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Abstract. — A concept is introduced for physical equivalence of energy bands in solids: two en-
ergy bands are physically equivalent if their branches have identical continuity chords (symme-
tries) and identical Berry phases. 14 pairs of simple bands exist that are described by equivalent
band representations but are nevertheless physically inequivalent because they have different
topologies. Examples are given of physically equivalent and physically inequivalent composite
energy bands. All simple bands on different Wyckoff positions are physically inequivalent and
they correspond therefore to different energy bands.

Since the appearance of the classical paper [1], it has been customary to specify the sym-
metry of energy bands in solids by the symmetry of their Bloch functions at different points
in the Brillouin zone. A striking property of the energy spectrum in solids is the continuity of
the energy as a function of the Bloch vector k. Here a connected question is the continuity of
the Bloch functions in k. Although much work has been done on the continuity of energy
bands [2], the subject is not so well understood [3-5]. For simple bands (one Bloch function at
each k), it has been proven that the Bloch function v, (r) can be chosen to be analytic in k
(their Wannier functions are exponentially decaying) [6]. It was recently shown that simple
bands can be assigned a topological label, which is the Berry phase of the Bloch function [7].
Correspondingly, simple bands can be specified both by the symmetry (e.g., continuity
chord [8]) and the topology of their Bloch functions. Two simple bands will be called physical-
ly equivalent if their Bloch functions have the same continuity chords and the same Berry
phases. Bloch functions of physically equivalent bands can be connected by a continuous
phase. Examples have been established of simple energy bands that have identical continuity
chords (e.g., symmetries) but whose Bloch functions cannot be connected by a continuous
phase [9]. These latter bands are physically inequivalent.

In this letter we define the general concept of physical equivalence for energy bands in
solids. For this purpose we use quasi-Bloch functions [3,10], and band representations of
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space groups that are built on them [11]. It is shown that a Wyckoff position [w] together
with the label of an irreducible representation of the isotropy or little group G,, (a point group
which leaves the point w in the Wyckoff position [w] unchanged) determine a branch quasi-
Bloch function ¢{?(r), which has a well-defined continuity chord and also a well-defined
Berry phase. By definition, two composite energy bands (more than one Bloch function at
each point in the Brillouin zone) belonging to equivalent band representations of a given
space group [12] are called physically equivalent if their corresponding branches have identi-
cal continuity chords and identical Berry phases [7]. This definition applies also to simple
bands. In the latter case there is a single branch and the quasi-Bloch function becomes the
Bloch function. We show that there are numerous energy bands that belong to equivalent
band representations (have identical continuity chords) but they are nevertheless physically
inequivalent. Most of them are composite bands. For simple bands an example of the latter
kind was already given before [9] and a detailed calculation of the Berry phases for the space
group F222 (# 22) was carried out in ref. [7c]. In this letter we list all the physically inequiva-
lent simple bands that correspond to equivalent band representations. There are 14 pairs of
them: 8 pairs in the space group F222 (# 22) and 6 pairs in the space group F23 (# 196). We
present the Berry phases for these physically inequivalent bands. These examples demon-
strate for the first time the topological significance of Berry phases in the classification of en-
ergy bands in solids.

