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Table 9 — cont’d

b) The 48 real observables in transversity quantization
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Table 9 — cont’d
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e) Transversity and helicity amplitudes as in Table 8e)

f) Expression of the observables in ¢) and d) as functions of the transversity amplitudes in Table 8e)

20,Py = |a|?

1
200P = — (|b]* + [c[*)
2046 = b¢

! 1 .-
26,8, = - (ba — @'b")

20,7, = — (b +

- a’b’)

l\-If-‘

) B 14
200Ry = va

20,P," = |a’|?
ol |

20,P’ = —~<,b’—’-‘

260Q, . (‘/5/

, 1

2048, = - (c’'a” — ac)

‘ Al ] 1=t -

20,15 = - (¢'a’ -+ at)
1

..0'0133 == —;— (( ’) -+ b’ l)




293

Amplitude Reconstruction for Usual Quasi Two Body Reactions

Table 9 — cont’d
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g) Complement to the algebraic reconstruction of amplitudes in Table 8g), for transversally polarized

target
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Table 10

Amplitude reconstruction for reactions of type wp — pN (0~ 1/2+ — 1-¢ 1/2+¢) with polarized target

a) Combined production and decay angular distribution and measurement of the polarization transfer
by the method of moments.
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Table 10 — cont’d

¢) Generalized spin rotation parameters
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f) Expression of the observables in ¢) and d) as functions of the transversity amplitudes
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4.1. Reactions of type np — KA

4.1.1. The Wolfenstein parameters

It is well known that reactions of the type =p — KA with polarized target and analysis
of the final A polarization are completely described, at fixed energy and momentum
transfer, by o,, the unpolarized differential cross section, and P, R, 4, the 3 Wolfenstein
parameters (cf. ref. [27]) which satisfy one quadratic constraint (cf. table 4). Indeed
these 4 real numbers supply the whole phenomenological information, namely the diffe-
rential cross section ¢ and the final polarization components (X, Y, Z) as functions of the
initial ones (x, y, z). In the right part of table 4) we show these functions when the polari-
zations are quantized in s-transversity frames (cf. section 2.1.). The simple inspection of
these functions shows that each one of the 4 parameters can be measured twice. That both
experimental procedures must supply the same result constitutes a Wolfenstein theorem
which will be proven below.

4.2.1. The complex spin rotation parameters

A complete measurement of the reaction np — KA involves a measure of the differential
cross section and an analysis of the combined angular distribution of the normal to the
reaction plane and of the A decay products, as it was discussed in section 3.3. This angular
distribution is given in table 4a) and its moment analysis yields the polarization transfer
parameters t3;, *t%,, %% vt} as shown in the same table. There are 8 real, a priori non
vanishing, parameters, given in table 4b) (in transversity quantization). They are not
independent ; they satisfy some linear and quadratic constraints. The method to derive
systematically these constraints was given in section 3.3.2. In the present case we first
write the B-symmetric matrices g, and g,, and the B-antisymmetric ones g, and o,, which
appear in the matrix W (eq. 3.9), in the form

P, Py — R,
Qo = y 0, = - s O = = p—
Py Py VR,
Then the polarization transfer matrix W reads
+1/2 +1/2 —1/2 —1/2 Ay
Ay Aa +1/2 —1/2 +1/2 —1/2 3N
+1/2 4+1/2 | Py + P, “Ro + VR,
IR Py — Py | T, T,
= 0,
—1/2 +1)2 TRy — YRy | Py — P,
—1/2 —1)2| %R, + IR, 0+ Py

It is the direct sum of the external matrix W, (with 2, — 2, = even) and the internal one
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~

less. This condition imposes either

Wy =0, rank W, = L« P, =Py, Py =Py, "Ry =1VR,, Ry*= P,P,,

or

Wy =0,rank Wy = 1< Py = —P;, P, = —P), “Ry= —IR,, |R)>= PP, .

[n each case there are 4 linear constraints and one quadratic constraint. For our reaction,
with relative parity n = 1.n,nxna = -+1, the first alternative is realized, and the corre-
sponding linear constraints are equivalent to the Wolfenstein theorem. The parameters
Py and Py are real, the parameter R, = "R, = VR, is complex. They are also called “the
spin rotation parameters’ of the reaction. The definition of complex spin rotation para-
meters will be useful in the generalizations below. The relation of P, P,’, R, with the
Wolfenstein’s A, P, R is given in table 4c, where we also show their relations with the
polarization transfer multipole parameters and the linear constraints between the latter.
Finally, table 4d gives the quadratic constraint in terms of A, P, R and Py, Py, Ry and
table 4e shows the polarization transfer in terms of the density matrix elements in trans-
versity quantization which are closer to the amplitudes we intend to reconstruct.

4.1.3. Reconstruction of amplitudes

Table 4f introduces the terminology for the helicity and transversity amplitudes (c.f.
section 2.2.). Their relations with the spin rotation parameters are given in table 4g.
Note that with unpolarized target, i.e. by measuring only o, and P (or o, and P,) the
moduli @ and &’ of the transversity amplitudes is determined and only their relative phase
in ghost.

On the contrary, for the helicity amplitudes, the moduli are not determined with an
unpolarized target.

4.2. Reactions of type wp — KX* (0~ 1/2+ — 0- 3/2+)

In table 2a, 30 examples of such reactions are listed. For any of them, with unpolarized
target but with analysis of the cascade decay of the final baryon, the transversity ampli-
tudes can be measured, up to one ghost phase, by the procedure indicated in table 5. The
determination of the ghost phase needs a polarized target and can be performed following
the procedure described in table 6.

t

4.2.1. Reactions with unpolarized target

This section is a comment of table 5. Part a) gives the method for measuring the even
multipole parameters by a moment analysis of the two body decay of the * (¢f. sect.
2.4.1.). Part b) gives the method for measuring all the multipole parameters by a mo-
ment analysis of the cascade decay: ¥* -~ Ax, A — pr (cf. section 2.4.3.). In fact, for
L. = even one has L; = 0 and the 0,, ¢, or (6", ¢,*) disappear; then by integrating on
Oi, ¢y (or 0", $,"), the same distribution as in Part a) is recovered, with C(L, L, = 0,
J = L) =CML, Li =0, M = 0) = C’(L‘)/']//dirr. For each quantization frame for the A,
the parameters £,/! can be measured twice: with L; = 1,.J — 0,2 for the canonical frame
and with Ly == 1. My = 0,1 for the helicity frame. The compatibility of these two groups
of measurements is a check of the experimental and theoretical assumptions (no biases,
spin 3 2 for the T* ) and can be used to reduce the experimental errors.
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The a priori non vanishing multipole parameters are listed in part ¢). Of course all
other multlpol( moments of the cascade angular distribution can be measure ed too. Their
vanishing is a check of parity conservation in the production and in the £* — A= decay.
From these values of the multipole parameters, the density matrix elements are easily
obtained (cf. eq. (2.8)). In part d) we give explicitly the non-vanishing density matrix
elements in transversity quantization. Remark that since the matrix elements are
linear combinations of the multipole parameters, they could be obtained directly by the
method of moments as mean values, of complicated linear expressions of spherical har-
monics. This method can reduce the errors on density matrix elements, and should be
applied when amplitude reconstruction is intended. Nevertheless one should perform the
checks mentioned above.

