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Abstract

The use of the commutation relations of “field algebra” implies relinquishing
the proposed identification of the SU (6) algebra (and SU (6)w) with space
integrals of current components. The latter now form an inhomogeneous
algebra, whose representations we study in order to check whether they
might still display a similarity to the SU (6) classification of the spectrum.
The results are negative,

THREE ROLES FOR THE CHIRAL ALGEBRA

In non-relativistic atomic physics, the vector space of the energy-degenerate
bound states of hydrogen is the carrier-space of an irreducible representa-
tion of an SO (4) Lie algebra generated by conserved observables (the com-
ponents of angular momentum L and of the normalized Laplace-Lentz
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16 Symmetries and quark models

operators A). The Hamiltonian operator H is a scalar functional of these
algebraic generators. We thus have three roles fulfilled by the SO (4) phys-
ical algebra of the I and A:

a) They represent symmetries of the system since
[H,L] =0, [H A]l=0. (1)

can be used to generate by exponentiation a group of transformations leav-
ing H invariant. In practice, this feature can sometimes be used to obserre
the algebraic generators indirectly, since they will impose selection rules on
the energetically allowed transitions.

b) They appear as the dynamical variables of the theory, with H as a func-
tional H (L, A):
—(2H) ' = L2 + A? + 1. (2)

¢) They can be observed directly in measurements using inertial or gravita-
tional properties. This feature is due to the fact that energy-momentum and
angular momentum components are related to the components of 6", the
energy-momentum tensor, which is the source of the gravitational inter-
action.

The algebra of chiral SU(3)x SU(3) generates an approximate sym-
metry of the strong interactions, in analogy with (a). Note that the diagonal
SU (3) subalgebra (“plain” even parity SU(3)) can be extended to include in
addition the law of baryon number conservation. Role (b) is as yet unclear,
though an attempt has been made by Sugawara to embody it in a prescrip-
tion for 6", written as a functional of current densities. To a limited extent,
this is also achieved by writing a chiral-symmetric Lagrangian density as a
functional of meson fields, which are assumed to be proportional to some
current densities or to their divergences (though one is then faced in addition
with the kinetic energy terms!).

Gell-Mann’s approach emphasized role (c) for the chiral currents. Here
it is the weak and electromagnetic interactions which allow us to observe
directly the charge and current densities. In this approach the vector den-
sities v7(x) and the axial vector densities a}(x) are defined through the ob-
servation of their matrix clements between various hadron states in these
non strong transitions (i = 1-+- 8 are the unitary spin indices, with i = 0
by extension for the unitary scalar case: 4 = 0, 1,2, 3 is the space-time in-
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dex and x is a four vector). Their space integrals
v = [d3x0)(x), A, = [ d3x aj(x)
obey SU (3) x SU(3) commutation relations
[V, Vil = HinVi, Vi, Al =1 A [, A)] = WiV 3)

The free quark field model was introduced so as to provide an explicit
prescription for the equal-time commutators between the densities, so that
they should yield (3) upon integration (for x, = Yo):

[07(x), ()] = [a7(x), a()] = if;re(x) 6% (x — Y),
[07(x), a§(0)] = ifipnai(x) 8% (x — y),
[07(x), 55N = [a7(x), a5(3)] = if;;2f(x) & (x — y) + Schwinger terms,
[07(x), a5 = [@}(x), 6] = ifize a3(x) 6 (x — y) + o,
[v{(%), i(»)] = [a{(x), a5()] = ie" %, af(x) 6° (x — y)
+ 107 [ vk (x) 03 (x — y) + -+,

[0i(x), @] = 167 dy i vf(x) 6% (x = y) + 167 fr5 al(x) 0% (x— y) + -+,
(4)

where the indices 0,7 = 1,2, 3 of space.

THE ANGULAR MOMENTUM SPECTRUM IN THE QUARK MODEL

The picture becomes muddled when we move on to SU (6) and larger
schemes, used to classify the correlated occurrence of unitary (eightfold) and
rotational spins in the hadron spectrum. At first, Feynman ef al.! suggested
a mechanism which would have provided the generators of SU (6) with a
role (¢). They identified the algebra of SU (6) with the “diagonal” subalgebra
(of even parity) in a system generated by space-integrals of all components
of the vector and axial-vector current densities. These densitics are assumed
to follow the commutation relations corresponding to a fundamental quark
field, generating at each point of space-time a chiral SU(6) x SU (6) with a
variety of Schwinger terms in addition. Upon space-integration. we are left
with global generators of [SU (6) x SU(6)].5.

