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Abstract

Tools for measuring joint polarization and polarization transfer are gathered. They allow the direct
reconstruction of amplitudes in numerous quasi two body reactions with spinless beam and unpolari-
zed or polarized target. Eight simple types of such reactions are worked out one by one; the practical
results are summarized in Tables.

1. Introduction

Several experimental papers have been published [1, 2, 3, 4] in which quasi two body
reaction amplitudes are reconstructed and tabulated. Old [5, 6, 7] and recent [1, 8]
theoretical papers have described the method for reconstructing the amplitudes from
the data in some simple cases. But each paper, limited to a particular reaction, intro-
duces its own arbitrary conventions and this may obscure the future comparison of the
experimental results for similar reactions. This paper aims to a systematics of amplitude
reconstruction. It introduces a general terminology, it uses the most commonly accepted
quantization conventions and it presents in details the practical method of amplitude
reconstruction in the most usual reactions with unpolarized or polarized target.
We focus our attention on quasi two body reactions. We suppose therefore that resonances
can be detected (we shall not enter into the problems of background separation) and
that they have well known spins and parities. Furthermore, we restrict ourselves to a
direct, model independent amplitude reconstruction, based only on angular momentum
and parity conservation. Hence we shall not make use of other first principles as unitarity
~and analyticity, nor shall we relate amplitudes at different s and ¢ values. Finally, this
paper is limited to the simple initial state with a spinless meson beam and a spin 1/2 (po-
larized or unpolarized) baryon target.
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In Table 1 we list the most common reaction types and tabulate their number of ampli- |
tudes and observables for different target polarizations. The reaction type refers uniquely E
to the spins of the final particles and to the possibility of analyzing their polarization
from their decay. We assume that for the spin I meson resonance only the even polari-
zation can be measured (e.g. o — wr, K* — Kx), i.e. we do not consider the case of, e.g.
Ay = pm. On the contrary, for the baryonic spin j resonance we consider both cases:
i) measurement of even polarization only (j¢), this means no polarization measurement in
the case 1/2¢ (e.g. nucleons), and analysis of the simple, parity conserving decay in the
case 3/2¢, (e.g. A — Nr). ii) Measurement of the whole polarization (5) by analysis of
the parity violating decay of spin 1/2baryons (e.g. A — px) or by analysis of the cascade
decay of spin 3/2 resonances (e.g. 2* — Ax, A — pr).

The tabulated number of amplitudes is the number of real independent amplitudes
disregarding an overall phase.

For the observables the number tabulated in columns U and 7' is the number of real and
imaginary components of a priori non vanishing multipole parameters and polarization
transfer multipole parameters (cf. sect. 2 and 3). As we shall see, at fixed energy and
momentum transfer they are not independent, they satisfy some linear and non linear
(rank) constraints!). For this reason the number of observables is presented as the sum '
of two numbers: the number of independent observables - the number of constraints
(when the second number is zero it has been omitted). Column U corresponds to an
unpolarized target experiment, column 7' corresponds to a transversally polarized target
experiment; the observables of column 7 includes of course the observables of column 1.
In column L is shown the number of independent observables of constraints that must be
added to column U for an experiment with pure longitudinal polarization or to column 7’
for an experiment with transverse and longitudinal polarization. Of course the number of
independent observables can never the bigger than the number of amplitudes, but often
it is one unit smaller; this is the case when the polarization of one spinning initial or ,r
final particle is not at all considered. This is an application of a general theorem derived
by Stvontus [9], ef. Appendix 2. Practically the ghost amplitude appears as a relative
phase between two sets of transversity amplitudes.

An analysis of the numbers in Table 1 suggests the following comments:

1) For higher spins the number of amplitudes increases linearly while the number of
observables increases quadratically. When the number of observables becomes much

bigger than the number of amplitudes it seems reasonable to communicate the amplitudes
themselves, in so far as the statistics of the experiment allows their reconstruction. -

ii) For some types of reactions all amplitudes but one can be reconstructed with unpolari-

zed target, while for others amplitude reconstruction requires polarized target. For hoth
reactions types, the most simplest cases are those for which the number of observables

in columns U and T are set in boxes. It would be reasonable to give priority for the re-
construction of amplitudes to these types of reactions.

iii) As mentioned above, in all reaction types with unpolarized target and in those with a

spin 1/2¢ particle, it remains one ghost amplitude, the relative phase between two sets of
transversity amplitudes. Since helicity amplitudes are linear combinations of ampli-

tudes in both sets, they are ghosts too. Furthermore, parity conservation in the reaction

has a simpler form in transversity quantization, and the observables are closer to the '
transversity amplitudes. All these arguments favor the reconstruction of transversity .
amplitudes. However to facilitate the comparison with models which use helicit y ampli-
tudes, for each reaction type we give the relations between the two kinds of amplitudes.

1) Since we observe only quadratic expressions of the amplitudes, there are often discrete ambiquities
in their reconstruction: the non linear constraints can be used to remove some of these ambiguites.




Table 1

Number of real amplitudes and of polarization observables for usual types of two-body reactions with
meson beam and with unpolarized or polarized target. The reactions whose numbers are boxed will be
studied in the text

Type of Reaction Amplitudes Observables
Unpolarized Polarized target
Target .
U Transversal Longitudinal
T L
18
ap —» 7N (O, —é—) 3 1 2 -+0
KA (O, —;—) 3 2 3+3 +2
18
eN (1e, ?) 11 4 +2
K*A (19, -—;—-—) 11 10 + 2 11 + 25 +12
10
A,N (2e, —2-) 19 9 18 + 6 +6
K**A (2‘»’, —;—-) 19 18 - 12 19 + 71 +30
€
(le, 1?) 420+ 1) —1 (14 1)t C+1)(BL+2)t  +Il+1)
(le, é—) 4204+1) —1 204+ 1)@+ 1)T 6 +1)(@1+1) 420+ 1) (2l +1)
’36
p — A (O,?) 7 4 7-+3 +2
KZ* (0, —2—) 7 64 2 74+ 17 +8
3¢ —
cA <1e, -2—) 23 20 [ 23 + 33 | +16
KoxE* (19, %) 23 22 4 26 23 + 121 -+48
€
(le, 3-0-) 82l +1)—1 20+ 1)(BL+2)t 200+ 1) (94 5) +20+1)@31+1)
(lf, %) 8204+ 1) —1 81 +1) @)+ 1)t 240+ 1) (21 +1) +8(0 4+ 1)(@l+1)

e » . ; __1_ I y _..1_. . y ‘...!_.
@ j) 2L+ 1) L 4 1)(9-% 2) @+ 1)(74 2) (HU(H 2)
t tt
@)=t () e (wniag) (24— )
) 20+ 1) 0 + 1),<f+—;—) (0 + 1)(7‘+—}2—) (l+1>(7‘+—;—)
K@ 4D -1 X@ 4 1)@ +1) x3@+ 1)@ +1) x @+1)(@ +1)

T One amplitude is ghost.
1 One amplitude is ghost for j = 1/2.

19%*
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Table I lists only general reaction types. In order to appreciate how many usual reactions
correspond to each type, we present in Tables 2 and 3 several lists of such reactions. We
have ‘considered only reactions with practicable beam and targets and with well classi-
fied final particles (nonets or decuplets). We obtain in this way a list of 252 reactions
belonging to the 8 types set in boxes in table 1 and whose amplitude reconstruction will
be treated in detail below. :

Furthermore in table 2 and 3 the isospin relations between these reactions are explicitly
given. For reactions related via one isospin channel, the ratio of their amplitudes to the
isospin amplitudes are fixed coefficients which are given as the coefficients of (f) in the
brackets. Then the measurement of the amplitudes for only one reaction yields the
amplitudes of all reactions in the same column. For reaction related via two isospin
channels the amplitudes satisfy the relations indicated in part c¢) of each table. In these
cases the reconstruction of amplitudes for two independent reactions, because of the
overall phase and eventually of the ghost phase, does not fix the amplitudes of a third
reaction. But this reconstruction for three (two by two linearly independent) reactions
fixes the amplitudes of all the reactions in the same column?) up to an overall and even-
tually one ghost phases. The ghost phase of the whole set of reactions can be fixed by an
experiment with polarized target for only one reaction of the set.

Sections 2 and 3 expose the general tools for the measurement of observables. In section 4
the concrete recipes for the amplitude reconstruction in each type of reaction are given.
The hurried reader can directly skip to the reaction type in section 4 he is interested in.