The positivity and rank 2 conditions of the 4 X 4 density matrix (cf. section 2.3.) impose
to its elements the constraints written in part e). Part fj introduces some simple termino-
logy for the transversity and helicity amplitudes which satisfy the B-symmetry con-
ditions (cf. eq. (2.6)). We give also the relation between these amplitudes when the con-
ventions of section 2.1. are used. Finally part g) shows the very simple connection of the
transversity amplitudes with the measurable transversity density matrix elements.
Remark that the argument of Q and @' give the relative phases between the amplitudes
a and b and between o’ and b’. But the relative phase between these two groups of ampli-
tudes is ghost. Therefore the moduli of the helicity amplitudes are also ghosts.

4.2.2. Reactions with polarized target

The determination of the ghost phase requires an experiment with a polarized target.
Table 6 shows the method for measuring all the observables of the reaction and gives the
corresponding generalized spin rotation parameters (for comparison, see section 4.1.).
Part a) shows the combined production and cascade decay angular distribution for an
arbitrary target polarization (cf. section 3.3.4.). Its moment analysis yields the polari-
zation transfer multipole parameters. In part b) we list those which are not a priori
vanishing. Of course the other moments of the combined distribution could be measured
and should be found compatible with zero.

Part c¢) shows the linear constraints on the observed transfer multipole parameters
(cf. section 3.2.2.) and introduces the linearly independent generalized spin rotation
parameters. The real P’s and the complex @’s can be measured with an unpolarized target
by the left side equations. The complex R’s can be measured with a longitudinally polari-
zed target by the left side equations. Besides, all parameters can be measured with a
transversally polarized target by the right side equations. Therefore, the experiments
with only transverse or only longltudmal target polarization are equivalent: both supply
the whole physical information. But the first experiment allows the check of 8 linear
constraints; the other 8 constraints can be checked only when both kinds of experiments
are performed

The generalized spin rotation parameters must still satisfy some quadratic constraints
and some positivity conditions (cf. section 3.2.2.) given expllcltl) in part d). These para-
meters are the coefficients of the polarization transfer from the target polarization to the
final particle density matrix as shown in part e).

At last part g) shows the observables in terms of the transversity amplitudes defined in
table 5f). The ghost phase between the amplitudes a, b and the amplitudes a’, 0" is
contained in the arguments of the parameters R, R’. R, and R,. As emphasized above, it
can be measured either with transverse or longitudinal target polarization.
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4.3. Reactions of type =p — A (0~ 1/2+ — 0~ 3/2+e)

In table 3a, 34 examples of this type of reactions have been listed. Their amplitudes can
be completely reconstructed with a transversally polarized target. Table 7 that we now
comment gives the recipes for the reconstruction by measuring some generalized spin
rotation parameters (cf. section 4.1.).

Part a) shows the combined angular distribution of the normal to the reaction plane and
of the A decay products (cf. section 3.3.2.) It allows the measurement of the polarization
transfer multipole parameters by a moment analysis as indicated in the same part a).
The list of those parameters which are not a priori vanishing is given in part b). Remark
that u,* can be measured only with a longitudinally polarized target. Of course all other
moments of the combined angular distribution could be measured and should be found
compatible with zero, as a check of parity conservation in the reaction and in the A
decay.

Part ¢) introduces the generalized spin rotation parameters which are linear combinations
of the transfer multipole parameters and as them could be directly measured by the
moment method. The last line of this part ) shows that a longitudinally polarized target
provides no new information, only a complex linear constraint can be checked. This
part ¢) uses the same terminology as part c) of table 6 (reaction type 7p — KZ*). But
for the A we can only measure the even multipole parameters, i.e., expressions of the
type P, + Py’ given by the left side equations and P, — P,’ given by the right side
equations; R_is simply R — R’ and can be obtained from the left side and the right side
equations, whence the linear constraint.

The spin rotation parameters must satisfy the non linear rank constraints and the posi-
tivity conditions written in part d).

Part e) shows the polarization transfer from the initial polarization to the final density
matrix.

Part f) introduces some simple terminology for the transversity and helicity amplitudes
which must be B-symmetric (cf. eq. (2.6)), and gives their linear relations for the con-
ventions of section 2.1.

Finally part g) exhibits the relations between observables and amplitudes. All moduli
and relative phases of the transversity amplitudes are easily obtained, even the relative
phase between the amplitudes a,  and the amplitudes a’, b’ can be directly obtained for
instance from the expression in brackets.

4.4. Reactions of type mp — K*A (0~ 1/2+ — 1-¢ 1/2+)

Forty examples of such reactions are listed in table 2b. For each of them, with unpolari-
zed target but with analysis of the joint angular distribution of the final decay, the
transversity amplitudes can be reconstructed, up to one ghost phase, following the
procedure described in table 8. The determination of the ghost phase needs a polarized
target and can be performed following the procedure described in table 9.

4.4.1. Experiment with unpolarized target

This section is a comment of table 8. Part a) gives the method for measuring the double
multipole parameters by a moment analysis of the joint two body decays of K* and A
(cf. sect. 2.4.2.). Unprimed indices and arguments correspond to K* polarization and
decay while the primed ones correspond to those of A. The a priori non vanishing multi-
pole parameters are listed in part b). Of course all other multipole moments of the joint
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angular distribution can be measured too. Their vanishing is a check of parity conser-
vation in the production and in the K* decay.

From these values of the double multipole parameters, the joint density matrix is easily
obtained (cf. eq. (2.9.)). In part ¢) we give explicitly the non vanishing elements of the
measurable joint density matrix, in transversity quantization. Upper indices refer to the
K* transversities and the index e labels elements of the even density matrix ; lower indices
are twice the A transversities. Remark that since the density matrix elements are linear
expressions of the multipole parameters, they could be obtained directly, by the method
of moments, as mean values of similar linear expressions of spherical harmonics. This
method reduces the errors on density matrix elements and should be applied when ampli-
tude reconstruction is intended. Nevertheless one should first perform the parity checks
mentioned above.

The positivity and rank 2 conditions of the total 6 X 6 density matrix (the measured
part plus the ghost part) imposes to its measured elements the constraints written in
part d). The two equalities are the rank constraints. They are rather cumbersome but
they constitute a new check and furthermore they have a diacrital function. Indeed they
contain the square root of a complex number A (function of 4th degree in density matrix
elements); the constraints decide which of the two possible roots must be chosen, since
they will be satisfied for one of the roots and not for the other. This choice eliminates any
discrete ambiguity in the reconstruction of the transversity amplitudes. Of course the
check of these rank constraints and the possibility of discriminating the two roots
require accurate experimental results and hence high statistics.