2 Chand (1388)



18 Symmetries and quark models

Feynman et al. were hoping to observe the entire [SU(6) x SU(6).s] as an
appropriate symmetry of rest states. It then turned out that such a require-
ment is tantamount to imposing on the rest-symmetry group the condition
that it should leave invariant a Lorentz scalar density (e.g., the mass-term in
a Lagrangian). In the Dirac indices’ space, the Lorentz scalar is represented
by 3, and this would imply that all odd parity generators be non-compact.
The global chiral generators would close on SL (6, C) rather than on
SU(6) x SU(6). Considering that the Adler-Weisberger sum rule pro-
vides proof of the compact nature of the axial charges, Dashen et al.? sug-
gested that role (c) be played by the [U(6)x U (6)]s system of parity-even
integrated currents. This rest-symmetry could then yield a further SU(6)y
vertex-symmetry for collinear processes. With this picture, we thus even have
a role (c) for both the Gursey-Radicati and the Lipkin—Meshkov (type (a))
symmetries. Moreover, Gell-Mann? could then also provide such an inter-
pretation for the “intrinsic L”, defined as the difference between angular
momentum at rest (spin) and the “intrinsic spin” in SU(6), i.e., the inte-
grated axial vector unitary singlet current components.

Note that the integrated generators suffer from difficulties in the definition
of their behavior as Lorentz tensors. We shall not deal with this aspect here,
especially since we could simply go over to the more recent /local treatment,
working with the algebra generated in Eq. (4) by the current densities them-
selves. All the above Lie algebras would now appear for each point of space
time (except for the additional complication due to Schwinger terms).

A further development in the interpretation of the hadron spectrum con-
sisted* in embedding the above [U(6) x U(6)]z in a non-compact U (6,6). For
the non-compact generators connecting levels of [U(6) x U(6)];, no role of
type (¢) could be found. There were only some conjectures connecting them
with strong-coupling theory—a role which may be considered to relate in a
vague way to (b). Note that a scheme with a compact SU (12) was also con-
sidered in the work of Dothan et al.*; this would provide a type (c) inter-
pretation for a large part of the algebra, and by extension to its enti-
rety.

THE CONTRACTED COMMUTATORS’ ALGEBRA

Lee et al.® have suggested that the current densities behave like canonical
boson fields, and thus obey contracted commutation relations (i.e., making
the right-hand side of the quark field currents commutation relations in (4)
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vanish for commutators between space components) for 0 = °:

[07(x), 53] = [af(x), af()] )
[07(x), a7(»)]

[07(x), 5] = [a)(x), a5(y)]
[07(x), ¢S] = [al(x), 5] )
[01(x), 0j()] = [a{(x), a}(»)] = [1§(x), a}(»)] = 0. (5)

} asin (4)

Upon space-integration (or for each point), we now have non semi-simple
algebras. While the 2n (n = 3 for SU(2), 8 for SU(3), 9 for U(3)) global
charges (or time-component of the field 0{(x), aj(x)) still form a compact
algebra K = [SU(2) x SU(2)],s, [SU3)x SU (3)],s or [U(3)x U(3)l,s, the
other 2 x 3n space integrals of the space components (v;(x), a}(x)) since they
all commute, form a 6n dimensional abelian Lie algebra = vector space E.
The commutation relations of one time componert with a space component
show that K acts on E by 3 times (one for each value of the space component
index o) its adjoint representation A4 (respectively 2 triplet, 2 octet, 2 nonet
spaces). The total algebra (of dimension 8n) will be denoted I3[W] (three
times inhomogeneous W).

Hence for instance we have G’ = I, ., 4., [U(3)x U(3)],s for the “field
algebra” instead of [U (6) x U(6)],s for the similar current algebra.

We will forget the center of these algebras (i.e., the two elements v9(x) and
af,’(x)) and thus consider the 70 dimensional Lie algebra.

G = 183+1+8+1 [SU(3)XSU(3)]y5- (6)

The corresponding [SU(6)><SU(6)].'.5 Lie algebra discussed earlier is a
deformation® of G. Although the Lie algebra G does not contain SU, (its
maximal compact subalgebra is [SU, x SU,].5), it also can yield an
SU(6) multiplet spectrum by the following mechanism:

Let U be an irrep (irreducible unitary linear representation) of the group
generated by G (U is infinite dimensional).

One can deform both G and U (keeping the maximal compact part
[SU(3) x SU(3)] s fixed) such that G — [SU(6)x SU(6)],5s and U — V, an
infinite dimensional unitary lincar representation of the latter group. It is
reducible, since [SU (6) x SU(6)].s is compact. and its reduction into a direct
sum of irreps yields precisely the [SU (6) x SU (6)],s multiplet spectrum. The
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papers of reference’ explain how to compute the number of linearly indepen-
dent possible deformations and how to realize them.