Table 2

Listing of 140 reactions of types mp — KX*, K*A, K*¥*A, K*X* with their isospin relations. Their
transversity amplitudes can be reconstructed with unpolarized target up to one phase (which can be
measured with either longitudinally or transversally polarized target)

a) 30 reactions of type KX*f. Similar reactions of type K*X* are obtained by changing (wn'K)
— (pweK*)TT,

N> K RN—> () T* T K =*
wtp +  + () + = (by) o= ()
Kp 00 () 0 0 (by) 0 (c2)
©p + = (a,) — + (b))
0o 0 —
' ) Km0 —(sz) 0 —(=b) 0 — (c)
~n + 0 (a5) — 0 (b
v r Kop 0 +(2) + 0 (—b) + 0 (&)
7 n 0 —  (ay) 0+ (&)
. 4 - (A,.()")
Kn 0 0() 0 0 (=by + — (-
(

T For their measurement and amplitude reconstruction, cf. tables 5—6.
tt For their measurement and amplitude reconstruction, cf. table 13.

?) The amplitude reconstruction for all other reactions in the column supplies checks of isospin
invariance, and even for only three reactions, when several ampltudes with their relative phases are
reconstructed.
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If its experiment uses polarized target we advise him to read section 4.1 in order to see
the connection of the terminology with the standard Wolfenstein parameters. For all
other necessary tools he will find references to section 2 and 3.

Table 2 — cont’d

b) 40 reactions of type K*Atft. Similar reactions of type K**A are obtained by changing (pweK*)
— (A fK**) 11T,

N - K*A K* X
mtp + 4+ (@)
TP 0o 0 () + = (ay)
0 0 (as)
mtn + 0 (=H + 0 (ag)
0 -+ (ay)
TN 0 - (ay)
KN — o)(cp)./i p A w(p) X P z K* F
K-p 0 0 (h 00 (f) 00 (f) + = (b R (2Y)
0 0 (b 0 0 ()
— 4 (b))
K-n —0 (1) o= () o0 — (=) 0 — ()
| - 0 (&)
K% +o0 (121) o+ () + 0 (=) + 0 (a)
0 + (b
N + = (=by)
Kon 0 0 (—f) 00 (f 00 (f 0 0 (=by + = (c)
— + (—=by U 0 (a)

c) Triangular isospin relations between the amplitudes of the reactions in a) and b)

a;=ay+ V2a;  V2b, =2, + by) = by — by = —2(by + b)) ¢ + ¢ = ¢4

11 For their measurement and amplitude reconstruction, cf. tables 8 —9.
1111 For their measurement and amplitude reconstruction, c.f. table 11.
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Table 3

Listing of 112 reactions of types =p — nA, oN, 4,N, pA with their isospin relations. Their transversity
amplitudes can be reconstructed completely or up to one phase) with transversally polarized target

a) 34 reactions of type wAT. Similar reactions of type pA are obtained by changig (rnn’'K) — cwpK*)Tf
In both cases the amplitudes can be completely reconstructed.

N4t — T A 1(n’) A

=p o+ o+ (=za) 0 1+ (13
0 ++ (1B34)
+ = (dy)

7p 0 0 (ds) 00 (H
-+ (dy)
-+ 0 (—dy)

wtn 0+ (—dy) 0+ (h
=+t (—dy)

Tn 0 - -——]/5 dl)

KNt—> KA KNt—> K A
K+p ++ @ K-p o 0
0 4+ (—13f) N )
K*n +0 K-n o —  (1BY
0+ (= - 0 (—1)
Kop + 0 Kep o+
0+ (=h - ++ (=139
Ko + — B Kon 0 0 (p
00 (~ — 4 (=

t For their measurement and amplitude reconstiuction, cf. table 7.
T For their measurement and amplitude reconstruction, c.f. table 14.
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Table 3 — cont’d

b) 22 reactions of type pNTff. Similar reactions of type 4,N are obtained by changing (pweK*)
—> (A, f{’K**)t11t, In both cases the transversity amplitudes can be reconstructed up to one phase.

nNt— ¢ N o(p) N
p + + (“;)
~p 00 @ 0 0
- + (as)
n 4+ 0 (ay 0 + (=1
0 (ay)
TTn — 0 (ay)
KN 4 — K* N KNt—- K* N
K+p + -+ (¢3) K-p 0 0 (c¢)
— 4 (c)
Kn + 0 (c)
0 4+ (c) K-n — 0 (c)
K% + 0 (c) Kop 0+ (e
0 -+ (c2)
0 0 (c)
Kn 0 0 (e Ken - (cf)

¢) Triangular isospin relations between the amplitudes of the reactions in a) and b)
a; = a, + V2as ¢+ € = ¢y I/""‘dz““da"’—’l/‘—d+l/ d;—d3+v-d

111 For their measurement and amplitude reconstruction, cf. table 10.
111 For their measurement and amplitude reconstruction, cf. table 12.

2. Some Basic Tools of Quasi Two Body Reaction Analysis

In this section we present some well known features of the formalism used in the study
of quasi two body reactions. For more details one refers to [10, 11, 12, 13].
Let us first precise our notations. A quasi two body reaction will be denoted by

142534 4.

1 denotes the beam, 2 the target, and we call 3 and 4 respectively the particles which
share some physical properties with the beam and the target (for instance 1 and 3 are
mesons, 2 and 4 are baryons) so that the t- and u-channels are well defined. The 4-mo-
menta of the particles are denoted by p;(i = 1, 2, 3, 4) with p, + p, = p; + p,, their
spins by 7; and their masses by m; (m; == 0).
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2.1. Covariant quantization systems

To describe the polarization of the initial and final states one must fix a quantization
frame for each spinning particle. Several different choices are possible, the most popular
are the helicity and transversity frames in the s-, t- and u-channels?). Unfortunately
there is not as yet a universal agreement on the definition of these quantization frames;
the most usual conventions are the following.

1) For each particle and for each channel, the transversity quantization axis 72® and
the helicity second axis #7n® are along the “‘Basel normal” n to the reaction plane, de-
fined by ‘

n-pi= 0 (Z = 1: 27 3)9 n? = “‘1’ det(n: P1s> P2 ps) >0 (2‘1)

where the last condition is equivalent to n - P1 X P3 > 0in the laboratory system, or in
the center of mass system.

1i) For each particle and for each channel the helicity and the transversity frames have
the same first axis, Tn® — Hy ),

Note that with these two conventions, the transversity second axis 7a® and the helicity
quantization axis 7n® have oposite directions.t) Furthermore the transversity frame is
transformed into the helicity frame by a rotation’) B = (—n/2, 7/2, 7/2) of +7/2 around

the common axis n(. The unitary representations Di(R) of this rotation have several
useful properties (cf. Ref. [13], [14]).

iii) For each particle i (i = 1, 2, 3, 4) and for each channel a (@ = s, t, u), the helicity
quantization axis 7n;® and the transversity second axis an;® are defined by

ani® = —In® = eqi(a), &= +1, (2.2)
with
¢i(@) = [sinh ¢;(@)]"! (p; cosh ¢i(a) — p,;) (2.3)

where p; = p;/m;, cosh ¢;(a) = Pi * Dair sinh ¢(a) > 0, and where ai is the particle
associated to particle 7 in the channel a,ie., fori = (1, 2, 3, 4),s0=(2,1,4,3),ti = (3,
4,1,2), ut = (4, 3, 2, 1)%).

1v) The sign ¢ in eq. (2.2) is a last convention to be chosen. Jacos and Wick [17] and
CoHEN-TANNOUDJI, MOREL and NAVELET [18] define ¢ = +1 so that the s-helicity
quantization axis of particle 7, #n;®, be along the 3-momentum p; of this particle, in
the center of mass system (p, - P2 = 0= p, + p,). On the contrary, Gottfried and
JACKSON [19] define ¢ = —1 so that their t-helicity quantization axis #n;®, in the rest
system of particle 7, is along the 3-monentum P of the particle i associated to i in the
t-channel.

3) Cf. refs. [10, 11].

*) This means that in any channel the z, y, z axes are related by (Tz, Ty, Tz) = Hy, —Hz Hy) Ref.
[74] and the Cracow group use the same convention although a misprint in ref. [74] says the con-
trary. Many other conventions are occasionally used. Ref. [2] and [3]use (— Tz, Ty, Tz) — (Hz, Hz, Hy),
Ref. [8] uses (Tz, Ty, T2) = (Hz, Hy, Hy). Ref. [15] compares the conventions of ref. [8] and that of
the text and it recommends the latter.