Part e) introduces some simple terminology for the transversity and helicity amplitudes
which satisfy the B-symmetry conditions (cf. eq. (2.6.)). We give also the relations between
these amplitudes when the conventions of section 2.1. are used. Finally we give the
relation between our transversity amplitudes and those introduced by ByErs and Yaxe,
who use a cartesian basis for the spin 1 particle and a transversity quantization axis
which violates the Basel convention.

Part f) shows the expressions of the measured observables as functions of the defined
transversity amplitudes, and part g) gives the inverse expressions which allow an alge-
bric reconstruction of the amplitudes. Of course the relative phase between the two
sets of amplitudes a, b, ¢ and a’, b’, ¢’ is ghost and therefore the moduli of the helicity
amplitudes cannot be determined with unpolarized target. Remark also that the deter-
mination of || and |¢| from P and @, and similarly for the primed quantities, contains a
discrete ambiguity indicated by the sign e or ¢’. These signs can nevertheless be fixed by
the last inequalities of part g), when the choice of the complex square root of A can be
done as discussed above.

Another method for amplitude reconstruction is to fit the expressions in part f), im-
posing for instance that a and a’ be real. A mixed method would be to obtain directly by
the method of moments the moduli |a|2, |b 4 ¢|2, |a’|2, |b" + ¢'|? and to fit afterwards the
relative phase between these sets of amplitudes by using the values of Im Q, Im Q’, S,
and Sz.

4.4.2. Experiment with polarized target

The determination of the ghost phase requires a polarized target. Table 9 shows the
method for measuring all the observables and introduces the corresponding generalized
spin rotation parameters (for comparison see section 4.1.).

Part a) shows the combined production and joint decay angular distribution for an arbi-
trary target polarization (cf. section 3.3.2.). Its moment analysis yields the polarization
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transfer joint multipole parameters. In part b) we list those which are not a priori va-
nishing. They are 48 and are set according to the way they are measured: the first line
(12) can be measured with unpolarized target, the two following lines (24) with transverse
target polarization, the last line (12) with longitudinal one. Of course, all other (48)
parameters can be measured and should be found compatible with zero.

Part ¢) shows that among those 48 transfer multipole parameters there exist 16 linear
constraints (cf. section 3.2.2.) so that, besides the unpolarized differential cross section
79, 31 generalized spin rotation parameters can be defined. The real P’s and the complex
()’s and S’s can be measured with unpolarized target. In addition to these, a transverse
polarized target allows the measurement of 16 more parameters the 1”s, R’s and U’s, and
a longitudinal polarized target yields the R’s and 4’s, i.e. 12 more than with unpolarized
target and 4 more than with transversal polarization.

These parameters are the coefficients of the polarization transfer to the final joint density
matrix as shown in part d).

Part f) gives the expression of the observables in terms of the transversity amplitudes
cdefined in table 8e). The ghost phase between the two sets of amplitudes a, b, ¢ and a’,
h', ¢" is contained in the R’s, U’s and A’s parameters and can be measured either by
longitudinal or by transverse polarization of the target. In this last case, the measure-
ment of the parameters 7'y and 7', allows a more direct reconstruction of the transversity
amplitudes as given in part g).

'4.5. Reactions of type mp — pV (0~ 1/2+ — 1-¢ 1/2+e)

In Table 3b) 22 examples of this type of reactions are listed. Their transversity ampli-
tudes can be reconstructed with a transversally polarized target up to one ghost phase
and some discrete ambiguities. The experiment with longitudinally polarized target supp-
lies two more observables which allow to check two non linear constraints and to eliminate
the discrete ambiguities. But the ghost phase could only be obtained from the polari-
zation of the final nucleon?).

Table 10, that we now comment, gives the practical recipes for the amplitude recon-
struction, by measuring some generalized spin rotation parameters (cf. Section 4.1.).

Part a) shows the combined angular distribution of the normal to the reaction plane and
the o decay products (cf. Section 3.3.2.). It allows the measurement of the polarization
transfer multipole parameters by a moment analysis as indicated in the same part a).
The list of these parameters which are not a priori vanishing is given in Part b). Remark
that ¥f,? can be measured only with a longitudinally polarized target. Of course all other
moments of the combined angular distribution could be measured and should be found
compatible with zero, as a check of parity conservation in the reaction and in the o
decay.

Part c) introduces the generalized spin rotation parameters, which are linear combina-
tions of the transfer multipole parameters, and as them could be directly measured by the
moment method. This Part ¢) uses the same terminology as Part ¢) of Table 9 (reaction
tvpe np — K*\). But in the present case we can only measure the polarization of the
first particle, i.e. the transfer double multipole parameters with L' = M’ — 0. They are
ziven by expressions of the type Py + P, written in the left side equations and of the
tvpe Py — P," written in the right side equations in Table 9¢). The parameters U and A
correspond to Uy - U, and A, — A,. Part d) of Table 10 shows the polarization transfer
from the target polarization to the final density matrix.

') That is a simple application of the Simonius theorem (cf. ref. [9] and Appendix).
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The transition amplitudes in this type of reactions are the same as in the reaction type
7p — K*A. Thus we refer to the simple terminology introduced in Table 8¢) for the
transversity and helicity amplitudes which must be B-symmetric (cf. Eq. (2.6)), and for
their linear relations, when the conventions of Section 2.1. are adopted.

Part f) exhibits the relations hetween the observable spin rotation paramecters and the
transversity amplitudes. Remark that amplitudes corresponding to opposite polarizations
of the final nucleon, i.c. (ab’c’) and (a’be), are never mixed. Therefore the relative phase
between those sets of amplitudes is ghost. The situation is equivalent to that of the
reaction type =p — K*A with unpolarized initial state. From the polarization point of
view both reaction types are related by crossing of the baryons. Indeed Table 101) is
obtained from Table 8f) by means of the substitutions b <> ¢/, ¢ <= b, P <> P/, Q< Q,
Sy = 1/2(U — A4), S, — 1/2(U + A). Therefore in our present case, when all the spin
rotation parameters are observed (experiment with transverse and longitudinal target
polarization), all the moduli and relative phases (up to ghost one) can be unambiguously
reconstructed, and two non linear constraints can be checked. For this purpose the ex-
pressions in Table 8d) and 8g can be used with the substitutions mentioned above.
When the experiment is only performed with transversally polarized target, the para-
meter 4 and the last expression in Table 10f) are ignored, and the diacritical constraints
are not available. Then, from the Table 10f), the six moduli can be obtained up to two
discrete ambiguities for the moduli of b, ¢ and the moduli of &', ¢’. The two relative phases
between these couples of amplitudes are unambiguously measurable. The two relative
phases between a and b, ¢/, and between @’ and b, ¢ can be determined from the ex-
pression of U, up to at most a 2*-uple discrete ambiguity.