We can even simplify a little this problem by noting that G is the direct
product of G x G where G is the 35 dimensional

G =I5, SUQ3) (7)

which can be deformed into SU(6).

Even so, such computation appears to us as a formidable task, and we
have preferred another approach which is less direct but much simpler,
since it is a straightforward application of some of Mackey’s theorems on
induced representations.

SU (3) CONTENT OF THE IRREPS OF G: I$

Since G = G x G, theirreps of G are tensor products of irreps of G. We study
only those of G. This group, considered as the diagonal subgroup of Gx G
has a particular physical significance either as the group generated by the
algebra of vector field or as the even-parity subgroup of G, to be compared
with SU (6). Since G, defined in (7) is a semi-direct product

G = (Eg + El -+ .Eg + El -+ Eg -+ EI)XSU(:S) = TX SU(3) e TXK (7’)

to study its irreps, we need a list of all orbits of SU(3) on T. Each orbit is
determined by a set of 19 invariants.® For each point # of an orbit we can
define the stabilizer (or little group) K;. All points of 7" whose little groups
are identical but for a conjugationin K = SU(3) (i.e., K, = gKig™ "', g € K)
form a stratum. A stratum is the union of all orbits of a ““given type” and it
is characterized by the little group of any of its points. We call F such a little
group. Then all equivalence classes of irreps of G are labelled by?-1%-11

an orbit of SU(3) on T characterized by its 19 invariants
whose set is denoted «; (8)

an irrep Dy of the little group F of this orbit.

x, D)

Such an irrep of G will be denoted Ug " r.

If one excepts the trivial case where the three octets are represented trivially
and U is then finite dimensional (then F = SU(3)). the only possible little
groups are®12: [, U(1), U()x U(1), U(2).
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All irreps of the four possible F are well known, so (8) yields the complete
list of (equivalent classes of) irreps of G.
The irreps of SU(3) are also well known. They are characterized by two
integers p, gand we shall denote them 29 (itsdimensionis3(p + 1) (g + 1) X
a, D{1)

x (p+q+2). Consider an irrep Uy r of G. Its restriction to SU(3):
U%"% |sues) is reducible:

a,DE i .
Us™ o = @ C&0 2 (p, ), 9)

(p.a)

where C}') is the number of times that 2+ appears in this direct sum de-
composition of U%#| sua)- Mackey’s induction reduction theorem tells us
the value of the C, ,forthe givena, Dy’. We will use itseasier version, Theorem
E’ p. 128 of ref. 10. The closed subgroup inducing Ug”# is the semi-direct
product T'x F. There is only one double coset T'x F- G/SU(3) since every
element of G is a product of an element of 7'x F by an element of SU (3).

Notethat Tx F n SU(3) = F, so Mackey’s theorem tells us that the SU (3)

representation (9) is equivalent to U;)li,“i ()3), the SU (3) representation induced
by the representation DY’ of F, as a closed subgroup of SU(3). If we denote

@(p,q)|F =@ yg.p.q) D)(vj) (10)
J

the direct sum decomposition of 2@ restricted to F, into irreps Dy’ of F,
then Frobenius’ reciprocity theorem, quoted for compact groups (as SU (3)
and F) p. 35 of ref. 10, tells us that

C((:l;?q) = thiq)- (11)

The coefficients y{”'? are easy to know. They are given in physical terms in
table 1. So we know the content, in irreps of SU(3), of an irrep of G. We can
then see if this content can be the same as the one arising from the reduction
of some irreps of SU (6) restricted to SU(3). More generally we can see how
much the “spectrum” of SU(3) irreps obtained from an irrep of G fits with
the physically known SU (3) multiplet structure. This leads us to the following
conclusion:

For mesons, we want at least an SU (3) singlet (Z*-?’). This implies that
Dy’ is the trivial representation: the only one for F = 1, v, D, v, v, D,
v, DO,

For the baryons there exist at least two octets. The only irrep of F which
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TABLE 1
F [rreps of F Value of /{74
1 only one, trivial; D{? (yrP 9 = dim of (P
=3+ D@+ Dp+q+2)
U() DY, m integer vy P9 = dim of ¥ = m subspace
1 Wir'm
of 2?9 space
U)yxUQ) DPy.; m, nintegers W, x U2 = dim of ¥ = m,
1 1 1 7 (m,n)

2I; = n subspace of 29 space

UQ2) D(é’{'ﬁ), 2t, m integers Ue 2)y§f",‘},)) = dim of (I(isospin)) = r,
Y = m subspace of Z‘?-9) space

Value of y{%:@ for all irreps of the four possible F
)

appear at least twice in the octet 2V are D\, Dy, DY) or Dy " (note
that ¢, y1)" = v,721), Do,y There are no irreps of U(2) with these
properties.

