the microscopic transition
probability (for given famd ‘Q;S) and the factor ( 2T )450’ Z-’rb)
tekes care of the energy momentum conservation.

The lifetime is not an invariz;nt, but transforms as the tims
component of a vector. It is £ /. which is invariant for a decaying

porticle, so the lifetime of this spontaneous decoy 1is,

'b n
LoaLlfan= .ale. Mos(g-u) (7 m‘)d Fe
T E_ L= L=y
The dimension of M, is given by

2n

M =M (dim JSH) MM " (8)
dA}m, u% = Me—.zn’

1.3 Two Body Decay.

Let us consider a two body decay : _E'.—: b+ b . Since S

is an invariant, it is a function of the trnuwwanits

z - . 2 P
pram?, pl=mi, Pobu=F(PEpT-pE)=i (i)
In the c,m, (centr‘e of mass) frame

5(»1 £,-c.) 8 (7+F)dT 4,

3 '.
where [ is a short-hand for (5.4 m’,‘)/‘" . TFinally
8 v

%_ _ i&% | ..(10)

w
= |p = 1P| = Vb
where P = o 2l e e _;,H...




II-3

For the covarient minded physicist, one can introduot the

vector
{ - 7 2 2\, e L Ve
iﬂ,:mlt(f’l —m -—Hﬂ)_)f’—-(m + om0 )_?2] (11)
it satisfies \ {(pip)g=P g=0 v (12)
and
— g . — 7 —
ﬁ’c,m.“’ o, CM‘)"' witih Ot'c,m? b,pm." Fa ¢ nv(' |
Since 7 =3 377 5"" - oe 13
(indeed d°p A, = &P d’q |
-
nde RICHATEICI ST E I
f \)% jo (S"(M - N = A/"’__—'_;‘ '
_—= M % + M= — QJ‘ + 2
T 4t . (= A =y \ = 4“1-% CLCI,
- NG+ m, 4= +m7
and from &(.5_(,‘_) )dx‘ 5 duy 14 -0(14)
= 1 :
' (13/) l&“xl d""
where 43,: ,f(x)
one obtains (10) or in. tores of masses
Lo Mod& oo(15)

T 2.1 M5
where A= ( M#m, +m,) (—-»M ) (H-m,+m,_> (H Empm)es (16)
Table (4) gives for all measured two body weak decay, the experimental

value of the pure number

\M[} _ o'ZITM

—

M5 TA=A .




A 2mbM | whb

Teble 4

r —= =

Pure numbe
~*

T

Ja  PT

./f[, = microscopic transition rate

. M,(‘z mass and life time of the initial particle.

for two body decays.

II-g‘\'

&= (Fermam) CMam+m J(M-mgm, J(Mym=-m,)
p = ..2;% = the momentum of the secondary particles in centre of mass.
b = branching ratio of decay mode
T il T
Decay mode WA in (Mev)? 13 in  MeV %M'Z ‘
Tt it sy’ 8.32 x 103 29.81 4.13 x 10° |
> oty 1.95 x 10% 69.8 2.4,2 x 10° :
Ko vy 2.33 x 10 235,65 6:32 x 105 |
Y 1Tt T 2,03 x 10° 205.25 3.20 x 10° |
i ) |
| « —1
K —> it T i 2,05 x 10° 206,05 1,05 x 10° |
— n°4 T° i 2.08 x 10° 209.05 4.65 x 107 ]
N —> p+ ™ | 2.23x10° 100,17 8.00 x 107
!
— A +TT® | 2.31 x 107 103.64 4436 x 107
T paemwe | 4450 x 105 189.15 1,025 x 108 |
— o+ 440 x 107 185.09 1.50 x 108
ST — n+ U l 4.59 x 10 191,77 1.02 x 108
o 5 0 S 0 D O W O s > o S - o - o - o - - A o - A - *
=T — AT ‘ 3.58 x 105 135.81 1.21 x 108
f :
—° s A 3.43 x 10° 130.85 6.16 x 107 ;

- . S
Note that f(.M is resonably constant within a factor of 2 for hyperon,

and k° decays.
be explained,

It is lower for k7T

and Tt""decay.

This will have to
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1.4 Three Body Decay.

The energy momentum conservation is given by f’ =P, +£1_+J_;5,
Since we do not observe polarization, the dimensionless invariant \/69

is function of the masses and of three linearly dependent invarients,
de-

that, for obvious reasons, we/\note 4,7 E L E,, £,
They satisfy
M = E‘l/+ El{ + E:}/ -0(17)

- i pA L 3
> = .. - T, — “-2b.. . !
2™ L’i. = QE ;E‘_ = M7 +m my-me fi fk e (177)

where 'l',,j, Lk, are a permentation of 1, 2, 3.

