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1. — Introduction.

In this paper we analyze the properties of the three fundamental inter-
actions (strong, electromagnetic, and weak) from the point of view of the
SU,; < SU, group. For this analysis we will use an extension of the geometrical
approach which we have introduced before [, 2] for SU,. In that case the
three charges conserved by each interaction namely the hypercharge Y, the
hadronic electric charge Q,, and the weak hypercharge Z, are generators
of the unitary linear representation of SU, on the Hilbert space of hadronic
states. That is, in the representation a ~ Q(a) € Z(#) of the SU, Lie algebra
on %', Qy, Y, Z are the images of three vectors — g, y, z of RS, the octet space,
i.e., the eight-dimensional real vector space of the Lie algebra of SU,. As
we have shown in ref. [1] the isotropy groups of these vectors are maximal
subgroups of SU; and the vectors themselves are solutions of a nonlinear
equation.

It is however clear that for a full understanding of the properties of the
interactions and of their relations we need to consider the group SU,x SUj.
Indeed the different behavior under space reflections of the three inter-
actions, cannot be described in terms of the diagonal SU, subgroup alone.

We will see that some of the interesting geometrical properties of the
vectors y, ¢, z can be carried over to SU,;xSU,;. We will show that the
directions along which the symmetry group is broken are, also in this case,
solutions of nonlinear equations of the type postulated by the bootstrap
approach to symmetry breaking.

Two subgroups of SU; x SUj are of special significance for hadron physics:
SU; and SU,x SU,. Both represent approximate invariances of the strong
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interactions which are valid when one neglects either the difference between
the K- and 7c-meson mass (for SUs) or the pion mass (for SU,x SU,).

Recently Gell-Mann, Oakes and Renner [3] have suggested that the strong
Hamiltonian which breaks the SU, < SU, symmetry transforms approximately
like an element of the (3, 3) @ (3, 3) representation which is left invariant
by SU,> SU,. We will show that in the space of the (3, 3) @ (3, 3) repre-
sentation we can define two directions which are solutions of nonlinear
equations and whose isotropy groups are precisely SU; and SU, < SU,.

In Sect. 2 after a brief resumé of the relevant results of refs. [1] and [2]
we will discuss the unique symmetrical algebra, on the space of the (1, 8) D
@ (8, 1) and of the (3, 3) @ (3, 3) representations, which have SU; < SU, as a
group of automorphism. The existence on these spaces of symmetrical
algebras insures the possibility of having nonlinear equations whose so-
lutions define the directions along which SU; < SU, is broken.

2. — Mathematical preliminares.

2'l. Geometry of the octet. — We begin by briefly reviewing a co-ordinate-
free formulation [1] of the SU, invariant algebras on the octet space RS.

We can realize R® as the real vector space of all 33 Hermitian trace-
less matrices a, b, ¢, .... Any element u of the group SU; is the form u =
= exp[—ipa/2], ae RS, The action of SU, on R® (which is the space of its
adjoint representation) is

(1) a - uau* = uau.

We can define on R® an SUj-invariant scalar product and two algebras
which have SU; as automorphism group:

Scalar product:
(2) (a, b) = Ltrab
SU, Lie algebra:

(3) apb=—%[a,b].
Symmetrical algebra:

If @ and a\/a are linearly independent they generate a two-plane %, (i.e. a two-
dimensional subspace of R®) which is a Cartan subalgebra (i.e. a maximal
Abelian subalgebra) of the SU, Lie algebra. Thus %, which is isomorphic
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to U;xU; is the Lie algebra of the isotropy group (or little group) of a.
If on the contrary

(5) q\Vq +n(q)g =0,

the isotropy group is a U, group which we denote by Uy(¢). Any vector whose
isotropy group is a U, will be called a « g-vector ». From now on we will
consider only normalized « positive » g-vectors, i.e. such that: (g, g) = 1,
n(g) > 0. This implies, 5(g) = 1/4/3.

