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An Extension of Vorono'i's Theorem on Primitive Parallelotopes~- 

L. MICHEL, S. S. RYSHKOV AND M. SENECHAL 

Vorono'i proved that any parallelotope that is the prototile of a face-to-face primitive tiling is 
the afline image of a Vorono'i cell. We prove that the affinity is unique (up to an orthogonal 
transformation). Using a theorem of Zhitomirskii, this result can be extended to parallelotopes 
with maximal numbers of faces. 

1. INTRODUCTION 

G. Vorono'i, the 125th anniversary of whose birth was celebrated in 1993, would 
surely be surprised by the rapid growth that the subject of Vorono'f tilings, or Vorono'i 
diagrams, has undergone in recent years. This is due not only to the increasing number 
of applications that mathematicians, scientists and scholars in many fields have found 
for them, but also because they are computationally tractable, and haye many 
interesting combinatorial properties. Perhaps Vorono'i would also be surprised to 
know that mathematicians continue to study and learn from his great work, 'Nouvelles 
applications des param~tres continus a la th6orie des formes quadratiques' [5], 
published in two parts (the second posthumously) in 1908 and 1909. In this memoir, 
Vorono'i studied in great detail the subtle bijection between n-ary ciuadratic forms and 
their associated tilings of n-dimensional euclidean space ~n. Vorono'i conjectured that 
the tiles of these filings--which, following Delone, we call Vorono'f cells--are 
representative of all tiles that fill space by translations; he proved this conjecture for 
the generic class of 'primitive' tilings (defined below). The present note is a postscript 
to this famous result. 

Recall that, if S c ~gn is any discrete set of points, the Vorono'~ cell D(s) of s E S is 
the set of points of ~" that are at least as close to s as to any other point of S. (In this 
note, to say that S is discrete means that there is a minimum distance between its 
points.) The interiors of the Vorono'i cells of distinct points have empty intersection, 
and the union of all of them is the whole of ~n. A Vorono'i tiling is, by definition, 
face-to-face. 

A tiling is said to be convex if its tiles are convex; if the tiles are also compact and 
are translates of one another, they are called parallelotopes. A lattice tiling is one the 
translations of which form a lattice. Minkowski proved that every lattice parallelotope 
and its (n - 1)-dimensional faces are centrosymmetric [3]. Vorono'i tilings induced by 
lattices are convex lattice tilings with the special additional property that the line 
segments from o to the face centers of D(o) are orthogonal to the faces. An 
n-dimensional face-to-face convex tiling, and its tiles, are said to be primitive if exactly 
n + 1 tiles meet at every vertex. Vorono'i's theorem ([5, p. 273]) states the following: 

THEOREM 1 (Vorono" O. Any parallelotope that is the prototile of a face-to-face 
primitive tiling is the affine image of a Vorono't" cell. 

t This paper is dedicated to the memory of G. Vorono'i (1868-1908). 
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In fact, we need not explicitly assume that the tiling is face-to-face, since Venkov 
showed that every parallelotope admits a face-to-face tiling [4]. 

Vorono'l"S conjecture that every parallelotope in ~ is the affine image of a Vorono'i 
cell was proved for n ~< 4 by Delone [1]; for n > 4 the question remains open. 

Later, Zhitomirskii [6] generalized Theorem 1; we postpone a discussion of his work 
until Section 4. In this brief note we extend the theorems of Vorono'i and Zhitomirskii, 
both of which assert existence, by proving that the affinity is unique. 

2. AFFINE SYMMETRY OF VORONOI" CELLS 

We begin with point sets S that are more general than lattices: we will only require 
that S be discrete. As above, we define the Vorono'i cell Ds(o) (or D(o),  if S is 
understood) of a point o • S to be 

D(o) = {y • ~n [ Vu • S, N(y  - o) ~ N(y  - u)}, (1) 

where N(x - o) is the squared length of the segment ox. From now on we choose o to 
be the origin of ~n and denote x - o by £. 

D(o) is smallest convex polytope bounded by the  orthogonal bisectors of the vectors 
joining o to the other points of S. We say that f is a face vector of D(o) if one of the 
faces of D(o) lies in its orthogonal bisector; note that this bisector is the hyperplane 

(f, £) = N(f)/2.  (2) 

We denote the set of all face vectors of D(o) by 17o. D(o) is compact iff there are face 
vectors on both sides of every hyperplane through o. 

PROPOSITION 1. I f  D(o) is compact, then IFol < o~. 