4.6. Reactions of type np — K*¥*A(0- 1/2+ — 2+ 1/2+)

Forty examples of this type of reactions can be obtained from Table 2b). Their trans-
versity amplitudes can be reconstructed (up to one ghost phase) with unpolarized target,
but with analysis of the joint angular distribution of the final decays. Table 11 gives the
practical recipes for this amplitude reconstruction. It is a simple extension of Table 8,
which gives the amplitude reconstruction for reaction type mp — K*A and has been
commented in Section 4.4.1. We refer to these comments, which can be easily applied to
Table 11, although we have omitted here the explicit expressions of the 12 non linear
constraints and the algebraic expressions for reconstructing the amplitudes. They are
very cumbersome and can be obtained from the equations in Table 11¢) by elementary
algebra. Anyway the simplest method to reconstruct the amplitudes will be a best fit of
these expressions as was commented in Section 4.4.1.

The determination of the ghost phase requires a polarized target. The experiments with
transverse target polarization and with longitudinal one supplies 72 and 30 new obser-
vables including the ghost phase and new constraints. We have not tabulated all these
generalized spin rotation parameters. The corresponding Table would be an extension of
Table 9. The measurement of only one final polarization is enough to fix the ghost phase
(cf. ref. [9]). If only the polarization of K** is measured. Table 12 could be used.

4.7. Reactions of type =p — 4,N (0~ 1/2+ —» 2+ 1/24¢)
Twenty two examples of this type of reactions can be obtained from Table 3h). Their

transversity amplitudes can be reconstructed (up to one ghost phase) with polarized tar-
get and measurement of the 4, polarization. Table 12 gives the practical recipes for this
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Table 11
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Amplitude reconstruction for reactions of type wp — K**\(0~ 1/2+ — 2+¢ 1/2+) with unpolarized

target

a) Joint angular distribution of the K** and A decays, and measurement of the double multipole para-

meters by the method of moments

2 — 00 decay

16, $; 0, ¢") = %Lq‘(.‘(L) CA(L') S* ‘u w Y 50,4) Y (0, ¢

CK“(L) (L) [If[L;[/ = <Y€l(0’ (b) YI{[’/ 0’ @’ )>

with: Cire(0) = CA(0) = I/VZ;, OA(1) = CX‘\/VE
Cgsr(2) = —V5/14m,  COgss(4) = V9/147,  for
Og**(2) = —V5/567, Cyr*(4) = — V2/7x, for

(all other C' coefficients vanish)

2% — 170~ decay

b)

The 30 real observables in transversity quantization

20 440 01 421 41
Gos 150 850 t00s ta0s oo

o]
Re} { 133, 140, £18, 634, £33, td,

{21 21 t-ll t11 t41 41

Im 110 ti-1 Pips By laps U3ty

(L = even, M ++ M’ = even by B-symmetry, t:4, ., = (—1)M+M" (1L,

Observable elements of this joint density matrix in transversity quantization

P = 00 B . ;
0 S+ + — _1_ 1 — 29_ t’“ l@ t.m 150 é8_6 t«ll
Py =% 10 | 7 7
P, = ot [ . 1 /72
Pl’ . Dllr} - Ila 1 - 5 t5o — 7 l;}g (V— too — V?'I—Q t“):l
0 = 0++ 5
P, = 0% i . 9 —
¢ QTM} B PR /ﬂt’n -9—t33:jt (V:; 1oL - 150 g1+ 27 4 )J
P, = ¢** 10 | 14 7 14
Py + Py +4 2(P, + P/ + P, + P,) =1
( _ -1 —-— / . oo 4 J—
21’ e 1—1 . _}_ LTI /_1___9 == .‘2_2‘_) L /.)_4_(3 til
Q) = oi} 10 7 : A
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Table 11 — cont’d

8y =0l =
8, =¥} =
Sy = o =
8y = 0¥ =
Sy =il =
S =¥} =

116 [—V75/7 &1, + V810/7 i

L
10

= V757 & — Va1o7a i)

— L Yasop iz + Vise in
10 11 11

10
L[y i)

|- V45077 &1, — V13577 171, ]

d) Transversity and helicity amplitudes, and their relations

Ap
An Agrs 5 —1
2 d
{ 1 ¢
+ -2— 0 a
—1 ¥
—2 € lKn:
9 o - T21A,2)~p
, 1 b
— —2— 0 (l,
—1 c
—2 | &
44 —id) = —2a — V6 (d + ¢),
4B —iB') = —2(b 4 ¢) — 2(d — ¢),
4(C —1C") = —2(b + ¢) + 2(d — ),
4D —iD) = —V6a —2(b —¢) + (d + ¢),
4E —iE) = —Voa + 20 —c) - (d + o),

—E E A wn
- 24 7,24p

4(4 +id’) = —2a" —V6 (&' + ¢)

4B + iB) = —2(b" 4 ¢') — 2(d’ — ¢)

4O+ iC) = =20 + ¢) + 2(d" — ¢')

4D+ i) = —V6a' — 200" — ¢') + (d + ¢)

4B +iE) = —V6a' + 20" — ) + (d + ¢)

d’) Collinearity constraints

A=B=C=D=FE=0 l

C =]V

&
e ]j:l = {) I

3
a4 = —u',d = —d’ = ] - ¢ 4 b

4

l; . -———I)i mr o= —»("” ¢ =z ('/ . ]1/_2— q — [)
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e) Expression of the observables in ¢) and d) as functions of the transversity amplitudes

20P, = |a|? 20P, = 'a’]?
D) 1 Ri2 12 9 ’ 1 I Nar) 719
20P; = — (|b]* + [cf) 20P," = — (0'}* + [c']?)
1 9 9 ’ 1 ’ ’
20P, = Y ([d]® + le[?) 2P, = > (|2 -+ |e’[?)
20Q, = bé 20Q," = 'V’
200, = dé 20Q, = ¢'d’
1 — - ’ 1 V=t 137
20Q3=-72—(da+ae) 20Q3=—2—(ea + a’d’)
1 - N 1 r=r -
20S1=7(ba—ab) 205223-(66 — C€)
1 V= = y 1 1 13
20S3:-:2-(ca-—ac) 206,,=—5-(db——bd)
9 1 - 13 1 117 =
-085=5—(dc—cd) 20’362—;(€b——b8)
Table 12

Amplitude reconstruction for reactions of type =p — A,N(0~ 1/2+ — 2+¢ 1/2+¢)
with polarized target

a) Combined production and decay angular distribution and measurement of the polarization transfer
by the method of moments

1y, 6,¢) = Elfz romz [iE, + Pp(cos gtk + sinpaik) + P uek ] Y1 (0, $)

C(L) (t‘I{{ + P.Lyl‘lfl) = < Y‘I);[(e, ¢)>
C(L) Prithy = (2 cosp Y1, (6, ¢))

C(L) Ptk = (2sinp YL (0, $))

with
C(2) = —V5/14m, C(4) = V9/14zx for 2 — 00 decay
C(2) = —}5/56m, O(4) = —}2/Tx for 2+ - 170~ decay