Let us explain the idea of this letter on the well-known example of a one-dimensional crys-
tal along the x-axis [3,7]. Such a crystal has two inequivalent symmetry (inversion) centres
at x =w; = 0 and x = wy, = a/2, where a is the lattice constant. These are the Wyckoff posi-
tions [13]. Around each Wyckoff position one can construct Wannier functions which are even
(+)orodd (—) " * (x), s = 1, 2. There are 4 such Wannier functions, and, correspondingly,
4 Bloch functions wi* * (x), where k is the Bloch quasi-momentum. The following one-to-one
symmetry correspondence exists [3]: the symmetry of the Wannier function (w, .) fully de-
termines the symmetry of the Bloch function w,(x) (even or odd) at the symmetry point
k = 0(I" and k = (n /a)(X) in the Brillouin zone, and vice versa, given the symmetry of v, (x)
at I" and X (analyticity in k of the Bloch function is assumed), this fully determines the Wyck-
off position and the symmetry of the Wannier function. In this letter we show that in 3 dimen-
sions this one-to-one correspondence is, in general, no longer true. There are cases, even for
simple bands, when for two Wannier functions y™" (r), w2 (r) at inequivalent symmetry cen-
tres w; and w, (Wyckoff positions) in the crystal, the corresponding Bloch functions y§* (r),
w2 (r) have identical symmetries at all k-points in the Brillouin zone. This means that the
symmetry alone does not distinguish between these two Bloch functions, and in this letter we
add a topological label—the Berry phase [7]—which does tell the difference between them!
The Berry phase is a measurable quantity and one should be able to distinguish in the labora-
tory between Bloch functions with identical symmetries but with different topological
labels.

A band representation D®? of a space group G is the induced representation from the rep-
resentation y, of the isotropy group G, for the w-Wyckoff position [11,12,14]. The space
group can be decomposed into cosets with respect to G, T = G,,, where T is the translational
group:

G = -G-w + (Clz ttZ)z;—w +...+ (as !ts)azlza (1)
where the representative elements (a;|¢;) (i = 1,2,...,5) define the s star vectors of w
w, =w, w,=(a|t)w, .., w,=(al|t,)w. (2)

Let """ (r) be the basis function for the representation 7, (assumed to be one-dimensional) of
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G,.. Then by definition we have[12] (when G, is symmorphic)
(Blw = pw) y™Lr) = 3 (P v ™" @), 3)

where (f|w — fw) is an element of G, which consists of a point group element £ and a primi-
tive translation w — fw. The latter will be later denoted by R{” = w — pw. All the partners
for the basis of the band representation D™ are then[11,12]

w0 () = (a; [t) p™@0 (), i=1,..s, @

where y{“?(r) = y“(r) (see eq. (2)). Correspondingly, one can define the quasi-Bloch func-
tions [3,5] for the orbitals in eqs. (3) and (4), where (R,, is a Bravais lattice vector)

#10@) = Sexplik R,y @ — R,,) = (a,]t) $ub (). ®)

In what follows, ¢%"(r) will be ecalled the quasi-Bloch functions for the s branches
(t=1,..,5) of the composite energy band. -

L.et us now show that each branch quasi-Bloch function ¢{*” (r) has a well-defined symme-
try and also a well-defined Berry phase. It is instructive to consider first a simple energy
band, in which case there is a single branch with one quasi-Bloch function ¢ (r) (in the lat-
ter case one can also choose the Bloch function y, (r) for the analytical description of the
band [6]). Denote by P the point group of the space group G which has to be symmorphic for
the existence of single branch bands. It is easy to check that for each § of P we have (see egs.
(8) and (5))

oD (r) = y.(B) exp [ifk - w ~ fuo)] e” (). ©)

This equation determines the symmetry at all points in the Brillouin zone, or the continuity
chord, of the quasi-Bloch function [5,8]. For a fixed Wyckoff position [w] and a different rep-
resentation y; of P, eq. (6) gives different y,(f) and therefore different continuity chords. But
it might happen that for two different Wyckoff positions [w] and [w'], eq. (6) gives the same
continuity chords. Examples of this kind are rare and they actually appear only in the space
groups # 22 (F222) and # 196 (F23) [9,12]. From the point of view of symmetry the bands
¢i“? (r) and ¢{*""(r) belong to equivalent band representations D®" and D®"

In addition to a well-defined symmetry, the branch (w,[) has also a well-defined Berry
phase which is defined in the following way [7]:

o (K) = | X, (k)-dk, (M
K
where the integration is on the path of a vector K of the reciprocal lattice and where
: w,l o, w
X ) = i [ [ (1 2w () dr 8

u.c.