°) We use the Euler angles and the rotation matrices of RosE [16].

%) We call these frames the s-, {-, or u-helicity frames and the s-, ¢-, or u-transversity frames. Some pe-
ople use the following vocabulary for helicity frames: ¢-helicity frame — Jackson-frame, s-helicity
frame = helicity frame; and they extend it to transversity frames: f{-transversity frame — Jackson
transversity frame, s-transversity frame — helicity transversity frame! We find that this last ex-
pression is an awful barbarism since helicity and transversity are two mutually exclusive notions.
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For convenience in this paper we quantize the spin of the target in the s-channel trans-
versity frame with ¢ = 1, i.e., in the laboratory system the second axis n® is in the
direction of the beam 3-momentum p;. Then the longitudinal polarization of the target .
(with respect to the beam) is in the y-direction, and the transverse polarization is in the

(z, z) plane with the z-direction along the normal to the reaction plane (cf. Fig. 1).

For the final particles we quantize the spins in a transversity frame. We do not precise

the channel since all subsequent equations are independent of this choice of channel.

nid=f

beam P

A:n‘on plane

Fig. 1. The s-transversity frame for the target quantization (read Tinstead of 17)

1)

2.2. Amplitudes

At fixed energy and momentum transfer, the Hilbert space S, = H; X # ', of initial
particles has (2j; + 1) (2j, + 1) dimensions. The transition operator for the reaction is a
linear map 7' between the two spaces. The transversity and helicity amplitudes are the

4
A" = [] (2§i + 1) matrix elements of the transition operator in the transversity and

i=1
helicity bases. For channel a they are respectively denoted by JI'# and ,H¥%. They
are related by

!

oI = [DiR) ® DixR)] H[DR)' ® Din(R)t]. (2.4)

The reflection through the reaction plane, called Bohr-symmetry or B-symmetry, leaves -
invariant the 4-momenta of the four particles. It acts on the polarization space of a
spin-parity j7 particle by the operator B(j) = #Di(n, x), the product of the parity » of
the particle times the unitary representation of the rotation by = around the normal to
the reaction plane. If parity is conserved in the reaction, the transition operator is in-
variant by B-symmetry i.e.

[B(js) @ B(j)] T[B(1)' ® B(j)'] = T, (2.5)
and the matrix elements of 7' satisfy the relations ‘

(= 1)kl timde Tl = Tl (2.6a)

17(-——1)]‘:“)17 Jam At i At ja— Ay H:}a“iq — I];;f: (2.6b)

1—A T

where 7 is the relative parity of the particles, i.e., 5 = gy, With »; = parity of
" particle ¢.
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In the collinear case of forward or backward scattering, the transition operator must be
invariant under rotation around the reaction axis. This imposes “collinearity constraints”
among its matrix elements, which are most simply written in the helicity basis -

Hie = 0, for 2y + 2y =iy + 4y (2.6¢)

2.3. Density matrices

For a single particle of spin j and fixed 4-momentum, the polarization state is described
by a Hermitian, positive, trace one operator acting on the Hilbert space /#(j) and re-
presented by a matrix o(j). For a system of two particles (spins j and j') of fixed 4-mo
menta, the polarization operator acts on the space #(j) @ #(j’) and is represented by
the joint density matrix (7, j'). When the particles are uncorrelated, this matrix can be
written in the form of a tensor product o(j) ® o(j’).

For later use, especially for the study of decay angular distributions, it is useful to intro-
duce the polarization multipole parameters of these density matrices,

1) The single particle density matrix o(j) is expanded on a set of basis matrices 7'(j)%,-
(L=0,...,2); M = —L, ..., +L), the matrix elements of which are Clebsch-Gordan

coefficients

(T = GLAM | 7). (2n
The multipole expansion of o(j) reads
1 2j +L
o) = g7 [+ 220+ 1 3 Erg 2.9

the expansion coefficients ¢, % are the multipole parameters. We have exhibited the trace
of the matrix. We could have written an expansion from L = 0 to 2j, with 7'(j),? =
and £,0 = 1.

ii) A similar multip(;le expansion can be written for the joint density matrix o(j, §°).
The set of basis matrices is the tensor products 7'(j)% @ 7T(j')%. and the corresponding
multipole parameters are denoted by #i%,.. The expansion is

. 2% (2L 4+ 1) (2L + 1) +L  +L___ g
3 ! = " 7} tLL 'T L Q? T Lr. 2.9
€G> 1) Lé; L"go 2+ 1@ +1) yZy .&I'g-L’MM () @ TG (2:9)
Note that the multipole parameters t(j),, % and #(j')}. of the single particle density matri-
ces?) o(j) = try o(j, j') and o(j') = tr; o(j, §') are (j)}; = tify and £(j')};, = 6.
A density matrix ¢ can be split into a B-symmetric part 8 and a B-antisymmetric part
o4 satisfying the conditions

BoBBt = o8, Bo4Bt = —p4,

i) For a single particle, in transversity quantization, the matrix elements of g8 and o4
satisfy the relations

@ = (1P~ @, (@ = (=17 (") (2.10)

7) try (and trj) represent the partial trace in the space J#(j) (and #(j")), e.g., o(j),* = (try o(j, 1)),
= 5ol 1
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and the multipole parameters satisfy the conditions
P = (WM GF, = — (=" 4. (2.11)

ii) For a joint density matrix, in transversity quantization, the matrix elements satisfy

for B ,
(@) = (=1 i = (P4, {:f 1 (2.12)
and the joint multipole parameters satisfy
’ ’ f
(tJIfJLM')B’A = ﬂ:(—l)M+M, (tJLwLM')B’A {i- fZiﬁ (2'13)

In a quasi two body reaction with spin zero beam and spin 1/2 target, the transition
matrix has 2 columns (7'%#,). If the target is unpolarized, the density matrix of the
final particles, at fixed energy and momentum transfer, is obtained by?®)

ooy = % 77 (2.14)

(where ¢ is the differential cross section) and g, has rank 2. If furthermore 7' is B-symme-
tric, oy is B-symmetric too and in transversity quantization it can be written in the form
of a direct sum g, = g, @ 0,, each of which has rank one. This property enforces very
strong relations between the matrix elements or the multipole parameters of g;.

2.4. Decay angular distributions

If the final particles of the quasi two body reaction are unstable, the angular distribution
of their decay products (and occasionally the cascade angular distribution) provides
some information on their polarization state. In this paper we limit ourselves to two
body decays, however we give some results for 3 body decays in sect. 2.4.4.

2.4.1. Single decay angular distribution

Assume first that only one of the final particles is unstable and let j be the spin of this
particle (j = j3 or j = j,). In the rest system of this particle the kinematics of the decay
is determined by the polar angle 6 and azimuthal angle ¢ of one of the decay products
with respect to the quantization frame of the decaying particle. If M is the decay ope-
rator, the normalized angular distribution is defined by

10, ¢) = tr Mo(j) M* | [ tr Mo(j) M'd(cos 6) d¢. (2.15)
This angular distribution is linear in the multipole parameters, it can be written
1 2j +L__
10,4) = - + 5 C(L) 5 Y40, ) (2.16)
T L=1 M=-1

where the coefficients C(L) depend on the spins of the decay produéts and on the dyna-
mics of the decay. If parity is conserved in the decay (e.g. ¢ — nr A — Nr) the coeffi-

8) This relation fixes the normalization of 7.
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cients (L) vanish for L = odd; the angular distribution is an analyser of the even
polarization. If parity is violated in the decay (e.g. A — pr, Q — Zx) no C(L) coeffi-
cient vanishes; the angular distribution is an analyser of the complete polarization.

In many cases angular momentum conservation implies that only one amplitude contri-
butes to the decay. Then the coefficients C(L) are pure numbers. If two amplitudes
contribute they depend on one dynamical parameter. Here are the values of the coeffi-
cients C'(L) for some usual decays

= —0-0-: 4z C(2) = —2,
20— 0°0: J4x O(2) = —Y10/7, V4= C(4) = J18/7,

20— 10 Vdx C(2) = —|/5/14,  Yd= C(4) = —|8]7, (2.17)
11— B

E-——)—2—O.]4ﬂ C(I) = X,

3+ 1+ J—

2 0y S

55 0 )da 0@) 1,

where « is the asymmetry parameter of the parity violating decay 1/2 — 1/2 0. With
these known values of the C(L) coefficients, the ¢, are obtained by a maximum
likelihood analysis of the angular distribution, or by a moment analysis which yields
(2 = (8, ¢), d2 = d(cos 0) dg) :

C(L) ty = (Y}(Q)) = [I(Q) Y}, dQ. (2.18)

Experimentally the moments (Y% (£2)) of the angular distribution are the values of the
spherical harmonies Y% (6, ¢) for all events in an ensemble of fixed energy and momen-
tum transfer

N

2 Y5(0:, i)

t=1

<YAI{1(~Q)> =

Z| -

where the index i specifies the event which is considered, and N is the total number of
events in the ensemble.