The Cartan subalgebras of the SU, Lie algebra are all conjugate (i.e.
transformed into each other) by the SU, group. One of them is of course
made with the diagonal matrices ue SU,. It can be proved that any %
contains three positive normalized g-vectors at 120° from each other. Conv-
ersely if x, ye R® commute, ax + fiy and «'x - 'y commute, and generate
a ¢ (denoted €,,). For positive normalized g-vectors we thus have

(6) (gi, 7)) =—3<=q/\q;=0 and ¢+ ¢q;.

Given a g-vector y, the vectors #, of Uy(y) which are orthogonal to y form
the SUy(y) subalgebra of Uy(y). They satisfy the following relations:

(1Y yAty=yAty;=0; ()=1t)=0; /3t,\ty,=(ty, 1,)y.

The normalized #; of the three g-vectors of a Cartan subalgebra % form
the hexagon of the «roots » different from zero.

2°2. The SU3x SU; algebra. — To extend this formalism to SU, x SU, we
consider the space R'®= R8@RS. We call a, and a_ the elements of the
first and the second RS, respectively (the index + corresponds in physics
to the chirality) and denote by 2 =a, @ a_ an element of R6. The Lie
algebra of SU;x SU, is then defined by

(8) a/\b = (a, ®a )\ (b ®b)=(a,\Nby) D(a_Nb_),

where /\ in the right-hand side has been defined on R® in eq. (3). The scalar
product invariant under SU,x SU, is the Cartan-Killing form which we write

©) (a,@a_,b, Db )=14a,, b))+ Ha_,b).

It is also convenient to use another decomposition of R16 into a direct
sum R®* @RS, In this decomposition, which is symbolically illustrated in
Fig. 1, we denote the element 2 =a, ®a_ by (ala’) with

(10) a.,=a-+ad and a=a—a'.

13



194 L. Michel and L. A. Radicati

SUS™

antidiagonal SUy§

SUL

Fig. 1. — Decomposition of R into a direct sum of RS P Rs.

In this notation the Lie algebra law (6) becomes

(11) a\b = (ala)\(b]b") = (a)\b + a' \b'|a) b + a'\b)

and the scalar product

(12) (a,b) = (a, b) + (a', b').

In a similar way we can extend to R® the symmetrical algebra on RS:
(13) avh = (ala') v (b|b') = (avb + a'vb'|avb + a'vb) |

One verifies that the equation

(14) ava=la,
has only two types of solutions:

(15) a= (q|"0)
and

(16) a=(q|+q),

where ¢ is a g-vector.

The subalgebra of SU,x SU, which leaves invariant (i.e. commutes with)
a g-vector (y|0) of the diagonal SU, subalgebra is the set of all (aja") such
that yAa =0, yAa'= 0; it will be denoted (Us|U,),. With the notation of
(8) it is the direct sum USI(y) D US(y).
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2'3. The (3,3) @ (3, 3) representation. — A special role in the physical
applications is played by the (3, 3) representation of the group or of the
Lie algebra SU;> SU;. We can realize the 9-dimensional space of this repre-
sentation as the complex vector space of the 3x3 matrices m. Under the
transformation wu, Xu_= exp[—iga /2] < exp[—iga_ /2], m goes over into:

(17) m > u mu*

The representation of the Lie algebra is thus

(18) D(a)ym = D(a, @ a_)m=— Ya, m—ma ),
or
(19) D(@m = D(ala’ym — —5" ([, m] + {a’, m}).

(Equation (18) is obtained from (17) by differentation with respect to ¢,
at ¢ =0.)

The representation is unitary for the group, i.e. it leaves invariant the
Hermitian scalar product

(20) {my,my) = §tr(my my) .