C(0) = 1/y4z  all other € coefficients vanish)
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b) The 30 real observables in transversity quantization

. Re
Ty o2 1, Im} 1,2, L, 1,1

Re
PR — ztao’ ztoz, 2104’ Im} "l .t24 zf 4 Itl", zt14~ xt84

Re
vt 2, vt s, v
Im} 17 by Flg

(M = even for t%, and *t%, M = odd for %} and ¥}, by B-symmetry; th = (—

M eg)

c) The 29 generalized spin rotation parameters

P 'l 50 . 162
P:’} = '{6 —(1 + PR) - %‘ (to + fo ) + - (to + zto‘)]

» _ =
1/} — 1 (1 4+ Pg) — % (te? & *3%) — 1/ (te* + zto‘i):l

P 1 50
”,} = |0 Pp + ]/ 0 = 1) l——(t* w)}

P0+Po,+2(P1+P1,+Pz+P2/):
Py — Py +2(P, — P + P, — P)) = Py

Q e 180 /—  —
) - glyEe - R

Qa}:—l-[ /%) (7 =+ 2) + %5(@45:44)}

I
I

@) 10
Q> 1 T
Qz'} =3 V8 =)

~
I
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d) Transfer of polarization
0000 = Oo[(Py + Py’) + (Py — Py') 2]
0011 = Go[(Py + P)) + (P, — Py') z]
003y = 0o[(Py + Py) + (P, — P))) z]
0011 = G[(¢y + @) + (@, — Q) 2]
0025 = Oo[(@2 + @) + (@ — Q)') 2]
0020 = Go[(@5 + @5') + (@5 — @) 2]
0010 = oo Uz — id,y]
0041 = Oo[Usz — idyy)

00y, = 0y[ Uz — i4yy]

e) Transversity and helicity amplitudes as in Table 11d)

f) Expression of the observables in c) and d) as functions of the transversity amplitudes

20yPy = [af? 20,Py" = |a/[?
¢ 1 2 2 ’ LI 712
200P, = 0y (161* + [e[) 20)P" = Py (167 + [¢]?)

1 2 2 ’ 1 712 712
200P, = Py (Id[® + le[?) 20,Py" = 5 (']* + [e’[?)
204Q, = b 20,@, = c'V’
20,Q, = dé 200Q, = e'd

1 o - "y 7 l 13 tomr
20,05 = e (da + aé) 20,Qy" = e a’ +e'a’)
9 T 1 — I 7 - I 5] 1 | T Py 3
20,U, = o (ba" — ab’ + ¢'d@ — a’é) 2004, = — (ba" —ab’ — c'a 4 «’¢)
200U, = — (d¢’ —cd’ + ¢'b — b'¢) 20y, == —'; (d&" — cd” — e'b -i- be)
Y 7 1 s T s ’ ) t 17 37 tw '
20,U, == - (db" — bd" - ¢'¢ — ¢¢) 20,4 - (db" — bd" — €'¢ -~ e’é)
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amplitude reconstruction. It is a simple extension of Table 10, which gives the amplitude
reconstruction for reaction type =p — N and has been commented in Section 4.5. We
refer to these comments, which can be easily applied to Table 12, although we have
omitted here the explicit expressions of the non linear constraints and the algebraic
expressions for reconstructing the amplitudes. All this can be obtained from Table 12f)
by elementary algebra. Anyway the simplest method to reconstruct the amplitudes will
be a best fit of these expressions by fixing two arbitrary phases (e.g. @ and a’ real).
The ghost phase between the sets of amplitudes (a, b, e, b’, ¢'), (a’, d', €', b, ¢) could only
be measured by analysis of the final nucleon polarization. The situation is equivalent to
that of the reaction =p — K**A with unpolarized initial state. Indeed Table 12f) can
be obtained from Table 11¢) by the substitutions b <« ¢, ¢ <> b', P, <= P\, Q, <~ Q,’,
Sg —+ Sl —> Ul: Al: Ss + ISG —> Ug, Az, S4 -+ S3 —> U3, As

4.8. Reaction of type m=p — K*X* (0~ 1/2+ — 1-¢ 3/2+)

Thirty examples of this type of reactions can be obtained from Table 2 e). Their trans-
versity amplitudes can be reconstructed (up to one ghost phase) with unpolarized target,
but with analysis of the joint angular distribution of the K* decay and the Z* cascade
decay. Table 13 gives the practical recipes for this amplitude reconstruction. Itis a simple
extension of Table 8, which gives the amplitude reconstruction for reaction type
=p — K*A and has been commented in Section 4.4.1. We refer to these comments, which
can be easily applied to Table 13, although we have omitted here the explicit expressions
of the non linear constraints and the algebraic expressions for reconstructing the ampli-
tudes. They can all be obtained from equationsin Table 13 f) by elementary algebra. Any-
way the simplest method to reconstruct the amplitudes will be a best fit of these ex-
pressions as was commented in Section 4.4.1.

The determination of the ghost phase requires a polarized target. The experiments with
transverse target polarization and with longitudinal one supplies 122 and 48 new obser-
vables, including the ghost phase and new constraints. We have not tabulated all these
generalized spin rotation parameters. The corresponding table would be an extension of
Table 9.

Table 13

Amplitude reconstruction for reactions of type np — K*I*(0+ 1/2+ — 1+¢3/2+)
with unpolarized target

a) Joint angular distribution of the K*X* decays, and measurement of the L and L’ even multipole
parameters by the method of moments

10,5 0',¢") = X Ca(L) Coo(L') 3ty Y (0.¢) Y107, ¢)
Ly MM

Ce(L) Cun(L) tafyy = { Y3,00.¢) Vi (0, ¢))
with

o

Cis(0) = C:*(O) e I/IZ,:Y—. CK‘(Q) == ““1/}'257~ C.‘_“('/) "‘1”2?;

~

t

(all other C' coefficients vanish)
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Table 13 — cont’d

b) Joint angular distribution of the K* decay and S* cascade decay and measurement of the L even
double multipole parameters by the method of moments

b 1) Canonical frame for the A

10,0, 0,45 0y, by) = 3 Cxes(L) (/L) X (L, NI, | LM
LL'JL, MM'N

i Y0, &) Y50, &) Y5 (0, ¢y)

Cxa(L) C(L'Lyd) iy = .‘2[3 CTLNM, | LM (Y50, ¢) Y40, o) Y (0, 0,))

b 2) Helicity frame for the A

10, &, 0, 0", 0,", ¢;") = X' Os(L) CML'L, M) 3 thE, Y50, o)
LI/ LM, My

2L 4 1 DL (47 7 oL
VT DE@" 0" 03] V31,0, b,")