2.4.2. Joint decay angular distribution

If both final particles of the quasi two body reaction are unstable, one may study the
correlations between the directions of their decay products. Let j and j' be the spins
of the final particles. The joint decay angular distribution reads

2 21 +L + L'
10,¢; 0, ¢') =3 X C(L)C(L) 3 3 6E.YL0,¢) YE®, ¢) (2.19)
L=0 L'=0 M=—L M'=—1L'

where C(L) and C"(L’) are the coefficients of the single decays, with C(0) = C'(0) = 1/}/4n.
These coefficients being known, the parameters tZ%,, are obtained by a best fit analysis
of the angular distribution or by a moment analysis (R=(0,¢), & = (0,4¢), dQ
= d(cos 0) dp, d2" = d(cos 0') d¢')

C(L) O'(L') i = (Y5(Q) YE(Q) = [1(@, ) YH(Q) Y5.(2) dQ d2'.  (2.20)
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2.4.3. Cascade decay angular distribution

Consider the cascade decay € — A4 + B, A — A, + B, (withspinsj(C) = j,j(4) = j(4,)
= 1/2, j(B) = j(B,) = 0); the first decay is parity conserving and the second decay is
parity violating. (e.g. X* — Ax, A — p=n). We denote by 0 and ¢ the angles of 4 with
respect to the quantization frame of C, and by 6, and ¢, the angles of A, with respect to
the canonical quantization frame for 4, deduced from the quantization frame of €' by a
pure Lorentz transformation (boost). Then the cascade angular distribution is

2j 1
1O, 4500, ¢0) =23 3 YO Ly, J) Y (JL,NM, | LM)
L=0 Ly=0 Jeven M,N,M,

X Y50, $) Yi,(01, ¢1).- (2.21a)

Instead of the canonical quantization frame for particle 4 one may use the helicity frame,
deduced from the previous one by the rotation R(¢, 6, 0). We denote by 6%, ¢," the
angles of A, with respect to this frame, then the cascade angular distribution is

T Ny
1(0: d)z elh: ¢lh) = 2 2 Oh(Ll Lls MI)Z tﬁ] l// 4:— DL(¢’ 0’ O)%’ Ylll?,(elhi d’lh)'

L=0 Ly=0 M,M,
2.21D)

The coefficients C(L, L,, J) in Eq. (2.21a) and C*"(L, L,, M,) in Eq. (2.21b) depend on
the spins and parities of the particle and on the dynamics of the decays, if these in-
volve more than one amplitude.

The most usual decay of this type is 3+/2 — 1+/20-, 1+/2 — 1+/20-. For this cascade decay
the non vanishing coefficients C(L, L,, J) and C*(L, L,, M,) are

470(0,0,0) = 1, 470(2,0,2) = —1
470(1, 1, 0) = « 1/5/9, 470(1, 1, 2) = « }2/45 (2.22a)
4703, 1,2) = —a V7/5,

(47) C"(0,0,0) = 1, (47) C*(2, 0, 0) = —1

(47) OM(1, 1, 0) = & J1/15, (47) O8(1, 1, +1) = « }/4/15 (2.22b)

(47) C"(3,1,0) = —a V3/5,  (4n) O"(3, 1, +1) = —a }2/5

where « is the asymmetry parameter of the second decay. With these known values of
the coefficients, the t}, parameters are deduced by a best fit adjustment of the decay
angular dlstrlbutlon or by a moment analysis ( = (0, ¢), 2, = (0, ¢y), 2" = (6,%, d),”))

C(L, Ly, J) thy = X (JL,NM, | LM) (Y}4(Q) Y5 (@), (2.23a)
NM,
2L 4+ 1 . .
CML, Ly, My) 6y = |/ ===— X (DX, 6, 0)3, ¥i;(). (2.23b)
T M,

Note that in the above example, since for L = 1 one has two non vanishing coefficients,
C(1,1,0) and C(1, 1, 2) or (C"(1, 1, 0) and C*(1, 1, 4-1)) the parameters t,* can be mea-
sured by two different experimental expressions.
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2.4.4. Three body decays

Some well known unstable resonances undergo 3 body decays, (e.g. 1 — =0z or ©+r—r0
o =t r? ¢ — winnf). The final state is determined by 5 quantities, often split into
the 2 Dalitz plot variables and the 3 angles which fix the orientation of the decay plane.
In the rest system of the decaying particle, let us denote by # and ¢ the angles of the
normal to the decay plane with respect to the quantization frame of the decaying par-
ticle. Then the angular distribution (6, ¢) can be written in the same form as eq. (2.16)
with coefficients C'(L) depending on the spins and parities of the particles and on the
dynamics of the decay. For the most usual decay, i.e., 1= - 0-0-0- (e.g. & and ¢ decays),
the non vanishing C(L) coefficient is a pure number

1= —0-0-0-: 4z O(2) = —}2, (2.24)

which happens to be equal to the coefficient of the two body decay 1= — 0-0-, (cf. eq.
(2.17)).

3. Quasi Two Body Reactions with Polarized Target

In this section we study the observables of a quasi two body reaction with polarized
target. In the particular case of a spin zero beam and a spin 1/2 polarized target we give
explicitly the structure of the final state density matrix and of the differential cross
section in terms of the initial polarization. We also show how to measure the multipole
parameters which describe the polarization transfer between the initial and final states.

3.1. Observables

Consider a quasi two body reaction 1 4 2 — 3 -+ 4. The beam and the target are pre-
pared independently hence the initial state is described by a (Hermitian, positive, trace
one) density matrix which is a tensor product o, = g(j;) ® o0(j,). On the contrary, the
polarizations of the final particles are generally correlated and the final state is described
by a joint density matrix g, = o(j;, j,) which cannot generally be written in a tensor
product form. These matrices are related through the transition matrix 7' by

ooy = ToTT. ’ (3.1)
We have denoted by o the double differential cross section

do

. o
Tray = tr 7o (3.2)

o=

where ¢ is the momentum transfer and ¢ is, in the laboratory system, the angle between
the Basel normal n and a direction I, perpendicular to the beam direction, fixed by the
initial polarization. If the initial state is unpolarized, o, = 1/n; ® 1/n, with n;=(2j + 1),
the double differential cross section is denoted by o,

_ do . __1__ te 7T, (3.3)

0y = 5
dé d'l" oe=1/nyny us
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In this case, the initial state has no preferential direction I in the laboratory and the
double differential cross section g, is isotropic in ¢. Then one may consider the simple
differential cross section

2n
Z—? = f oo dp = 2m0,. (3.4)
0

At fixed energy and momentum transfer, a complete measurement of the reaction in-
cludes the measurement of the double differential cross section ¢ and of the joint final
density matrix g, as functions of the initial polarization g, and of the angle y. We call
observables of the reaction the set of quantities which parametrize these functions and
can be effectively measured. The measure is obtained by an analysis of the differential
cross section and of the combined angular distribution of the normal n and of the decay
products of the final particles (cf. section 3.3. below) for different initial polarizations.

3.2. Description of the final state when the target is polarized

From now on we assume that the initial state consists simply of beam of spin zero par-
ticles and a target of spin 1/2 particles.