The 9-dimensional complex vector space C,; can be considered as an
18-dimensional real vector space R'®. The 18-dimensional representation of
the group SU, < SU; on this space is the direct sum of the (3, 3) and its complex
conjugate (3, 3). It is real and unitary, hence orthogonal. It leaves invariant
a Euclidean (i.e. real orthogonal) scalar product which is the real part of
(20), while the imaginary part becomes an antisymmetrical real (i.e. sympletic)
scalar product. Explicitely we have:

(21) (my, my) = Re (my, my) = } tr(mimy,+ mzm,)
1 ) )
(22) iy, (= Im <m;, m,> = 5t (mimy— mim,) .

Any 3x3 complex matrix can be written in the form
(23) m=V32ul +m+iViiu + im' = (p|mlu'|m"y

where u and ' are real members and m and m’ are vectors of the octet space.
In this notation (21), (22), and (23) read

(24) (my, my) = pypy + pyus + (my, my) —+ (my, my) ,

(25) )nl] » ”’2( = /ullué - ,1»’:,[,1,(2 —T’ (7771., ’Hé) - (]/’/Ii‘} ’772) s
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and eq. (19) reads

(26)  D(ala’) (]| ) —

= (V&a',m)arm +a' v m' + \/%,u’a’“-—\/%(a’, m)|ap\m'— a/Vmux/g,ua’) .

Tensor operators which represent physical observable must be Hermitian
on 7. It is therefore necessary that they belong to a real representation
of the invariance group. This is the case of the (3, 3) D (3, 3) representa-
tion which, we want to emphasize, is irreducible as a real representation.

The tensor product of (3,3)®(3,3) by itself when decomposed into
real irreducible representations contains the (3, 3) D (3, 3) once.

Hence from two vectors r,se(3, 3) @D (3, 3) it is possible to form a new
vector of the same representation which we denote rps. The symbol T is
the law of a symmetrical algebra on R® which has SU 3 X SU, as automorphism
group. By standard methods we find

(27)  rps = FA(trr* trs*—tr(r*s¥)) — Lr¥ trs* — Lo* trp* Hr*, 5%y,
We leave to the reader to check that
(28) D(ala"yrys = (D(ala')r), s + rp(D(ala’)s) ,

which means that SU;x SU, is a derivation algebra of the T -product.
With the notation (23) we can write eq. (27) in the form

(29) rps = (7)t|[7']t),
where

r=(rlle’lr) and s = (als]lo’]s")

and
I (2 2 Il ( )_L(’ /)‘
T = ——=(200—20'0c"— (1, s r,s")),
V6 - ‘ )
1 !/ ! ! / ! .
t = —(—os—or-+o's'"+0'r)+rvs—r'vs ,
1/ 6
(30)

1 )
Tl = ——(—200"—20'0 + (r,s") + (1, 5)),
\/6

I
t = (93' -+ (),S ,,é,, o'r %,, O-r’)__ F\/ s —F VS .

\/6
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We add two more properties of this product

(31) {xpy, 20 =X, 9,2,

(32) <x, xpx) = §detx = (xpx, x) +i)x,x, x( .

The (3, 3) @ (3, 3) representation of SU,x SU, has no invariant for the sub-
group (Uy|U,)y, ie. if for all (ala’) e (U, < Uy, , D(ala"ym =0 eq. (26)
shows that m = 0. However if a' is restricted to be in SUx(y), the same equa-
tion shows the existence of a two-dimensional invariant subspace spanned
by the vectors

(33) (=2l |—/2n'y) ,

where y is a g-vector and 7, %' are real numbers. We will denote the isotropy
group (or its Lie algebra) of the vectors (33) by (Uz(y),SUz(y)). This Lie al-
gebra is the following direct sum

(34) (U2(»)[SU(»)) = SUS(y) @ SUS (») D U(y) ,

where U{(y) = (Uy(»)[0) is the Lie algebra generated by (7/0) (see Fig. 1).
The vectors (33) have an interesting property under the 7-product. Let
»(¢) be the vector (33) with

(35) n=V4icosp, u'=+1sing.
These vectors are normalized

(36) @), @)y =1.