Then from (7)

L= M, d A, A )
T (21’05—[\/]] ID —-—P ‘/ . #} 8(1‘1 -E, Lok 5
” (S‘(P " , Pj )
:3—-"“" ju/(:) M.ﬁ‘.’.ﬁ’: (S‘(M..& —E ) (‘8) |
anyn ) T
- Where Eg, is a short hand for
-2 y 3 .
Eb _U’.L* P + F(I%_w:cs}—f—m;‘)" (18')

with
R b = P P2 cos
We have - i
d’p = A A(wse) Prap = dpdlwse) pEdL
So
ot A'/ 4n p dE, dE. x ,
T @m)’M 3 ME;“ 2Tl o) P ..(1811)

X8 (M—E —Ep- Es)
USing (14) with W = g $’ 43,;;—_ E5 s We get

1 [ ( Mo (£ £, .E,) OF, AELdE, F(M-E-E5) . ..a9)

B i ———

e 3 L B
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To my knowledge, this elegant formula was first written by
0. Kofoed-Hansen, Phil,Mag. 42, 1412 (1951). The dependence ofd%on
E,, £, £, only is essential. For weak decay, Mo is propor tional

to ‘%l and Jvin(gjﬁas dimension ™ “ .

1.5 The Iavariant S for Fermi Coupling.

For a Fermi coupling, the four particles are on the same footing,

- 4
So the simplest possible form for \ﬁ(g(},z of dimension ™M is

Ao g = A () (pope) + A (k) (B B
"*' A’ (E‘ ba) (P2 fa) + 6| (*"1”‘:.)(}_’5'24)
B (mmy) (par o) + B (mima) (pa k)
+ B, (P f) (mamy) + B (&2 ) (Mama)

*BL (Pirpa) (mamp) TEMMaMy L,
The ten constants 4,B,C are pure numbers which depends on the detailed

(20)

nature of the Fermi interaction.

4s we shall see this formula is exact at the first order of
perturbation in quantum field theory. Its miltilinearity in J.b_i or M,
just expresses that the Fermi interaction is "punCGtual' (i.e. 8 product
of /4 fields at the same point)., So each particle is emitted in § -state,
'which, for Direc particle means § -wave for large component (hence the
constant " ) or P -wave for small component (hence the term linear in f )e
In ¥ the value of %IA s f;}zA/ ) secescesaes “C  will be given
in turmsof the different poésible punctualk four fermion interactions.
To make such a oomparisori, we assume that \.,% representsa probability
transition with all spin-summstions done, Hence one has to divide by
2 for the decay of unpolarized psrticle and more generally by 21' for
spin average over the A initisl perticles. What are the'crossing

relations" for L 2 They arc obtained by the following rules.
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The m in formula (20) should be regarded as the mass for emitted
particle, and the opposite of the mass for sbsorbed particles.
This will be proved in ¥, (see also L, Michel, FProc. Royal .Soc.Lond.

63, 514, 1950). Restrictions on the 4, B, C, are given by the

condition o 2.0

WL 2 . , .
for pr=m” >0, Question |  Compute them s
Partial answer : Necessary conditions are

The order in which we write the particle in (20) is arbitrary. To
change this order, is equivelent to a relabelling of the 4y By o« «
constants, the new constants being linesr combination of the old ome
while & is left invariant, In plein words the AL » the BY and ©C
form the basis of three linear representation of the permutation group
of four objects. We leave to group addicts to compute equation (21)
(It is extremely simple s just for a permutation in each class

compute the number of jnvarisnt coefficients, this is the corresponding
character . Then use the character table (teble 5) given 1n the
appendix of this chapter.) We write (21) for the sake of the readers

of young diagram hieroglyphs

L

C, is invariant ; representation L] !

—
A.A" A" form the basis of the representation {“v*j-r~} +

ee(21)

2]
L

/ 7

i
s/ 1 i B i
5. &8 87 ! ' 1]

where E’;t::z}', (B, £8.)

There is a remarksble interaction that which yields results coveriant

for every permutation s

A= A=Al B, =& =8 bomBl=bl=0 (22

Such intersction correspond to the particular Fermi interaction proposed
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by C.L. Critchfield and E.P. Wigner, Phys. Rev. 60, 414 (1941)

(see also C.L. Critchfield, Phys. Rev. 63 , 417 (1943).