PROOF. If D(O) is compact, then 2D(o)  is contained in a closed sphere tr(r) of finite 
radius; by construction, the face vectors of D(o) also lie in this sphere. Thus 
17o ~ (S fq or(r)). Since S is discrete, [o-(r) f3 S[ < oo. [] 

DEFINITION 1. If Fo is a disjoint union of subsets spanning mutually orthogonal 
subspaces, Fo is said to be reducible. If those subspaces are of dimension 1, 17o is 
completely reducible. If 17o is not reducible, it is irreducible. 

DEFINITION 2. We will say that a volume-preserving affine transformation $ is an 
affine symmetry of D(o) if it maps D(o) to itself and 17o to Fo. 

Such a qJ need not preserve lengths. Since o is fixed, we can represent ~b by a matrix 
A • SLn(R) with respect to an orthonormal basis for ~n with origin o. 

For each 7 • Fo, we have A f  E t7o, and there is a constant c r > 0 such that 

N ( A f )  = crN(f  ). (3) 

By Definition 2, if (~,f)= ,~N(f) then (m~, A f ) =  aN(Af ) ,  since ~ preserves the 
orthogonality of a face and its corresponding face vector. Thus 

(A f, a e )  = a N ( A f )  = ac/N(f)  = cf(f, 2). 

By definition of the transpose, (A2,)7) = (At)7, £) for all £ and )7 in Sn, so 

(mrAf, £) = c / ~  £). (4) 

Since (4) holds for all $ • ~n, we have the following: 
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PROPOSmON 2. For all f E Fo, 
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ArAT=cf.f. (5) 

This completes the proof of: 

LEMMA 1. I f  @ is an affine symmetry o lD(o ) ,  the elements o f  Fo are eigenvecwrs oj 
A T A and the corresponding eigenvalues are the constants c I > O. 

ATA is symmetric and has n positive eigenvalues, h~ . . . . .  h, .  Since A is 
volume-preserving and det A T = det A, 

h (Ai) = 1. 
i=1 

We distinguish three cases, as follows: 
(a) If all eigenvalues of ATA are distinct, then all eigenspaces are one-dimensional and 
mutually orthogonal. 
(b) If all eigenvalues have the same value A, then 1 = det ATA = h ~, so ATA = In. Thus 
A is an orthogonal matrix. 
(c) When some of the eigenvalues occur with multiplicity greater than 1, the situation 
is a combination of cases (a) and (b). ArA decomposes ~ into orthogonal eigenspaces, 
each containing the face vectors belonging to the corresponding eigenvalue. O~1 each of 
these subspaces, A acts as an isometry possibly followed by a dilation or contraction, 
and the subspaces are permutated by A. 

In other words, we have the following: 

THEOREM 2. I f  Fo is completely reducible, then A is a monomial matrix. I f  Fo is 
irreducible, then A is orthogonal. I f  Fo is reducible, but not completely reducible, then A 
permutes (perhaps together with dilations and contractions) the eigenspaces of  ArA.  

EXAMPLE 1. Let n = 3 ,  and let Fo=+61,+/52,+63, where ~ = ( 1 , 0 , 0 ) ,  b2= 
(0, 2, 0) and/53 = (0, 0, 3). Up to an orthogonal transformation the only possible affine 
symmetries, other than A = +/ ,  are those that interchange the face vectors. Suppose, 
for example, that A permutes them cyclically. Then since N(6~)= 1, N(/~:)= 4 and 
N(/~3) = 9, we have cl = 4, c2 = 9/4 and c3 = 1/9, and (Z01!  / (!0 0) 

A = 0 , ArA = 9/4 0 . 

3/2 0 1/9 

EXAMPLE 2. NOW let n = 2, and let 

Fo = +/~1, +/~2, +(/~1 +/~2), 
where bl = (1, 0) and b2 = ( - e ,  1). Since ArA has these three eigenvectors, there can 
be only one eigenvalue. Thus ArA = In and A is an isometry. For generic values of e, 
there are no isometries other than +I, .  

3. A~FINE EQUIVALENCE FOR VORONOI" CELLS OF LATTICES 

We first recall a few basic facts about lattices and their Vorono'/cells (see, e.g., [2] 
and [5]). We will denote the origin of a lattice by o. 
(i) Every point, and the midpoint between any pair of points, of a lattice is a symmetry 
center for the lattice, and every symmetry center belongs to one of these two classes. 
D(o) is centrosymmetric and so are its (n - 1)-dimensional faces. This means that these 
faces lie in belts, closed loops of faces with parallel (n - 2)-dimensional faces. 
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(ii) Every belt contains either four or six faces; there are four faces in the belt iff the 
four face vectors are +fl and +f2, where ~ ,  f2) -- 0. 
(iii) 7 e Fo iff + f  are the shortest vectors in their coset mod 2L: if ~ e L, fi ~ :t:f then 
N(f )  < N(7 + 2~). 