3.2.1. The initial state

The initial density matrix g, is a 2 X 2 matrix, which in the laboratory system is described
by the polarization pseudo vector {(£? < 1), also called the Stokes vector. The projec-
tior‘l of this vector on a plane perpendicular to the beam fixes the direction I alluded to
previously. As we defined it in section 2.1., for s-transversity quantization, in the labo-
ratory system the n® axis of the target is in the direction of the beam momentum p,,
while n® is along the Basel normal n to the reaction plane and n® is perpendicular to
the beam and to this normal. Then the density matrix ,, in s-transversity quantization,
is

N)l ot

(1 4 xv, + yr, + 21,) (3.5)

0, =

<

where 7, 7, 7, are the Pauli matrices, and z, y, z are the projections of the vector {on
the s-transversity axes n, n®, n® respectively. These components can be written

{:a = Ppsing, y=P;, 2= Prcosy (3.6)

where o is the angle between n and I with the sign of n X1 - p, see fig. 1. By definition
Pr is the length of the projection of  on the (, z) plane; it is the degree of transverse
polarization 0 < P, = 1. P; is the projection of § on the beam; it may be positive or
negative and its modulus |Py| is the degree of longitudinal polarization 0 < |P,| < 1.
Note that P;* 4 P,? = {2 is the degree of polarization of the target. It is important to
remark that in general the initial state is not B-symmetric. Indeed the matrices 1 and
7, are B-symmetric in transversity quantization but 7, and 7, are not. Then, except in
the case of normal polarization, { ~ n the initial state is not invariant by reflection
through the reaction plane.
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3.2.2. The density matrix of the final state

The density matrix o, computed from eq. (3.1) with the initial state (3.5) is linear in the
components of {. It can be written in the form

ooy = oyloo + 20; + X0, + Yo,), (3.7)

where o, is the density matrix of the final state when the target is unpolarized ( = 0).
If parity is conserved in the reaction the transition matrix 7" is B-symmetric and since
the matrices 1 and 7, are B-symmetric, the matrices o, and o, are B-symmetric too and
have non vanishing trace while the matrices o, and p, are B-antisymmetric and hence
traceless. The density matrix g, has trace 1 whereas the trace of o, depends on the dy-
namics of the reaction; this trace, Py, is sometimes called the “reaction polarization”

tro, =1, tro, = Pp, tro, =tro, =0. (3.8)

By definition the 4 matrices o4, = 1/277, 7 (x = 0, 2, y, 2, 7, = 1) are not independent
of each other. It is easy to show that the so-called “polarization transfer matrix” (cf.
Appendix 1 and ref. [20])

W:LV%D‘@O'O\Q“:UO
o

00 + 0. | 0.+ 10, (3.9)

Or — W0y | Q9 — 02

(~ = transposition in the initial space) must be positive and have rank 1, since ¢ W can
be written .

W=— TTT (3.9

where 7' is the column matrix obtained from the transition matrix 7' by transposition in
the initial space, i.e., its elements are

L - fuaza

de *

The matrix W is B-symmetric; in transversity it can be written in the form of a direct
sum W = W@ W,. The line and column indices of W, satisfy 1, + 1, — 13 — 1, = even,
those of W, satisfy 1, + 1, — 43 — 1, = odd. The rank 1 condition on W implies that
either Wy, = 0 and rank W, = 1 or W, = 0 and rank W, = 1. Which submatrix is nul
depends on the relative parity of the particles. From eq. (2.6a), if » = +1, W, = 0,
if n = —1, W; = 0. The nullity of W, (or W,) yields linear constraints between the ele-
ments of g, and g, and of g, and p,, while the rank 1 condition for W, (or W,) gives
quadratic constraints between the elements of all matrices. Often the decay of the final
particles does not allow a complete measurement of the matrices W, and W,. Then one
may obtain constraints on the observable parameters by elimination of the unobserved
quantities from the previous equations. This elimination keeps the degree of the linear
constraints, but it generally raises the degree of the quadratic constraints.

3.2.3. Multipole expansions

i) If only the final particle 4 has spin (j; = 0, j; = j), the density matrix g, is a single
particle density matrix. [ts multipole expansion is (cf. eq. (2.8))

| +L
Zor =501 [(t F P+ 2 S RL 0 - T T TRy TG) J
(3.10)

2) + = ow=l
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where t§, and #}; are the multipole parameters of the B-symmetric matrices g, and g,,
and 7}, and ¥t], are the parameters of the B-antisymmetric matrices o, and g,. We
have exhibited the trace (1 4- Pyz) of the matrix o/o, o;; we could keep this term inside
the summation (L = 0, 2j), with the conventions {,° = 1, 2,0 = Pj.

ii) If both final particles 3 and 4 have spin (j; = j, j, = §'), the density matrix g, is a
joint density matrix o,(j, j'). Its multipole expansion is (cf. eq. (2.9)).

o 40U 2L+ 1)L +1) i ’
- = T v tLL 2Ll
o ¥ e = G+ 1) +1) w2, M,g{y {55, + 25k,

+ @ty + Y TGy @ TG (3.11)

where 3/, #ify, “hh,., ik, are the multipole parameters of the B-symmetric matrices
0o and g, and B-antisymmetric matrices g, and g, respectively, with the conventions
t99 = 1 and #3) = Pg.
The multipole parameters *¢%; and *¢2%,. (x = , y, z) are called ‘“‘polarization transfer”
multipole parameters.

3.3. Measurement of the observables of a reaction

If the final particles are unstable and undergo two body decays, the final state is charac-
terized by the production angle ¢ and by the decay angles 6, ¢ and 6, ¢'.

A 3.3.1. The double differential cross sections
From the general form (3.7) of op, and from the trace conditions (3.8), one gets
o = tr oo = oo(1 + Pgz2). (3.12)

Then from the value (3.6) of the z-component of the polarization vector &, the y de-
pendence of the double differential cross section is

o(p) = oo(1 + PpPrcosy). (3.13)

i) The unpolarized double differential cross section g, may be obtained by several
different ways

oo = o(¥)|pr=0 (3.14a)
o = 0 (-’21) (3.14b)
1
O = 0} (0’(0) + 0'(71))
1 1 2n
G0 = 5~ (o(p)) = é—];f a(y) dy. (3.14d)

0

One may verify that all these ways lead to the same result.

ii) Similarly the asymmetry PPy of the differential cross section can be obtained by
several ways. We denote by o1 (resp. a[) the cross sections of the events with the polari-

20 Zeitschrift ,, Fortschritte der Physik*, Heft 5
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zation vector § above (resp. under) the reaction plane

w

[y
e

7/ 3/
ot = [a)dp, o, = [ o(p)dp, (3.15a)
— /2 /2

and we use the notation

27

)y = [ f) dyp. (3.15h)

[§

Then the asymmetry can be obtained by

a(0) — a(x)

b = o o)

(3.16a)

PrPr = 3 —————ﬁ - Zj (3.16b)

{o(i) 2 cos ¢)

P, —
Eabr (o))

(3.16¢)

3.3.2. Production and single decay angular distribution

Assume first that only one final particle undergo a two body decay (e.g. =p —- =A,
A — 7N ;ornp — pN, p — nr). Then the final state is characterized by 3 angles . 0, ¢.
Les us call 7' the reaction transition matrix and M the decay transition matrix. The
normalized combined angular distribution is defined by

tr MTo, It Mt
I(;0,¢) = — v Mo, 17 . (3.17)
© e MTo, T M* d(cos 0) d¢ dyp
From eq. (3.1) this can be written
tr M Z o, Mt
oo ,
I(:0,¢) = — (3.18)

/ tr M .g- o, M d(cos 0) d dip
0

Then, by comparison of the multipole expansion of a/oy o (¢f. eq. (3.10)) with the ex-
pansion (2.8) and from the usual decay angular distribution (2.16) one gets the combined
normalized angular distribution

L[+ PPy cos 2 tL _—
1: 0, $) u[ P LSy XA, Prcos oL
2a 4 L—1 ML
+ Pposin prth b Pt Y (0, ¢) (3.19)

where the coefficients O(L) are defined in section 2.4 and are, for the most usual decays,
well known numerical coefficients (cf. eq. (2.17)). By inspection of this expression one
sees that it allows the measure of the quantities P,Pp th + Ptk P, Pty

R A DR WAy
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cither by a best fit adjustment or by a moment analysis which yields
PPy = (2cos ) = [ I(; Q)2 cos ¢ dQ dy (3.20a)
(L) (4 Pytly) = (YH(@) = [ (s ©) Y5 (@) d2 dy (3.201)
O(L) Prityy = (2 cos pY3(Q)) = [ 1(4; 2) Y (Q) 2 cos ¢ dQ dyp (3.20¢)
C(L) Pty = (2 sin Y 1,(Q)) = f T(p: 2) Y4,(2) 2 sin o dQ dys (3.204)

with @ = (0, ¢) and dQ2 = d(cos 0) d$. Note that eq. (3.20a) is a particular case of eq.
(3.20¢) for L = 0 (wibh the conventions 2,0 — Pp, C(0) = 1/]/4_7;) and is equivalent to
eq. (3.16¢). By different choices of the initial polarization , i.e. of P, and Py, one easily
deduces from these equations the value of the observables:

1) The target is unpolarized, i.e., P, = P, = 0. One must first verify that the angular
distribution is isotropic around the direction of the beam. Then eq. (3.20b) gives the
B-symmetric parameters t},, and one must verify that the B-antisymmetric moments
vanish.