2. The M -decay U & +y+v
The 1life time is given by (19). Since theve ere two neutrinos

( mb =My, = ¢ )» a natural change of varisble, symmetrical for the two
neutrinos is

E + F,/: v E/‘i‘ E_”:'_"U.».
Pu,v)
o(e’ EY)
conservation in the c.m, frame yields

{
] = le/mg’] Lp = (e=m*)* :

so the life time is given by

Fron } \:2‘ and the triangulaer relation from momentum

1 - [ pPE)dE .. (23)
L

where [2(E), the electron energy spectrum s ?mwm Lu&‘/

Ple) = — | foau TRC

M= masy of ph- meden
4 good approximation (about 1%) is to neglect ’"Le./{.jed comparedto 1,

so \/%7 reduces to (from(20)and(17)and the factor 1/2 for spin-sverage

over the initial /,(_-pérticle):
Mo = T ) e WE (o2 ) e A - 2E")])
o= (2 VAE(p~ RE)+AE (u-2E)+ AE/(u-2E" . (25)
7 [AE(p s

The lifetime depends only on the symmetrical part of\/’@, so it depends on
the 4' only through Q/;. Wit
..(26)

Q/%z A+A"+ A”
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In the same way, the electron energy spectrum will depend only on the
, v

even part oi‘J‘"(aby exchange of £ ’and i (i,e. the even terms in w).

Hence / (‘f)depends only on the parameber Q and enother parameter whi ch

is treditionally chosen by

A, + Ay = gq/k '..(2'7)

&
5

f"\

o

. .
Hence Py )_‘ j z £ —g—ur) +
1= TG (e (pone) Bo(pE )
~C

+ A %(/u—-lf:'. ) ]

. S - |
P(E) = ‘i_./i@f_;f [(ﬁ%-g)-;-%.q@E—-%)} (2%)

B3It
and
I by 2 5
4 A
L= heae=s TG - S (o) gy
6 2 ST 192-"' oo .
whwze, ©.0044 (s the nlre of mass covreclion .
In equation (28) P(e) 20, O { EX M2 imply

o éq < 3/2 ..(28")

Equation (28) is a good approximation of the experimental spectrum for
¢ =3/, This rules out the Critchfield-Wigner interzcilon

(Al = Ay = A, implies € = ). The value of Q:f’/ﬁ_implies
A} = O 00(30)
Equation (29) yields for the voliwue

-5
C’rQ)& = MP X 2:84X10 N A“(31)

Note that @) Q is inveriant by permutation of the order of particles.
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3+ Neutron Decay and Nuclear guradioactivity.
N i

The kinetic energy of the final partieles in neutron decay is

W-mez M~ "M, = 0 7%3 Mel | «o(32)

3 ; N
It means for the proton a kinetic energy . s <i102Hey. S0
= i)

2X/

we can neglet it,
The microscopic transition Probability \,"";[D can be written
with a good approximstion for neutron decsy, (M = nucleon nasg,

e order, M, b ¢ y M..-H mufc“fz. (M, O) do not forget 1/2 for

neutron spin average),

2 ™ Py crs ..
%zi%fof’M EyE, (l+{s & o(ea ) (33)

<

where £ 1s the angle between p, and p and we have used the.shorthand *

QﬁzmAu A" -8, Qﬁﬁ,z a” 5 @qs B ~A ..(33")

Formulze (18'") and (33) yield for neutron decay,

L T e et e drse) S e 1y
X(WB e +o<L’—°‘"”@)
" E, Eo

- The term in & do not contribute to the integral. So the eleotron

energy spectrum is

\ oA

£ ?Qﬁ‘j( ..n;)”"g(ws)”'(wffz%@)dﬁ, (3%
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With ‘/ﬁ~ 0, this spectrum, first computed by Fermi in 1934, described
well the electron energy spectrum for neutron decay and many light
nuclei {3 decays the so called allowed decay (For heavier nuclei
the coulomb interaction between the electron and the final nucleus

cannot be neglected), So we conclude
F) =0 L (35)

The term in f_:, was first computed by Fierz, Z.Phys. 104, 553 (1937) end
was generally called Fierz term in the literaturé.
The term in (X has been measured for neutron decay (J.M.Robson,

Phys. Rev. 100, 933, 1955)

X = d.oe £ O] ..(36)

Equation (34) is also valid for the "allowed decay" of light nuclei,
but with the parameters Q and X changing from nuclei to nuclei, This

will be studied in VI,

Let us call
W i
' L\ 2
fw) = | (E%-m¥) TE (w-g) AE. . (37)
o .
(when  m, (W » @B approximation of (W) is \
WS * )
C{ T . "(3’7t)
fw) 3. |

The quantity T_‘{{W) igs listed in nuclear physics tables for F:)-decay
(see VI). We use here only the neutron data

5

el &
flw)= 1632 m, , T= (1-03% 0-629) 1070 See.