, . 2L + 1 ———
Cre(L) CML/ Ly M) iy = V ——g—— (Y5,(0. ) DY (@'0'0)3f, Y ip (0,8, b))

with Ug»(L) as in a) and C(L'L,J) and C*L'L,M,) given in Table 5 b3)

c¢) The 48 observables in transversity quantization

20 01 £02 03 21 £22 4223
g, tOO’ tO()’ tﬂﬂ’ tOO’ tl)()’ tOO’ tOO

20 402 403 421 423 423 423 433 42
Re} 830, £03, 1035 150, 135, 130 £33, 133, 633,

22 2 21 22 23 22 2 2 23
t2—2’ t‘li;’.’ tll’ tll’ tll’ t1~1—1’ tlil’ tlg-‘ t1—3’

Im
(L = even, M -+ M’ = even by B-symmetry, (£, _, = (—1)M+M' )

d) Observable elements of the joint density matrix in transversity quantization

=5 -

-

PQ:Q?? 1 T 420 = 102 | R _3— o1 /@ 03 = a1 Irecv- iy
o (=75 |1 V1068 — V588 + V50 ez & g%*V*%*W%+H%%

= pllf /= oF Iy ey
P, 9»1»»1] _ 1 /2 120 V5 102 — /i‘f {22 /3 o /9_3- £03
P - H I 12 9 ot 00 / 9 "00 5 "0 /0o

' /5 - , /27 /7
i f2 20 Yy 02 ol 1/ 22 g /20 01 L opos
L+ /5 tso -+ V588 4| 5 t5e = — oo + / el 714
/ 2 2 YA )
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Py = 0~03——3]
Py = 933 I
Q] = QE.:EI} o
Q) = o1y’
Q, = 9:1351
Q) = 91 31 3
Qs =01’
Q' = Qg(-)—l
Q4 = QélllP
4 = Q}hs
Q, = o'7%
Q' = e'%
Qs = 0571
Qs, == Q}:Iz,
8y = 010{1 =
8y = o1’ }
85 = 0%,
Sy = 9}[31 =
Sy = 91;(1) }
S(i - ()10"‘“';
S-{w pee Ql_‘)é,) =S
Sy = Q:liq'g ==

1 I ‘) 7 ‘ . -

12

el

Py + P+ 2(Py+ Py + Py + Py) + Py + Py = 1

1
o

}~ 112 [Vis &

20
t2(l

— V5 822

+ V75 132

[l/_ 0102 — 10 72 T

[V_t°+5@

T

= V150 7, &

:——1- [6 1-1 7

JR— V-_t‘)) :}: t

i3 (V0

V126 22|

(vea 153 —

T (33

189 t;'g')}

+ (933 + 121 i)

V10 733)|

(vid &3 + V35 223) |

23

’3
99

0132, |

1o
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e) Transversity and helicity amplitudes

)‘P
Ave  Ags +L —1
3 1 e E | —p
+ _2. d’ D D
—1 F| —p
1 o ¢’ —5’7 C
i __i__ a A | —a
- "'1 b, N TAK‘ B, B lht
1 1 T—" = Lodye, 20 '“E'" Y = szz.,m,
-5 a’ A’ A
T e | —¢
, 1 Iz | r
- ‘é‘ d D | —D
—1 e’ B E 3
— {
YA —id) = =12 b +c)— 16+ YA +id') = V2 (0 +¢) — V6 (¢ + 1),

4B —iB)=—Ra—(b—c)—V6d—13(— )

4B+ iB) = —V2a' — (b — &) — VB d' — 3 (/ — /)
4C —i0) = —=12a+(b—c)—V6d+ 13 (e — )

HO+iC) = —12a' + (' —¢) — VBd + V3 ( — f)
4D —iD) = —V6 (b+c)+ 12 (e +f) 4D +iD) = —V6 (' -+ ¢') + V2 (¢! + )

4B —iB)= —V6a—V3(b—c)+J2d+(c—f
YE +iB)= V62 — 13 —¢) +13d + (¢ — §) |
AF —iF)=—V8a+V3(b —c)+12d— (e —f)

UF +iF)=—V8a' + VB3O —c)+12d — (¢ — )

e’) Collinearity constraints

A=B=0=D=F=F = ] d=d', a=a =)2(c—b)+}3d
U-:I):‘ET—:G @ bmb’, emelmP§c+V§d
I c=¢, f=f=13b-124d
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f) Expression of the observables in d) as functions of the transversity amplitudes

20P, = |a|?

20, — = (BE + ef?)

-

208, = — (e + If1)

20P, = |d|?
200, = be
20Q, = ¢f
20Q, = ad
1, - _
200, = ry (eb + f¢)
20(); = bf
260Q) = ¢C
258, — - (ba — a’b’)
A 1 2 g
208, = L (cd’ — af)
2

208, = -é- (ed — d'V)

QO'Sa

(f'd" — df)

tv"—‘

20P," = |a’|?
’ 1 ’ ’
2P = — (VP + )
, 1
20P, = Y (e’ 4 111?)
20P," = |d'|?
20Q," = ¢'b’
20Q," = ['e’
2GQ3, == d’&"/
’ 1 r=7 Y
200Q, = ?(bc + e’'f’)
2UQ5’ . //b/

208,

QO'SG =

QO'SB ===

— < (@ — o)

1 -
. bd*‘ r =t
5 a’e’)

1 -
— (ed — d/-/
5 (e &)

4.9. Reactions of type np — pA (0~ 1/2+ — 1-¢ 3/2+¢)

Thirty four examples of this type of reactions can be obtained from Table

3a). Their

amplitudes can be completely reconstructed with transversally polarized target and mea-
surement of the joint angular distribution of the final decays. Table 14 gives the practical
recipes for this amplitude reconstruction. 1t is a simple extension of Table 10, which
gives the amplitude reconstruction for reaction type np — ¢ N and has been commented
in Section 4.5. We refer to these comments, which can be easily applied to Table 14,
although we have omitted here the explicit expressions of the non linear constraints and
the algebraic expressions for reconstructing the amplitudes. All them can he obtained
from Table 14 f) by elementary algebra. Anyway the simplest method to reconstruct the
amplitudes will be a best fit of these expressions by fixing one arbitrary phase (c.g.
@ = real). Remark that the amplitudes are here obtained without any ghost phase, up

to the overall one.
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Table 14

Amplitude reconstruction for reactions of type mp — pA with polarized target

a) Combined production and joint decay angular distribution and measurement of the polarization
transfer by the method of moments

1 ,
I(p;0,$,0,¢") = -)-; L‘S_‘; Co(L) OA(L)

8 \'; [t””, -+ PT((OS'P i + singatll, ) + PL”‘%(L\{] Y50,¢) Yin (0, ¢)

1,0’

Co(L) CA(L) (e + Prtifie) = (YL(0,4) YE.(0, "))

ColL) OA(L) Pritifyy = (2 cos p Y L(0,$) Y50, 7))