with the integration on a unit cell in the crystal. In eq. (8), u*" (r) is the periodic part of
¢i" (r). It can be shown that Berry’s phase a™ (K) does not depend on the representation la-
bel [, and that it depends on the Wyckoff position only. By using eq. (6) and the definitions (7)
and (8) one can show that the following relation holds between the Wyckoff position w and the
Berry phase a™ (K) (ref.[7c)):

a" (K)—a" (7 'K)=w - pw) K=w-(K - f'K). ©)

This equation can be written for three independent K-vectors, e.g., the basis vectors K, , K.
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and Kj; of a unit cell for the reciprocal lattice. One can then find o' (K;), i = 1, 2, 3. In particu-
lar, if 7' K = — K, it follows from eq. (9) that a" (K) = w- K. On the other hand, if 3 'K =
= K, then a" (K) is undetermined in the corresponding K-direction. This is always the case for
polar point groups which consist of a single rotation axis and (or) a reflection plane containing
this axis[12]. But in the latter case, also the Wyckoff position does not have a fixed
value.

Consider now two equivalent band representations D™ and D®"? for one-branch energy
bands (simple energy bands) at different Wyckoff positions [w] and [w']. As was pointed out
above, they can belong to the space groups # 22 or # 196 only. There are 8 pairs of such band
representations in # 22 (4 representations for the pair a and b Wyckoff positions, and 4 for
the pair ¢ and d) and 6 pairs in # 196 (3 representations for the pair a and b, and 3 for the pair
c and d) [12]. There are altogether 14 pairs of such equivalent band representations on differ-
ent Wyckoff positions. We now use egs. (7) and (9) in order to find the Berry phases for each
pair of these band representations. It is clear that a Berry phase a™ is defined modulo 27. It
is interesting to point out that despite the fact that for a given Wyckoff position [w] the Berry
phase ¢ will depend on the choice of the origin, a® — a®" for two different Wyckoff posi-
tions [w] and [w'] is origin independent. Thus, for the space groups F222 and F23 we
have [13] w, — w, + w; — w. = 0 and therefore a® — a® + a® — @ = 0, independent of the
choice of origin. The results for the Berry phases for the groups # 22 and # 196 are summa-
rized in table I (for the group # 22, the Berry phases were already computed in ref. [7c]). We
see from this table that for each pair of these equivalent band representations D@? and D®?

TABLE 1. - Berry phases for branch quasi-Bloch functions " (r) in the space groups F222, F23. The
Wyckoff positions are given in column 2. The superscript in the quasi-Bloch function gives the Wyckoff
position [w] and the label | of the irreducible representation of the isotropy group G.,,. The Berry phases
a(K) (column 4) are listed for the basis vectors K; (j = 1,2,3) of the reciprocal lattice (column 5).

Space Wyckoff Branch quasi- Berry phases Vectors of the
group position Bloch functions reciprocal lattice
alK;) aK;) a(Ky)

=1,2,3,4
F222 (#221)  a(000) iﬁfg"“(r)g 0 0 0 Kx:(%&’%’*‘z‘a@)
b(OO-g—) ¢ () m n " KZ:(%’%&’“%&)
(§55) w0 §§ § Re(RERY
(T3] o 5 3
=123
F23 (#196)  a(000) $i-0(r) 0 0 0 Kx*(%s%’“%g>
(35%) 0w A
(§55)  wo R B Sk
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(or D" and D®?) the Berry phases are different. This shows that in all the 14 cases the one-
branch bands are physically inequivalent, despite their being equivalent according to their
band symmetry. From the point of view of continuity of these bands the inequality of their
Berry phases means that there is no continuous phase that connects their Bloch functions
wi P (r) with y? (r) (or yi&" (r) with y{*? (). It follows therefore that there are no physical-
ly equivalent one-branch bands in solids that correspond to different Wyckoff positions!