(We recall that in transversity quantization B-symmetric parameters have M — even
and B-antisymmetric parameters have M = odd).

1i) The target is transversally polarized, i.e., Py < 0, P, — 0. Eq. (3.20¢) gives the
B-symmetric polarization transfer parameters #Z,, and one must verify that the B-anti-
symmetric moments vanish. Similarly, eq. (3.20d) gives the B-antisymmetric polari-
zation transfer parameters %%, and one must verify that the corresponding B-symmetric
moments vanish.

Furthermore one may verify that eq. (3.20b) yields the same results as in case 1).

iii) The target is longitudinally polarized, i.e., P, = 0, P = 0. One must verify that
the angular distribution is isotropic around the common direction of the beam and of
the polarization vector {. Then eq. (3.20b) gives the B-symmetric parameters t%, (which
should be equal to the parameters obtained in 1)) and the B-antisymmetric polarization
transfer parameters vt},.

iv) The target is arbitrarily polarized, i.e., P, = 0, P = 0. One obtains all the para-
meters. Eq. (3.20b) gives the B-symmetric parameters t;; and the B-antisymmetric
parameters ¥, . Eq. (3.20¢, d) give the B-antisymmetric parameters %, and %t , and
one may verify that their B-symmetric moments vanish.

Of course, if the decay is parity conserving, this analysis yields only the L. = even para-
meters (cf. section 2.4.1). The moments with I — odd must be found compatible with
zZero.

3.3.3. Production and joint decay angular distribution
If both final particles (3 and 4) are untable and undergo two body decay (c.g. mp — A

p —7nw, A = Nx) the combined production and joint decay angular distribution is (cf.
eq. (2.9, 2,19, 3.11))

1 22 \ ) 9z v
I 0.¢. 0. ¢") = — RN S AR T 0! S N { M b Pyocos prth
(

5
L Lo L M 1L M L

A= Pysin gkl PR N YL, ) YEA(0, ) (3.21)
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where fo0 = 1, 0 = Py C’( = C'(0) = 1/}4a, ¥," = 1//4a. The moment analysis of
this distribution glve (2 ( }), 2 = (f)’ b")).

C(L) C’(L,) (t[UL\I + P '/t" M’ ) = (Y.[{I(W)) ){I("“))
O(L) C'(L') Prtlfy, = (2 cos p Yi(Q) Yi.(2) (3.22)
C(L) C(L) Pyothfy, = (2sin g Y (Q) Y.(2).

A similar discussion to that of the preceding section 3.3.2. can be made. We shall not
repeat it. We only recall that in the present case, the B-symmetric parameters (in trans-
versity) have M -+ M’ = even and the B-antisymmetric ones have M + M’ — odd.
Furthermore, if both decays are parity conserving, one gets only the L = even and L’/

= even parameters; all the moments with L or L’ odd must vanish. If the decay in
(0’ ¢') is parity violating one gets the multipole parameters with L = even and L' — even
or odd. All other moments vanish.

3.3.4. Production and cascade decay angular distribution

Assume again that only one final particle decays, but that it undergoes a cascade decay
of the type discussed in section 2.4.3. (e.g. Kp — =X* ¥* — An, A — pr). Then one may
study the angular distribution of the production and of the cascade decay. It reads (cf.
eq. (2.21a) for the canonical quantization frame and (2.21b) for the helicity quantization

frame).

1 2 1
L3 0, 4300 b0) =52 X0 X1 3 OLy Ly, ) 8 GIL NMy | LI {f + Py cos 4,
LT [ =0 L,=0 Jeven M M1
+ Prpsin yith, + Pth) Y40, ¢) Y50, $,)
(3.23a)
1 2 1 _
I(p;0,4; 0" ¢1") = 5= _L' C"L, Ly, My) 2 {t’{, + Pr cos itk
ST L=0 L,= 1, M,

v — — 2L ] —m
+ Ppsin 'Kt.lfll + PL”tkl ]/ 4:; D¢, 0, O)ﬁ, Y;{/}.(()lh; RN
(3.23b)

where the coefficients C(L, Ly, J) of Eq. (3.23a) and C*(L, L, M,) of (3.23b) are given in
Eq. (2.22a) and (2.22h). With these known valuesof the coefficients, the parameters t,,
and 2ty (v =, y, 2) are deduced by a bhest fit ad]usrment of the combined angular

dlstnlmtmm or by a moment «ule\ls (” = (0, ), 2y = (01, $y), 2" = (0%, ¢, "))

C(L Ly, T) (ty + Pty = 3 CTL N ML | LMD (Y4(Q) Vi (9,),

N, M,

(L, Ly ) Potly o XL ML LMD (2 cos p Y4 Yl (02, (3.24a)

N0

CUL Lo T Pyt = S LTLN ML (2sin g Y)YV (@),
AR
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9 ~ P
0L 10, 3 4+ P = |2 DO, g @),
COWL, Ly, M,) Py#t%, —,] 0 (2 cos pDE($, 6, 02 Vi (Q,1), (3.241)
TT
W ) > a4l 2L+1‘). DLt (WM VI h
OML, Ly, M) Pyth, = T (2 sin pDE(, 0, 0)], Y 182 ).

A discussion identical to that of Section 3.3.2. can be made. Note however that in this
case all parameters (L = even and L = odd) can be measured.

3.3.5. More complex combined production and decay angular distributions

One may consider more intricate situations. For example, if the two final particles are
unstable and one of them undergo a cascade decay (e.g. Kp — gX*, o — 7urr, ¥ — Ax.
A — pr) the complete angular distribution involves 7 angles. Still more complex is the
case where both final particles undergo cascade decays (e.g. Kp — 4,3%, 4, — ¢=,
o — wm, &*¥ — Am, A — pn). Then the complete angular distribution involves 9 angles.
The expressions of such angular distributions are easily written down, however the pre-
sent day experimentalists are not yet interested in such complex reactions with polarized
target.

4. Amplitude Reconstruction in Usual Reactions

In the previous sections we have shown the way of measuring the observables of a reac-
tion with unpolarized target (section 2) or with polarized target (section 3). They are
embodied in the final polarization g, or in the transfer polarization matrix W, which are
quadratic expressions of the transition matrix 7' or T, namely (c.f. eq. (2.14) and (3.9")).

1 )
O'Q/ e -5- TJ’T, W == —2— TTT.

We call amplitudes the elements of these transition matrices. Their reconstruction con-
sists essentially in obtaining an explicit expression for 7 or T' by inverting the quadratic
expressions T7T1 or TT*. Theoretically this can easily be done, and one obtains 7' or T up
to some unknown phases (by the procedure of “conventional amplitude reconstruction”
of Appendix 1,2). Practically each concrete case needs a separate study since generally
the observable matrices go, or W are not completely measured.

In this section we present the practical method of reconstructing the amplitudes in usual
reactions with unpolarized and/or polarized target. For pedagogical purposes we first
recall the method of reconstructing the amplitudesin the simplest reaction type =p — KA,
by measurement of the classical Wolfenstein parameters P, R, 4. In view of further
generalizations to higher final spins, we introduce, already in this simple ease, the multi-
pole formalism and some complex spin rotation parameters. This is discussed in section
4.1., and summarized in table 4. In the following sections we present the details of the
generalization to reactions of the types zp -~ KE* zA, K*A| ¢N as simple comments to
the tables 5 to 10, in which all the recipes for measurements and amplitude reconstrue-
tions have been gathered.
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Table 4

Amplitude reconstruction for reactions of type =p — KA with polarized target
(Comparison with the PRA parameters and the spin flip and non flip helicity amphtudes)

a) Combined production and decay angular distribution and measurement of the polarization transfer

by the method of moments.

10p, 00) — -?-1:! romx (7, + Py(cos yiT, + sinyE) + P ¥
C(L) (t}y + P rtlhy) = (YT (0g))
C(L) Ppith = (2 cos P Y'L (Op))
C(L) Pyrth, = (2sinp YL (0p))
with: 0) = 1/}4x,

Y (00)

O(1) = «,4/V4  (all other €' coefficients vanish)

b) The 8 real observables in transversity quantization
Ty byt
P =0 g1, Re 7t!, Im #t,!

Re ¥, Tm vt,!