Co(L) CA(L') Prtify, = (2 sin p YL (0, ¢) Y (07, ')

with

Oo0) = CA(0) = 1/Vdm,  Co(2) = —1/Y2m,  COA@) = —1)}im

(all other €' coefficients vanish)

b) The 72 real observables in transversity quantization

Re
2 P 2 2 2
o L50s 1035 t30s Tm ([ 20 G035 U35, 663, 635, £32,, 033, 632,

PR’ ~t(‘;g, tgg, ztgg’ ]]:R‘e} ztzg, 2p02 ztzz zg22 2p22 2422 2g22
m

zg22
02’ 20° 02 227 22> 11 1-1

Im 01* 10’ 01> "212 ‘120

Re
.’L‘tZO ;t't02 .‘l‘t2“ .‘l't22 1‘t22 .’L‘t2" z‘t22 .z‘tlBEg

Re] |
20, V03, V33, vz, vz, vess, ez | wgee
Inl tlﬂ’ ytﬂl’ ytll)’ yt()l’ ”t2l’ ytl"’ ”t ytl—‘z

¢) The 63 generalized spin rotation parameters and the 8 linear constraints

f,f} = 15 [0+ Py — VG 38 4 ) — VB gt ) + VD a4 )
1]

1)1 l )0 02 2230 % 99 2422
P I _—; i PR) ’L o i ) - V5 (ti)() i ‘t(-)‘()) - T)— (t66 = t 0)
L7y 12 4

P‘ 1 L | 5 2 3 2 402 55 22 | x99
P.z/} - '—; [ + Pg) -+ l/"é' (50 £ t38) + v') (655 + ) -+ Y (t58 £ ~téﬁ)J

v
-
R
it
i
lh—t

(1 £ Pp) — VIO (38 = =t30) + V5 (egp - =10m) — V50 (122 L <e33)]

—
o
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Py + Py + 2(Py + Py + Py + Py)

+ Py Py =1

Py — Py 4 2(P, — P + P, — P)) + P, — Py = Py

1| 1 720 1 70
AR R

Qz} :é[m (tg—gi‘t;"’)-F

12

12

}
|

) L i 5+ 7
}

~ LYo (i 2 7) — 10

Vs (i & )|
V75 (i35 + °653)]

(32 = 227)]

— L [Vio (g2 + 77) + 5 (3 + 7))

gz _ 1_12. 150 (123 + 732,)
Z‘;} _ _1 V75 (122, 4 #22,)
2} _ _1. 75 (63 + 733)

¢) Continued

1 Py 522
Ry = — [~ V10 7 + 10 7]

= IO 1077 -

) = L [0 5 ] =

R, = = [~ V10 g3 — 5 7133
Ry, = 12[15555—53_1]:%[“
R4mé[~vﬁ5@]=f§[“

50 U322, | = R,

V150 3| = R,
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d) Transfer of polarization

ooty = 3 5 [Py + Py) + (Py — Py) =], 708, = ooRy(z + i), |

oottt = 0 5 [(Py + P+ (Py— P) 2, oollt = Ry — iy), |
]

0033 = 0y —;—- [(Py + Py) 4+ (P, — Py 2], 0015," = o Ry(x -+ iy),

S04, = oy - [Py £ PY) + (Py — Py)7). ookt = aoRy(x — iy),

rolit =y (@ + Q) + (@ — @) 2], ooltt = oy( Uy — idyy),

oot = 00 5 (@ + Q) + (@u — ) 2], 00kt = oy Uyt — idyy)

oy, = 0 = (@ + @) + (€0 — @) 7], 000, = oo( Uy — iyy) ;

ool = 3 o (@4 + Q) + (@ — @) 7). 00}, = ap(Uyr — idyy)

ool = g —;— (@ - Q) + (@5 — Q) 2],
ookl = g % [@s + @) + (@ — @) 71,
ool = 0y = (T, + 1Y) + (T, — T,) 2,

=3le

1 " ,
0031y = 0y > (T + 1Y) + (T, — Ty) 2],

L

Transversity and helicity amplitudes as in Table 13e)

f)

Expression of the observables in ¢) and d) as functions of the transversity amplitudes

26,Py = |a|? 200Py" = |’}
1 { }
E i1 2 ) B ’ NIRRT )
lﬂnpl e -:;- (,)‘ ~~xr' ?C; ) _)ffopl = ‘;- (b 2 e 0 }’)
p LTI 12 25 P’ 1 1,702 2
=Gol7y Y (I [11%) =Ogly = (¢ %)
20,P, 2 20,P, = 'd'}?
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26,0, = be
200Q, = ef
204Q; = ad
2004 = - (D + J0)
204Q; = bf
20Qs = eC

20,1, = -;— (de + af)
1 -
20,1, = > (e@ — bd)

20,R, = % (d'a —a'd’)

20, Ry = % (ee” — c& + bf" — {b')
1 r= r= -/ 3.7

20,U, =7 ca —a’c + ba’ — ab’)
1 >3 ’7 5 =/

20‘0Uz:—4—(fd——d/—,~cd — di’)

204, =

NS

(e’ — c&’ — bf" - 1)

20,4, = i- (f'd — d'f — ed’ -+ d&)

2040,
20,0,

20,05

200Q,

26,0’
204Qs’

20,1,

20,7y

20,y

201, =

20,U; = i— (t'a — a'f -+ bd’ — dV)

9
20,U,

2044,

20,4,

Appendix

= '’

— e

=d'a

~ Lot ep
2

— flzl

= ¢'¢e’

- _é__(frar_]l_c/d_l)
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1. The matrix W of polarization transfer

o= w(o,) = ooy = To,T7.

_(fd — a'f — b3 - )

(cd — d'c — ed + ad’)

We consider the linear map w from the initial polarization space of density operators on
A, to the final polarization space of density operators on #7;:

(A1)

There is a complete mathematical similarity hetween this polarization transfer and the
polarization correlation for a system of two particles. It is therefore very convenient and
more elegant to deseribe polarization transfer by a matrix W analogous to the joint
density matrix [20]. For an initial polarization density matrix o, and a final analyser of

polarization A,, the transition rate is

”.<0(- “I/) == {r ‘»']f’['y"flw

(A2
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or, writing down the indices (upper = lines, lower = columus),

w(?e’ A’f) = E (AI);:, Tl'”((’e)f’ (TT),?:’ =} (éc)ll’ (A/>u'u/ (T)A’“ (T"r)ﬂ.'u’
up’ wp
il vy
where the symbol ~ means transposition in the initial space. The last expression can be

written
Ww(os Ay) = tr (3, Ay W, (A3)

by using the polarization transfer matrix W, whose elements are
Wit = (TY«(T),. (A4)

This matrix represents an observable, rank one, positive, Hermitian operator acting on
the spin space J#, ¥ #;. The final state density matrix 00y 18 obtained by taking the
partial trace in the inital spin space

00r = try(g, ® 1)) W. (AD)

Thus the knowledge of W is equivalent to that of 7' (or T) up to an overall phase.
Indeed given any rank one, positive, Hermitian operator, H, it is easy to find a vector

|z) such that
H = |2) (x]. (A6)

For any well defined ordering of indices in H, let 29 be the first index for which H == 0.
Then a possible vector |x) is defined by components

at = HYVHE. AT)
A A

(Remark that a* = 0 for 4 < 29, since H;* = 0 implies H%, = 0 = H," for any 1'). We
call this procedure a ““conventional amplitude reconstruction”, and denote symbolically

) = CAR (H). (A7)

Since Eq. (A4) is of the type (A6) with some double indicing, a particular solution of
(A4) is the vector (1)

Ty = CAR (W). (A8)

The general solution is obtained by multiplication of this particular one by an arbitrary
phase.