They belong to the SU, x SU, orbit of ¥(0) and satisfy the quadratic equation

(37) Y@ ¥(@')=0.

Moreover one shows that all unit vectors of R18 satisfying such an equation
are on the SU;x SU; orbit of y(0).
Equation (37) is a particular case of the equation

(38) mym = im .

If 250 (and m + 0) one also shows that the only unit vectors which are
solutions of (38) are on the two orbits of 4 n— +4/2/31 which are SU§
invariants. The unit vectors which have SU{ as isotropy group form a circle
(39) n(g) = Vg explig]1 = (cos¢|0]|sing|0)

n(p £ 7) = — n(g)
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and they generate the 7-subalgebra

(40) n(g)pn(y') =Vin(—qg—q').

3. — Geometrical properties of the three interactions.

3'1. The SU, symmetry. — We begin by recalling the basic properties of
the interactions under the SU; group, ie., the diagonal subgroup SU? of
SUSH < SUS.

a) The hypercharge Y and the three isospin operators 7, T,, Ty=
= Qy + 3 ¥ generate the invariance group U,(y) of the strong interactions.
The extension of this invariance to SUy implies considering U,(y) as a sub-
group of SU;. This means that y is a g-vector of which Y is the image in the
representation of the SU; algebra in the Hilbert space # of hadron physics.

The electric hadronic charge Qy is the corresponding image of — ¢ and
the relation Qy = T3+ Y implies that g is a g-vector. The SU,(g) group is
called the « U-spin group ».

b) According to Cabibbo’s hypothesis the two charged components of
the vector current vt coupled to the leptons and the electromagnetic cur-
rent jo™ belong to the same SU{ octet. We denote by ¢, +-ic, the directions.
of vE. Using the additional property that the electric charges of vk are 41
we can deduce

(41) V3ever =1/3cV e, =z,

where z is a g-vector. The operator Z, which is the image of z, is the weak
hypercharge conserved in weak interactions.

The vector z commutes with ¢ but not with y. We thus have in R® two
distinct algebras %, and %, which have ¢ in common. The noncommuni-
cativity of y and z reflects the existence of strangeness violating weak inter-
actions. As one can see from (6) the difference from 0° or 120° of the angle
between y and z gives a measure of the noncommunicativity of ¥ and Z
and is therefore related to the Cabibbo angle 0. Explicitely we have

(42) (y,z) =1 —3sin30 ,

It can be proved that two noncommuting g-vectors y and z uniquely define
another g-vector which commutes with both of them. This vector is given
by the relation

) ¢ = (0 )= (V3vz 43y +2).
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Thus the strong and weak interactions determine uniquely the direction
of the electromagnetic interactions.

Cabibbo has also postulated that the axial currents a; belong to another
SUY octet in the same directions ¢,--ic, as vi. The two assumptions about
the vector and the axial vector currents are in good agreement with experiment.

32. SU3 < SU, symmetry. — Since the weak interactions have a definite
(negative) chirality whereas the electromagnetic and strong interactions have
a defined parity, their relations can only be fully understood by considering
the enlarged group SU;x SU,. It has indeed been suggested [3, 4] that this
group and its subgroups provide a reasonably approximate frame for the
study of hadron physics. Cabibbo’s hypothesis can be generalized to SU, x SU,
by assuming that j&™, v, a;- belong to the same representation of this group

namely the adjoint representation (8, 1) @ (1, 8). We can thus write for the
currents:

(44) jem = hﬂ(qIO); vk =h,(c*[0): aF = hu(O[('i) )
The weak currents are thus
45) 113 == /1ﬂ(ci|— ci) .