Since there are 2" cosets of 2L in L, including 2L itself, which has coset 
representative 0, and since 7 ~ 17o <==>-f ~ Fo, we have: 
(iv) IF,,I ~<2(2" - 1). 

Finally: 
(v) All primitive parallelotopes have 2(2" - 1) faces. 

PROPOSITION 3. IFol is maximal iff all belts o lD(o )  have six faces. 

PROOF. Suppose that a belt of D(o) has four faces with face vectors ±~,  :t:f2. Then 
f~ +f2 have equal length and are in the same 2L coset, so neither is in Fo. We will 
show that in fact this coset does not have a representative in Fo, from which it follows 
that IFol is not maximal. It is enough to show that (f~ +J~)/2 lies on the boundary of 
D(o), by the following remark: if ½~ ~ OD(o), where ~ ~ L then, by .the definition of 
D(o), N(~/2)~< N ( ~ / 2 -  £) for all £ ~ L. Thus N(~)~< N ( ~ -  2£), so no vector in the 
2L coset of ~, other than ±~, can satisfy (iii). To complete the proof, let a~ and Ot 2 be 
the two parallel (n -2)-faces  in the belt that lie in the face with face vector f~, where 
a2 = at  + A- Obviously, if £ e o~, then £ + f2 E a 2 ,  but also, since f / 2  is a center of 
symmetry for the face, we also have ~ - £  e a2. One easily sees that the midpoint of 
the line segment joining them is (~ +f2)/2, so (fl +f2)/2 ~ a2 ~ D(o). The converse is 
immediate. 

[] 

PROPOSITION 4. If  every belt o lD(o )  has six faces, then Fo is irreducible. 

PROOF. Consider any f E Fo, and let F ± be the set of face vectors orthogonal to f 
(of course, F l may be empty). Since f l ies  in belts of six faces, F ± does not contain any 
of the vectors of these belts, and except for + f ,  none of the vectors in the belts is 
orthogonal to F ±. These vectors span e", so F ± -- ~b. (Note that the converse of this 
proposition is false.) [] 

COROLLARY 1. The set o f  face vectors o f  a primitive parallelotope is irreducible. 

Next, we note the following: 

LEMMA 2. Every affine transform of  a lattice Vorono't" cell onto itself is an affine 
symmetry of  the cell. 

PROOF. The centers of the faces of D(o) are symmetry centers of L, and any affine 
transformation of D(o) into itself maps symmetry centers to symmetry centers. It 
follows that face vectors are mapped to face vectors. [] 

So far we have only discussed linear transformations of D(o) onto itself, but in fact 
our discussion carries over unchanged to the case in which L and L'  are two lattices, 
brought to the same origin by translation, and ~b is a volume-preserving linear 
transformation carrying DL(0) to De(0). In particular, Theorem 2 still holds. 

Now suppose that P is any primitive parallelotope. By Theorem 1, there exists an 
afffine transformation "0 that maps P onto some primitive Vorono'i lattice parallelotope 
DL(0). If there were a second map ~" carrying P to a different Vorono'i lattice 
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parallelotope DL,(0), there would be, since we may assume that the origins of the two 
lattices coincide, a linear transformation ~ carrying DL(0) to DL,(0), whel:e 

¢=~-'o~. 
Thus, by Corollary 1 and Theorem 2, we have proved uniqueness for Theorem 1, up to 
an orthogonal transformation. 

Remarkably, when n ~> 4, there are also non-primitive parallelotopes for which IFol is 
maximal! Zhitomirskii generalized Theorem 1 to include such parallelotopes by 
proving the following: 

THEOREM 3 (Zhitomirskii). Every parallelotope all the belts of which are hexagonal 
is the affine image of a Vorono't" cell. 

Our discussion in fact establishes uniqueness in this case as well, since we only used 
the fact that all belts have six faces. Thus we have proved the following: 

THEOREM 4. Every paralleltotope with IFo] = 2(2 n - 1) is affine equivalent to a unique 
Vorono't" cell, up to an orthogonal transformation. 
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