5

- A Y ) _ | (
50 ";J"Q;‘ = M%l X4 26%X10 ° - (38)
O .
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i
This is just 1.5 the velue found in (31) for G Q 7::2‘, but from (33'),

we expect Q&to be different from Q/”;

i

L. Leptonic Decay of Hyperon.

Ouw study of neutron decay can be transposed to:

O - _5
AN — }’ + e + 2 ; observed brenching ratio 210
(see table 2).

__‘.A
22— n+et +u

T = T w :
= A+ 4V : 1 evenlis observed for 353.

.

(P.R.L. 10 38L, 1963, D,D. Carmony and G.H. Pjerron).
The decay’ = —> A+ 4V and = °—> P+ € +y have not
been seen.
Neglecting again the kinetic energy of the nucleon, we predict

for the transition rate

’

_.'

2 5 4.260%10°Y (17715 s ,

G e

47> 30 6 SEx ot 4 (93%-21)°

g
& L=

This is sbout 600 times too large.

Some decays A= P+ p’ and also two cases of 2 mnt +v!
have been observed, Physicists do believe in the universality of
Fermi interactions of leptbnic decays of baryon, but decays which change
strangeness are slower, so the universality must have some not yet under-
stood sdphistication.

Some JI,-decays ere expected without change of strangenesss

This will be the case of
st — /\o+e.i'+ V.
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with an expected rate of

2
{ @Ry W ‘% .
L= OB = %10 sal! .

T ard 30 P for Z

76 )“C?s See for 57
Since W = 74.0 MeV for fand 80.6 for Z—.
It seems also that these decays are slower. Their experiméntal
study mey be made now and they probably will teach us more on the funda=

mental nature of the phenomenological Fermi interaction.

5. PLAYING WITH THE COLDEN RULES.

5.1 Nuclear §-decay.
l
It is very useful for us, physicists to be able to compute
orders of magnitude as we did it in 1.4 by dimensional analysis. We

_may slso want erude but a Vrufle. more precise techniques to get results

within a factor 2 or 3, The majority of books and lecture notes use

for the transition rate

.+(39)

N 5 §(F-3 T )xee(40)
T e b e . F (P Z, t,, Kee 4
QE dE = (an)? (Ln 3\:1 () j Z > - b)
, y ““(Ci P
L=
With the relation
2”‘ L
M= |H|PEEEL. - - E, oo (42)

Formula (39) is nothing else than equation (7), when explicit relati-

vistic covariance has been destroyed by the decomposition in factors
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H—f{l and ?E.' However, many physicists still prefer to use the
interaction Hamiltonian matrix element H. For instance, for the

nuclear {g,-decay Fermi interaction

- r ~ b L 5—? | k - L (42)
H= g { by, dL
Let us do = very rough but astonishing f?, efficient computation, -
We quantize wave f.‘unctionsa{/ in a large convenient box (tis lab,, the

solar system, what you like); of volume V; so

f NP PR =1 .. (43)
1% .

i

i

- - : 1 -
For quentized plane waves for instance || =Y . FPlane waves are
even unnecessarily . for us, The simplest wave function which

satisfies (43) is
' )
Ay __-:\,/ /2 - e (44)

The dimension of % is given by
=3, x4 o

-

NM = L-l = c/uuw?, % V
’ 2 P
- so dim 4= L™ =M = as we know. \

For nuclear 5-decay s the neutron or proton are inside the

nucleus of wvolume VN s 80 their wave functilon is

b

Y= N’rP \/N = inside the nucleus
O . outside the nucleus.

So the metrix element of the interaction hamiltonian (42) is for a

12

p -decay

) N A - /
‘ H = (5/ »S \/N'ivc, - vv * 51»32 = i’?—
Vn VeV,

-3 >
The phase space volume element is (7. n‘) Vdgp e S0 we obtain
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immediately for s nuclear g-decay

!-’ .7
= lrfj‘j~ Ve & APy Vvdzf’v

L
T

(z2m)? @T)*dE
2
— LI s 7
- L:,‘ﬁ")gj ;DQ_ Ee <W~Ee> CLE
since }3}2 ~ = - E. .