As Q@ is the integral over space of the time component of J™, the integrals

(46) O(ala’y =[x hy(ala')

are at a given time the generators of SU,; x SU,;. We shall now list the cova-
riance properties of the three interactions under SU,;x SU,:

a) The isotropy group of the electromagnetic current /1/4(q10) and
therefore of the electromagnetic interactions (see Sect. 2'2) is (U2’U2)q:

= Ui (q) ® U{(g).

b) The pair of weak currents /1/,(ci§—ci) and therefore the semi-
leptonic weak interactions have for isotropy group SUSP @ U{7(z).

¢) The covariance of the CP conserving Hamiltonian #',,,; for non-
leptonic weak interactions is not yet established. If it involves only charged
currents as many physicists would prefer [5] then it would have components
outside the (1, 8) @ (8, 1) representation. It is however compatible with the
present evidence to assume that #, ; belongs entirely to the representations
(1, 8) @ (8, 1) in the direction (z!— z) [6]. If this were the case the isotropy
group of # 'y, would be SUSY @ US7(z) which is a maximal subgroup of
SU,xSU,. Nothing is known for the CP violating part.
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d) We have said that Uy(y) and SU$ are approximate invariances of
the strong interactions. Another interesting approximate invariance has been
recently proposed by Gell-Mann, Oakes, and Renner [3]. According to
them, in the limit where the pion mass can be neglected the strong Hamilto-
nian is of the form

(47) Hg=Hy+ H(m),

where ) is invariant under SU;xSU, and #(m) transforms like the
(3, 3) D (3, 3) representations. They also suggested that to a good approxi-
mation m coincides with the vector p(0) of eq. (37).

In this model the approximate isotropy group of the strong interactions
would be (U2|SU2)y which is a maximal isotropy group for the nonzero vector
of the (3, 3) D (3, 3) representation.

Even though the mass difference mg— m_ is larger than m_, SU, remains
an interesting approximation for the strong interactions. The SU; %< SU,
breaking part in eq. (47) is in the SU, invariant direction denoted by n(0)
in eq. (39). It is remarkable that its isotropy group (SU?) is the other max-
imal isotropy group of the nonzero vectors of the (3, 3)D (3, 3) represen-
tation.

33. SU3x SU; and space reflections. - In the limit where they are exact
the Uy(y) and SU§ symmetries of the strong interactions commute with the
Poincaré group (without time reflection).

For the exact SU;x SU; symmetry the invariance group is no longer a
direct product of the internal symmetry group by the Poincaré group but
the following semidirect product

(£ x SUSD % SUS) % Z, ,

where #; is the connected Poincaré group and the nontrivial element r of Z,
acts on ¥, like the space inversion and interchanges SU{™ with SUSY. The
action of r on the (8, 1)@ (8, 1) representation is

(48) (ala') <5 (a]—a).

This allows to assign a parity to the elements of the (8, 1) @D (I, 8) repre-
sentation; the primed vectors have odd parity, the unprimed ones have
even parity.

For the (3, 3)® (3, 3) representation, eq. (26) shows that the primed
and unprimed quantities which appear in (23) have opposite parity. For
example y(0) and yp(z/2) (yrsee eq. (33)) are eigenvectors of r with opposite
parity. As we have seen, SU,x SU, implies the existence for this represen-
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tation of the 7-algebra and this fixes in the SU, limit the assignment of the
parity. Indeed, as we have shown, the direction along which SU,x SU; is
broken in an SUg-invariant way satisfies the nonlinear equation

(49) C n(0),n(0) — ]/% n(0) — n (%)T n (g) .
Thus under
(50) m = (u|m||w'[m") & (plml|—w'[—m") .

4. - Remarks on symmetry breaking.

It has been suggested by several authors [7] that the SU, or the SU;x SU,
symmetries are spontaneously broken. Such a symmetry breaking occurs
when the invariance group K of a stable state of a physical theory is only a
subgroup of the invariance group G of the theory itself. In this case all
states of the same orbit G/K of solutions are all stable states.