(M = even for t};, %L, and odd for ¥, ¥t} by B-symmetry; tLy = (—)M L

M?

A‘l )

c) The 4 linear constraints and the 3 spin rotation parameters

P, :%[14«]/“0]:—;—[P+ V3,1 = P, Py =
Pa’:é—-[la}/?fo}::——l—[l’ V34,1 = Py P, —
P0+Po,ﬁ L

Ro - “'ZI"[WWJ ”t J Hl [_ﬁ; ;—tt‘i]::]{o Rn

1
(P
1
5 (1 —P)
—;—(Ii bed)

) The non linear constraint

IR)* = PPy P, =0 P

0
=
[

" The two first constraints imply }3 7,0 = P, V3t = 1

S ST Ty
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Table 4 — cont’d

e) Transfer of polarization
o = 0y(1 - Pz)
60,y = 0oPy(1 + 2) 07 = o,(P -+ z)
o0 = o Py/(1 — 2) 0X = ogy(Re 4 Ay)
ao__ = oy Ry(x — 1y) c) = oy(—Ax -+ Ry)

f) Transversity amplitudes and the usual spin non flip and spin flip helicity amplitudes

Ay
)s.’\ +?-)- _—{)
+1fa o Gy
2 = 27 b = 27 21,
o o 727 ¢ F 215,21
a=F + G
a = I — G

") Collinearity constraints

G=0&ca=a

g) Expression of the observables of ¢), e) as functions of the transversity amplitudes

1 i
%= 5 (lal* + |a’]?) = [F]> + |G]?
20,P, = |a/* o P = -;_ (la)2 — |a’]2) = 2 Im F{
26,P, = |a’|? ooR = Reaa’ = |F]> — |G]?
200, = ad’ Gpd = Im aa’ = 2 Re F(/
0

Table 5

Amplitude reconstruction for reactions of type =p — KX*(0~1/2+ - 0-3/2+) with unpolarized
target

a) Angular distribution of the ¥ decay and measurement of the even multipole parameters by the
method of moments.

10.9) = & C(L) X 15, Y}(0. )

C(L) th = (Y0, )

with: C(0) = 1/}4 =, O(2) == - 71/}1 7 (all other € coefficients vanish)
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b) Cascade angular distribution of £* decay (£* — A, A — pr) and measurement of all multipole
parameters by the method of moments.

b 1) Canonical frame for the A

1(6, ¢, 6,, d,) —L%‘JC(LL Y (JLINMl | LM)tL Y(00) Y (6,0,)
MN

C(LLJ) th = z; (JLNM, | LM) (Y4(0, ®) Y .(6,, &)

b 2) Helicity frame for the .\

16, ¢, 0., o7y = ¥ CNLL,M,) X 1, ‘/”‘ +1 DL(@00) M Y (6,1, pyh)
LL M, e 47
CMLLM,) th, = V2L4+ 1 (DE(60)3f (91 )
7T 1

b 3) Values of the non vanishing coefficients in b 1) and b 2)

C(000) = 1/47, Ch000) = 1/4z,

C(202) = —1/4n, C"200) = —1/4x, .
C(110) = (x/4m) V5/9, CM110) = (x/4a0) V1/15,

C(112) = (x/4m) V2/45, OMI1 + 1) = (x/4) V4/15

0(312) = —(x/dm) V7/5, CM310) = —(«/47) V3/5

Ch31 + 1) = —(x/dn) V2/5

¢) The 8 real observables in transversity quantization
o 12 Re 1,2, Tm #51, 1,3, Re £,3, Tm £,3.

(M = even by B-symmetry, t~, = (—1)M t;,1)

d) Observable density matrix elements in transversity quantization

~—

Py=gy = 1/4 [t — V5 t,> = V3[5t,' — V635 t,7]
Py =g,y = 1/4[t — V51, — V3[5 ts" - 63/ t,3]
=04 = 1/4 [+ V51, — V2775 t," — V75 )]
Py =04 = U4 [t -+ V542 -+ V27/5 t, -1 VTJ5 t,?]

O =ony=14[VI0R— VTE6], @ =0, = 1/4 Y1072 + YT 73

e) Positivity and rank constraints

P, =0, P20, Py c00 Py 20, Q= PP, QPP
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f) Transversity and helicity amplitudes

Jp
AF‘* ”?u '——'?‘l
32 (. WV
12 |a .
/ = Tajcu2ip
—1/2 |. -
—3/2 |b

A4id = —1/2 (a4 V30)

A —id =12« +V3V)
{’) Collinearity constraints

4 =B =B=0&8a=—da = /—-—b

B" —B
A A
o4l Haigu 20,
B B

B+iB=—12(/3a—0)

B—iB=12(3a —v)

5o

g) Expression of the observables in d) and e) as functions of the transversity amplitudes

264P; = laf?
20,Py = [bf? 20,Py = [b']?
20,0’ = b'a’

204P," = |a’|?

Table 6

Amplitude reconstruction for reactions of type pmr —KIZ* (0~ 1 /2+ — 0~ 3/2*) with polarized target.

a) Combined production and cascade angular distribution for general target polarization, and mea-
surement of the polarization transfer by the method of moments

a 1) Canonical frame for the A

| S
104, 6, ¢, 05, 4y) = 27 1,3‘} ((LL1J21 N M

Y (JLNM, [LM) [,

- ]”T((‘OS t/-ﬂ:—L- sin qrrt;') + Puth } Y40, ¢) Y16, @)

C(LLyJ) (th, 4 Py}, =

—

M,

S (JLNM, | LM) (Y40, @) Y510, ¢4))

C(LLJ) Pyitly = X (JLNM, | LM) (2 cos ¢ Y4(0, 0) Y (6, 0)

¥ )

C(LLyJ) Ppatl, = X (JLNM, LM 2 sin Y (0. &) Y5, (0. 1)

NM,
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Table 6 — cont’d

a 2) Helicity frame for the A

1 —
100,008 0 = = X OMLL 1y X i [

-+ PT(COS 1[r?t__L;

+ sin (thL) Py ”t’,] V‘L +1 DL(¢00)M 408 o)

4n

CMLL M, (1% + Pyl — VZ—L—-i—

2L + 1

OMLL,M,) Prith, — V

. 2L + 1
OMLL,M,) Ppeth, — V =

with the coefficients C(LL,J) and Ch(LL,M,) of Table 5 b 3)

(DH@00)YL Y (6,2, d,1))
(2 cos Y DL(P0) 3L Y1 (0,1, &)

(2 sin pDL($60) I M Yh (91 s 0™

b) The 32 real observables in transversity quantization
oy £o? Re £y, Im 1,2, £y1, £,3, Re t,3, Im £,3,

Pp =t *2, Re it,2, Tm *,2, 1, 4,3, Re *,, Im 2,3,

Re 7,2, Im *¢;%, Re “t,%, ITm #t,1, Re #¢,3, Im “¢,3, Re #t,%, Im ¢,3,

Re ¥t,%, Im ¥t,%, Re ¥,1,

Im ¥¢,1, Re ¥,%, Tm ¥,3, Re ¥,3, Im t,3.

(M = even for ¢t} and *#[;, M = odd for #¢% and ¥ by B-symmetry, t,, = (—1)M ZE)

c¢) The 16 linear constraints and the 15 generalized spin rotation parameters

bhlv—

l —I/g)f“'

1 3 63
— — —_ e —
Py = =1y = to’ ] o=

-

/ffO'

[m~ﬁnww

’ 1 = , o ()3 — 1 -, »,-' : ‘ /
“*I}wwwwwukww]mrhwwwwb_wTV
1 [ =, o :’7 1 o= E
132 = —'4— | l’:) fo" - —.—;- '0 l ——f ’J = T [PR -+ p;) .["- o I// _._-)__ 401 . ]/

’ 1 [ ) -, /QTI' / 7 —1 ‘ . ':—-)_:/:,
e SRR (e Et EE RN G A
P+ P+ Py + Py =1, Py~ P/ + P, - P/ =Py
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c)

(continued)
- WOE Vi 7] = [0 — 11 7] = ¢
¢ = V07 Vi 7] = L[/ % + /i ] =

. ;" . . . _—
R:—i—[ V10 v 2 — ]/ __l/:; tls:|=_i_[_mzt12_ __ztll__l/g;xtls}zR
R/=f7[ o /S l/—vtl]:—i—[m;ff—- B %EE]—R'
o Zé;,;;_ 8 5 zi_/.%éri_ 8 75| _ g,
4 5 5 4 5
R, = — [—V28 93] = i— [—V28 %3] = R,
" d) The 9 non linear constraints and the positivity conditions
[QF = P\Py, |R,*= PP/, PIR/:QEI’ Py =0, P, =0
|Q'|* = P,/P,, RR =R,R,, P/R=QR, P'=0, P/=0
e) Transfer of polarization