In table 2 we give the content in SU(3) of UXP¥ for the different DY
selectioned by the above physical considerations.

We have also putin table 2 the contents, in irreps of SU(3), of the “small”
SU(6) irreps in order to make easier the comparison with the SU(3) content

of the U; which have passed the two tests.

TABLE 2

Nonexcluded »”@ for mesons (at least one SU (3) singlet (%9 > )

Q.0
0,00 0,1 (3,0 0,3 2,2

D¢
F=1 I 8 10 027 : dim Z%-@
D‘(‘;)), 1 4 3 3 9 dim Y = 0 subspace
D(z(/"lol< U, 1 2 1 I 3 dim/; = Y = 0 subspace
DyY 1 1 0 0 1 dimI = Y = 0 subspace
SU(®6) 35 3 4 0 0 0

405 6 12 3 3 9
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TABLE 2 (Continued)

Nonexcluded 747+@ for baryons (at least two SU (3) octets: y{};!) = 2)

g(p.q)
0,0 (1,1) 3,00 (0,3) (2,2)

Dy
F=1 1 8 10 10 27 . dim @@
DY), 1 4 3 dim Y = 0 subspace
DY, 0 2 4 2 6 . dim Y = | subspace
D% v, 1 2 1 dim I; = Y = 0 subspace
SU (6) 56 0 2 4
70 2 6 2
20 4 2
700 0 6 12 2 6 etc.
1134 6 24 18 6 18 etc.
CONCLUSIONS

The representation Dy is the only one which ensures that all ;""" be even,
as required for baryons in an SU (6) like classification.® It starts out with a
1* 8and 3* 10, then going on to 37 10, 5+ 27 etc. It does accommodate
the equivalent of the 56 of SU(6) and is thus satisfactory. The appearance
of higher irreps of SU(3) such as the 27 etc. is a general feature, which
occurs also for the candidate spectrum generating algebras in which SU (6)
has sometimes been embedded, such as the non-compact U (6, 6) or SL(6,C).
The SU (6) classification has however the advantage of being alternatively
utilizable in conjunction with intrinsic L assignments, possibly with the L
embedded in SL(2,C) or SL(3,R). Such a scheme does not involve higher
SU(3) irreps; this may be an essential point, considering that the evidence
for states such as the Z* baryon (with Y = 2) is rather flimsy to-date.

The meson 0~ and 1~ octets usually assigned to the SU(6) 35 can be ac-
commodated in D .

The key weakness of all these I3, ,SU(3) irreps is the impossibility of
having more than one SU(3) singlet per irrep, so that no single irrep can
contain Y*(1405) or Y*(1520) for baryons (1~ and 3~ respectively) or the
$-o unitary singlet mixture (17), the similar f° — f° (27) etc. The com-
ponents of unitary singlet states are completely uncoupled.
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Our result is thus in the nature of a no-go theorem, because of this last
feature.

As a conclusion, the commutation relations should not be contracted and
the “field algebra’ ansatz given up if one is to conserve the connection with
the spectrum. Alternatively, if the contracted commutators be kept, the
generators of G will have very little to do with the observed clustering in the
structure of the hadron spectrum.
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The action of SU (3) on the octet space is that of SU (3) on its Lie algebra. Outside of
the origin (a fixed point) there are two types of orbits; 1) the general type of orbits of
regular elements of the Lie algebra; the corresponding little group is U(l)x U(1):
it is a Cartan subgroup of SU (3) = maximal abelian subgroup and they are all con-
jugated; 2) the orbit of exceptional elements fcalled “charges’ or “g-vectors” in ref. 8)
have for little group U(2) (all conjugated). For the set of three vectors of three octets,
the little group Fis the intersection of the 3 little groups of the vectors. In the general
case it is F = 1. Other cases are a) if the three vectors are collinear to a g vector,
F = U(2); b) the three vectors commute (for the Lie algebra law) but case a) is ex-
cluded, then F' = U(1) x U(1). In the last case ¢) the three vectors are three g-vectors
and either two are collinear and do not commute with the third one, or there are three
linearly independent ¢ vectors forming two commuting pairs and one non-commuting
pair. Then F = U, and is the one parameter subgroup generated by a g-vector. All
such U; are conjugated. (Note that in the traditional Gell-Mann basis only yg is a
g-vector.)

Indeed, for Y = 1, T3 = Q — Y/2 is half-integer; so the number of states ¥ = 1 in
an SU (3)/Z5 multiplet is even.