This is just equa’cion (34') when Q;S" l, cnol p=07 (as we have

t
seen actually g> =)

5.2 Electron Capture,

In 1934, shortly after Fermi's paper, his student Wick
predicted the capture of an atomic electron by a proton of the nucleus s
& +p —— Y
The most probable captive is that of a A electron; Indeed the nucleus

is small comparedto the Bohr radius of electron,

p -3 ‘k’ Y
™ = radius of nucleus ~ (+4 % 1o o~ X A

2 N '
e
R =Bohr radiuvs = L & _ a
5 2 '}_l;,
where X = & = b s the fine structure constant;
_ RC 137
/

=0 Lo~ ZAB o + (45)

It 1s a good approximation to take the wave functioh of the
electron inside the nucleus to be constant and equal to ~L(0)s In other
words, the capture probability of electron with orbital momentum |
Lo (b, {,. .. electron) is negligible.

For s electrons the wave function at the origin is

-3
for K- electrons : n =y AL = ! R /“ ! L )xh‘ ( Zame)

¢ Vo V3

One obtains the right order of magnitude by the relation

A —~r R...
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~Since the captured electrons are {\ -electrons, this phenomena
15 generally called K ~capture. Then

)

he g (v 2= F (Bam) =
%J n Frq,@ v ’V,}-‘ﬁ:k ) ’\fr\_/;

and <. (46)

I

! , +p anV 2 3 3
—— = ZTC = v v | . . o2
T l {s W. X2 = "—TTLL'J/ (Z X) }'\"E pv )

The lagt factor 2 accounts for the two electrons in K-shellu

A < e e
We Auave py;rwﬂ:&z’n%(gp{):v\/“(‘ohe binding energy of the electron),
If AL ff,*‘ decay competes with W -capture. Since for lerge
W iis rete is proportionel to W {3+ ‘decay 1s the principal

transition mode when W 1s large enough, o

&

5¢3 /14‘. —Capture.

M. —oapture is quite similer to electron capture. The Bokhr
_2
orbit of the (L is (Z‘o{/}, }s 1.e0 7& times smaller than that of
e
electrons. S0 /u_ is not disturbed by the atomic electrons. S0 in
equation (46), we have to replace (EA me )3 by (Z o(/L y3.  Since

)L

there is only one }[', we devide by 2. Here Pv=/l&(t L2 )—-t:M;

2
where [ is the energy taken by the nucleus. Here is the main
difference with eleotron capture.  The proton which absorbs the e
by ;‘»’Lf_;;’ﬂ» n+1 would receive a kinetio energy of about ;%: r%%;~5 MeVe
However, from the motion of {:.‘f" inside the nucleus this energy can g0
up to 20 lMeV, So every proton in the nucleus can receive enough energy
to go to an empty nuetroﬁ state (generally a free neutron state). So
we have to put neerly an additionsl factor 7 and replace b, by M
nesrly (we multiply by 1/2 for taking account of all these nearly.'s ).

We then have obtsined the rate formula

-

/ 4 -
-L‘- = %1‘:_ 7 o(bp,b oo (47)
ap . f . N
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45 we shall see, this is a good approximation of 7 if it is not too
lerge. TWhen Z > 20, the ratio : s ~Bohr orbit/nucleer radius is
not lerge enough, so it is essential to take in sccount the size of the

nucleus, Equations (29) and (46) yield the ratio,

C
o clecoa 4 - 7 -} Z %

,—C _ / AN G I /&
A c&?um L,

This is well verified for light nuclei.

The equality of the Fermi coupling constants Cc!?' for nuclear
i% ~decay, M ~decay and /u -cepture was emphasized first and indepen=
dently by J. Tiomno and J.A. Wheeler,Pocono conference , Sumier 1948,
published in Rev, Mod, Phys. 2L, 153 (1949) and Puppi N.Cim 5, 587 (1948)
end 6 , 194, (1949). See also T.D. Lee, N, Rosenbluth and  Yang

Phys. Reve 79, 9% (1949).




II - 13

Characters of the irreducible linear representciions

of the four object permutatiém group

TABLE - 5

Irreducible representations

Cleoss
ot
o saliles
r“?' !
f
L

S
bd i |
1 |1 1 1 2 3 1 3
211 | 6 1 -1 0 1 {-1
| 22 3 1 1 i 2 - 1 -1
{ i |
% ! |
E i
4 6 | 1 -1 0 -1 1
i |
a |