We have shown [1, 8] that in a theory based on a variational principle
spontaneous symmetry breaking can occur and one expects the subgroup K
to be a maximal isotropy group among those of all possible orbits. As we
have seen the breaking of SU,x SU, by the strong interactions has the above
property both in the SU; or in the SU, x SU, approximation [9]. The same
is true of 'y if its invariance group is SUSY @ US(2) (see Sect. 3'2). This
may therefore suggest that the SU;x SU, symmetry of the hadronic world
is spontaneously broken by the strong and perhaps also the weak inter-
actions.

The intersection between the two isotropy groups of the weak nonleptonic
nteractions and of the strong interactions in the Gell-Mann, Oakes, and
iRenner model is:

(51 (SUSY @ US(2)) 0 (SUS(») © SUSy) © U(y)) = SUS(») @ UL )

where g is a g-vector commuting with y and z which, as we have seen, is
uniquely defined once y and z are fixed. The intersection of the two groups
in the left-hand side of (51) and SUY{ is U{(¢) which is thus the only invariance
group for the interactions between hadrons (when the hadron-lepton inter-
actions are disregarded) and corresponds to the conservation of the electro-
magnetic charge. We have thus the following scheme of decreasing inva-

riance inside the hadronic world

@ (UQ’S(/Z)y »j
SU; < SU; Ua(y) 2 Us(q)
o SUf 0



202 L. Michel and L. A. Radicati

Let us remark that the isotropy group of the electromagnetic Hamiltonian
is (Us|U,)q. This group is not maximal in SU; < SU, for the (1,8) D (8, 1)
representation.

However the direction (q}O) of the electromagnetic interactions shares
with the directions of the two other interactions, i.e. (zf—— z) and y(0) or
n(0) the following properties: they are the different types of solutions of
SU; < SU; invariant nonlinear equations:

(52) (ala’)v(ala’) = Mala’),
for (¢/0) and (z|—z);
(53) mym = jm

for the two directions along which SU, < SUy is broken with approximate
SU, or SU, invariance. Bootstrap approaches to symmetry breaking lead to
this quadratic type of nonlinear equations.

[t is interesting to note that for an SU;x SU, invariant theory, the space
inversion operator r can only be defined modulo an inner SU, x SU, auto-
morphism. However, as we have discussed in Sect. 3'3, the existence of the
T-algebra fixes naturally the parity of the vectors of the (3,3)D (3, 3) rep-
resentation of SU,x SU, and the vector n(0) has even parity. Thus the
requirement that the breaking due to strong interactions satisfies eq. (53)
fixes the parity of the hadronic states.

It is also worthwhile to point out that one of the solutions of eq. (52),
(2/—z) has a pure chirality corresponding to maximal violation of the
parity fixed by the strong interaction. The other solution (q}O) has a definite
parity and its direction ¢ is fixed when »(0) and (z{—- z) are known. From
the point of view of SU,;x SU, the three directions according to which the
symmetry is broken have thus fairly simple properties and correspond to
all three types of solutions of the nonlinear equations (52) and (53).

There is nothing however to tell us why the directions y and z should
make precisely the angle that is experimentally observed.

We do not want to discuss here the attempts [10, 11] to calculate 6. We
only remark that in the SU,x SU, scheme, m and (z2—z) are not in the
same representation space. Thus an SU; < SU; invariant depending on these
two vectors has to be at least quadratic in m. For example if we define the
vector (see eq. (18))

v = D(zl—z)m = {mz,

we can form an SU;x< SU; invariant (v, v> which is a function of (y, 2).
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However the length of the vectors has not been given here a physical mean-
ing as we did not take into consideration the strength of the coupling.

\—38

On the other hand a projective invariant such as Jg= vy, v){v,v)t

depends upon both  and the matrix elements of m which are functions of
the physical masses. We note that in the limit where m — »(0) (invariant
under (Uy|SU,)y, 7, vanishes.
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