0011 = 0GPy (1 + 2) 00_1-; = 0,P,/(1 — 2)

0033 = OgPy(1 + 2) 0033 = 0P,/ (1 — 2)
0033 = Gp@(1 + 2) 0031 = 6@’ (1 — 2)
003 = GpR(x + 1y) 60_1_53 = 0 R (x + iy)

00, = oR\(x — 1y) 0033 = 0, Ry(x + 1y)

f)

Transversity and helicity amplitudes as in Table 5f)

Expression of the observables in ¢) and e) as functions of the transversity amplitudes)

20,P; = [a]? 20,P, = |a’]?
20,P, — [b? 20,Py — V]2
20,Q = ab 20,Q)" = b'a’
20,R = b'a 20,R" = a’b
20,R, = ai’ 20,R, = b'b
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Table 7

Amplitude reconstruction for reactions of type =p — =A(0-1/2+ — 0-3/2%) with polarized target

a) Combined production and decay angular distribution and measurement of the polarization transfer {
by the method of moments
10,0, 9) = 5= X (1) ¥ [z + Pp(cos pith, + sinptL) + Pl | YL, o)
{
(L) (¢ + Pm;% — (YL(0.4)
C(L) Ppith = (2 cosp Y5 (6, b))
O(L) Ppoth, = (2sinp Y4 (6, ¢))
with C(0) = 1/}/47z, 02) = 1/V4x (all other O coefficients vanish)
b) The 12 real observables in transversity quantization
Tgs to?, Re t,2, Im ¢£,2
Pp =0, *t?, Re *t,%, Im #t,%, Re 7t,2, Tm #¢,2, Re ¥,2, Tm V¢,2. !
(M = even for tf; and “t{;, M = odd for *¢}, and ¥}, by B-symmetry; tZ, = (—1)M t1) |
¢) The 9 generalized spin rotation parameters and the 2 linear constraints
1
Py = — [t 4 Pp — V5 12 + )]
1 5 ’ p
P = [t — Py — V5 (62 — 2] P+ P/ + P, P —1 |
.
Py = _4—[ +PR+VO('0 _7'1)J Py — P/ + P, — Py = Py

d) The 3 non linear constraints and the positivity conditions

(53

Q= PPy QP =P/P). R4 QQF (P - P) (P, -

Py)

P20, P, 0, PY 0. P o0,
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e) Transfer of polarization

1
69;1:00[?(P1+P1/)+

1| =

(PI_PI/)Z}

o | =

1 , ,
oths = 00 | U P o g (Pe— P

o0, = [% @) L@ :]

005, = oR_(x + 1y)

f) Transversity and helicity amplitudes

p

s 4 -l

32 [ & B B

12 a . A A
Y = TaxA,m,. A 4 =H2;.A,2zp

326 . B B
A+iA'—_——-;—(a+V§b) B+z‘B’:——;—(V§a——~b)

4 1 ’ o 2.7 “ T 1 o 7 ’
A—-zA-———é-(aq'—]/.Sb) B—zB:E—(Ha——b)
f’) Collinearity constraints
— —

A =B =B=0ca— —a = l/-g‘-b:: — l/—‘l——b’

g) Expression of the observables in ¢)—e) in terms of the transversity amplitudes in f)

20,P, = |a|? 20,P, = la’|*

ol 1 | 0’y a |

200P, = |b? 20,P," = |b'}*

26,00 = al) 20,Q" = b'a’
( 0
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Table 8

Amplitude reconstruction for reactions of type mp — K*A(0-1/2+ — 1-¢ 1/2+ with unpolraized
target

a) Joint angular distribution of K* and A decays and measurement of the double multipole parame-
ters by the method of moments

109,04 = 2 Ciee() CA(L) X tifse Yy (0. 4) Y6, ¢)
Ors(L) OA(L) thihy = (Y2 (0, )Y 5.0 ¢'))
with

O#+(0) = CA(0) = 1/Vdm,  Cxs(2) = —1)}27, Cr(1) = xr/Vam

(all other €' coefficients vanish)

b) The 12 real observables in transversity quantization
Re R
G A

(M + M’ = even, by B-symmetry, t%% |, — (—1)M+M’ t{'lﬁl)

c) Observable density matrix elements in transversity quantization

Py = oY 1 = —
Py — ;’{o“} = [t = V1048 = (3 — v30033)]

P = glt¢ 1 5 15
P eiu} =% [1 + ]/'5 39 F (V§ 1+ |/ tﬁ%)
+ -

Q= 91:_‘}

1 — ——
@ =g = 5 [/BE T V5]
++

d) Positivity and diacritical constraints
Py =0, P=Q, P'z=0, Pz=Q
32P,P = |I' — VAP/|Syft 4 |I" 4 VA]2/jS, 2

32PyP’ = I - VAPR|8f* + | I — VA|2/18,2

oo et et P e
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with
I'= 48,8, — P,Q + P,/Q’ I = 48,8, + Py@Q — P,/Q’
A = A48,8,, —P,Q, —P,/Q’] Az, y, 2) = % + y* + 22 — 2wy + yz -+ z2)

]/Z = one of the two complex roots, to be fixed by the diacritical constraints.

e) Transversity and helicity amplitudes

AD
n A FE =4
1 [ " —C
L 1A
2 1 | ; B —B ;
— | = zi{* in? = Hsz* 22
247,24 ’ A=t
.1 | v B B
-y a’ A — A
—1 c C C
204 +id) = —V2 (b + o), 204 —id) =V2 (' + ¢)
2B+ iB) = —V2a -+ (b — ¢, 2B —iB) = Y2d’ — (V' — ¢),
2C +iC) = —V2a — (b — ), 2(C —iC) = V2 a’ + (b — ¢)).

The ByErs-Yaxa [§] amplitudes are given by
a, = —a’, b, = —(b + )2, ¢, = —i(—b + ¢)JV2

a_= —a, b_=(b+ ¢))2, c. = i(—b + ¢)/V2

if one uses standard s, ?, and u transversity frames for the quantization of p, K*, andA respectively.

e’) Collinearity constraints

A =B =0 =C=0 < b=-0, a:~a’:l/—;—(c—-b), ¢ =

f) Expression of the observables in ¢) and d) as functions of the transversity amplitudes

20P, = la]? 20P, = |a’®

1 1o 1 a 7 1 4 ria
20P = > (162 =+ j¢?) 20P" = . (16712 =+ [e]?)
20() = be 20Q" = ¢’

208, = -—i—— (ba — a'l) 268, = — (c'a’ — af)
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g) Algebraic reconstruction of the amplitudes

a2 = 26P, a2 = 20P,
B2 = 20(P + ey PT— [QF) o = 20(P" + e YPT = QF)
o = 20(P — e VPP [QF) 12 = 20(P" — c VPR Q)
by — b = ArgQ be — by = Arg @/

b — by = Arg (I — V)8, bo — by = Arg (17 — VA8,
{ o — o = Arg (=1 — V4)/3, { o — by = Arg (7 — YA)/8,

with the expression for I, I, J4 given in d), and the signs e, ¢ fixed by:

(18, [T — VAR — Syt [T+ VAPI = 0, IS,[2 117+ VAR — |Sy2 (17— V4[] = 0

Table 9

Amplitude reconstruction for reactions of type wp — K*A(0~1 /2+ — 1-¢ 1/2+) with polarized target

a) Combined production and joint decay angular distribution, and measurement of the polarization
transfer by the method of moments

gl =

I, 6, ') = X Cxe(L) Cp(L)
LV

X‘Irl[fww + Py cos yp? tvw' + Ppsing” tm( + Pp ”tsz Y0, 4) Y., ¢)
11/

C+(L) CAL) (tithr + Prp¥tifae) = (Y50, ¢) Y0, ¢)
Cieo(L) CA(L) Prithhy, = (2 cosp Y (0, ) Y5, (0'd")
Cx+(L) CA(L) P 1’!{[‘”, = (2 sin Y » (0, ¢) Y \1'(0 %)
with
Cra(0) = OA(0) = UVdm,  Oxe@) = —127,  Ca(l) = 3 /|4

(all other €' coefficients vanish)