Let us now explain our results on an example of a tight-binding approximation. In the lat-
ter case the localized " (r) can be represented by an atomic function A®? (r). In particular,
let us consider the a and b Wyckoff positions in the F222 space groups [13]: a = (0,0, 0),
b= (0,0,c/2), where c is the lattice constant in the z-direction. And for simplicity let us con-
sider the trivial representation of the D,-point group [15], / = 1. The connection between the
atomic functions A(r) and the corresponding Bloch functions is as follows:

wi D ) = % exp[ik -RJA“V(r - R), (10)

where w can be a or b, and the summation is over the Bravais lattice. By definition of the
band representation, we have for A®? (r)

gAY =ACY ()5 g APV () = APV (); 1)

where g, is an element of G, (the isotropy group of the Wyckoff position @), and, similarly, g,
is an element of G, [9]. Let us concentrate on the rotation by z around the z-axis, U*. In G,
this is a pure rotation, while in G, it is (U” |00c), e.g., it contains a translation by ¢ in the z-di-
rection. A simple calculation shows that for the Bloch functions one gets the following result
(use is made of eqs. (10) and (11)):

Uy @) =yl ),  U?yPP@) = expl— ik, cly&l @), (12)

where Uk = (k,, —k,, —k,). Similar results can be obtained for U and U* (rotations about ¥
and z by 7). One can now check that at all symmetry points in the Brillouin zone [15] the Bloch
functions y;>" () and y®? () have identical symmetries. This means that under all the ele-
ments of the point group D, these two Bloch functions behave in the same way at all symme-
try points in the Brillouin zone. For example, at point Z(0, 0,27 /¢) [15], the phase factor in
eq. (12) for the b-function is 1. In a similar way one can check the disappearance of this phase
factor at all points in the Brillouin zone. The conclusion is that from the point of view of sym-
metry, the two Bloch functions y{>? (r) and y{>? (r) are identical. However, the atomic func-
tions AV (r) and A®? (r) out of which these two Bloch functions were built (eq. (10)) have
different symmetries (eq. (11)), because their symmetries are determined with respect to in-
equivalent Wyckoff positions a and b. The question is then whether one can distinguish be-
tween the Bloch functions yf*" (r) and y{'? (r). As we have just shown, from the point of view
of symmetry, they are identical. What we show in this letter is that the Bloch functions
wi*P (r) and y{? (r) are distinguishable by their topologies! Namely, as follows from table I,
their Berry phases are different. We come therefore to a very striking result, that there are
cases of simple bands with identical symmetries of their Bloch functions, but with different
topologies for them. In other words, the Bloch functions yf*" (r) and y{*'” (r) cannot be con-
nected by a continuous k-dependent phase factor (otherwise they would have identical Berry
phases):

vV (r) = exp [iatk)] yi@P (r). (13)

In particular, it follows from eq. (13) that y{*V (r) and y{>? (r) cannot belong to the same en-
ergy band (otherwise one would be able to connect them by a phase).
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For composite energy bands we find a very rich variety of band representations that have
identical symmetries for their Bloch functions, but with different Barry phases. A detailed
account for composite bands will be published elsewhere.

In conclusion, topology of quasi-Bloch functions was used, in addition to their symmetry,
for the introduction of the notion of physical equivalence of energy bands in solids. In a recent
publication [12] a complete symmetry classification of energy bands in solids was carried out
based on their band representations. By adding topology, the symmetry classification can be
subdivided into physically equivalent and inequivalent energy bands. Simple bands on differ-
ent Wyckoff positions are never physically equivalent. On the other hand, composite bands
on different Wyckoff positions can be physically equivalent. For simple bands the following
remark can be made: for them one can choose the actual Bloch functions v’ (r) and w0 (r)
to be analytic, where [w] and [w'] are different Wyckoff positions for one of the space groups
F222 or F23. For a fixed I, these Bloch functions have identical symmetries; they cannot,
however, describe energy bands with coinciding energies because their Berry phases a® and
a? are different and they therefore cannot be connected by a continuous phase.
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