Let us study now the structure of the 7 and W matrices describing two body reactions
in which parity is conserved. For this purpose it is convenient to adopt transversity
quantizations, for which half of the transition amplitudes vanish (we consider the most
frequent case of reactions in which some fermions are present). It is also convenient to
introduce a ‘“‘separation order” for lines and columns of the transition matrix (cf. [13)),
which segregates the vanishing from the non necessarily vanishing amplitudes.

For one particle with spin j and parity #, such an ordering classifies the magnetic quan-
tum numbers u in two sets S, and S,:

. even we s,
forj —u = ’ b (A9)
odd, nENS,.

e Pt e e

R
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Keeping this ordering, the B-symmetry operator (ef. Section 2.2.) for this particle can
be written in block form

ASV‘» AS’O
. 1j+1 2 , 0 Sc . .
B = ye-ini : for j = half odd integer (A 10a)
() I ——1"”2 0
1, 0 .
B = ye-ini | — L) for j = integer. (A10b)
0 | —1;

For a system of two particles with spins j, j* and parities 1, 7" the separation order classi-
fies similarly the couples (x, i') of magnetic quantum numbers in two sets (cf. [13b]):

O\ ! S
for i — o feven, o (u ) €8, A1l
or j M +? M 10dd, (ﬂ) Iu/) € So- ( )

The corresponding B-symmetry operator reads

Se  So
0 \S,
B = pyle-ini+i) [ " ‘ (A12)
0| —1,/8,

where n = 1/2(2j + 1) (2" + 1) was supposed to be integer. For our problem we need
two such operators: B, acting on J#,, the initial spin space of particles 1 and 2, and B,
acting on J;, the final spin space of particles 3, 4.

Parity conservation in the two body reaction implies

BTB =T, (A13)

and imposes to the transition matrix 7', written in this separation order, one of the two
following block structures,

S, S, S, S,
( 7. 0 )Se ( 0 | 7. )Se
T = , fore = +1; T = ——1 , fore = —1
0| 7_7/8, T7-1 0 /8,
(A14)
where
£ = T Tagae U i (A15)

By transposition of initial indices, from 7' we obtain 7', and from 7' we obtain 7', which
can be written for both values of &:

|4+ ¢ A.
C 1S, s,

T (S, S,
- (A 16)

=~

o
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Thus, in this separation order for initial and final indices, the matrix ¥ has the block
form

. Lo -
Sy 0 0 N
L—c . [
0 LY AN iy E 0
W =TTt = (A17)
Il —e o o 1 —¢ o -
0 s DI ST 0
Sy 0 0 Lot

By further reordering, it could be written as a direct sum of two blocks, one of which
necessarily vanishes:

1+ e 1—e . (1T T
W= —mg=We® —5— W, W, = <T_TJ 77t (A18)

2. Number of ghost amplitudes in experiments with unpolarized or polarized spin 1/2 initial
particlel?)

We consider now an initial state composed of particle 1 with spin j,, which will be assu-
med to be unpolarized, and particle 2 with spin j, = 1/2, whose polarization will be
considered. In the main text j; = 0, and 1 is the beam. 2 the target. This section is more
general and can be applied to the case j, = 1/2 (nucleon scattering), or to the case where 1
is a higher spin nucleus target and 2 a polarized beam. We also assume that the dimension
of the final spin space #, is not smaller than 2(2j; + 1), the dimension of the initial one
H g, and that the final density matrix 00y is completely observed.

According to Eq. (A 12) the B-symmetry operator of the initial state, B,, decomposes in
two blocks for a separation order of indices:

ey, B, = 12,41 D (—12j,41). (A19)

The number N, of real ghost amplitudes, for unpolarized initial state, is the number of
parameters of the set of matrices U which transforms 7' into 7T but leaves the obser-
vables unchanged, i.e., TU(TU)t = T'T%. This transformation must preserve the B-sym-
metric structure of 7'; since furthermore we disregard the overall phase of 7', the matrices
U must satisfy the conditions:

Ut =1, B, UB," — 7, det U = 1. (A 20)

Because of the structure of B,, Eq. (A19), these conditions imply that U belongs to the
group S[U(2j; + 1) & U(2j, + 1)]. The number ;- of ghost amplitudes is the dimension
of this group

Ny =22, + 1)? — 1. (A21)
[n the case of an experiment with polarized spin 1,2 initial particle, in addition to
Eq. (A20), 7 must satisfy the new condition

(U, 1sjiin 7 0] = 0, (A 22)

19) This section summarizes published and unpublished work of SnoNtes, of. [9].
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for the density matrix p, of particle 2. Condition (A 20) and condition (A 22) for arbitrary
0 (we assume that the experiment with longitudinal and transverse polarization is per-
formed) are equivalent to

U=U, &1, UUT=1, detU,—1, BUBT=U,. (A23)

Because of the structure of B, Eq. (A10), these conditions imply that U belongs to the
group S[U(j; + 1) &) U(j,)] for j; integer, or to the group S[U(j, -+ 1/2) ® U(j, + 1/2)]
for §; half odd integer. The number N, of real ghost amplitudes in these cases is given by
the dimension of the groups

(r + 1?4+ 7> — 1= 2j,(j, + 1) for integer jj,

Ne=d [ 1y . o (A2q)
2 (91 -+ 5) —1 for half odd integer j,.

Table A1 gives the value of Ny, Np for the low values of §;. It also gives Ny = N, — Np,

the number of additional amplitudes which can be reached by using a polarized spin 1/2

initial particle.

3. The matrices ¢, of polarization transfer from spin 1/2 initial particle

We consider further the case of an initial state composed of an unpolarized spin j; par-
ticle and a spin j, = 1/2 particle whose polarization is described by the density matrix g,.
With the usual expansion for p,

1
02 = 5 (1 + ar, + yr, + 27,), (A 25)

the final density matrix can be written
00y = 00(90 + 2o, + Yoy + 20.), (A26)

where oy and g, are the differential cross section and the final polarization for an unpolari-
zed initial state, and the matrices p;(: = 2, y, 2) add the information on the polarization
transfer.
The polarization domain of g, is the Poincaré sphere 22 + 4% 4 22 < 1; the linear map w
transforms this sphere into an ellipsoid centered at o40,. The principal axes of this ellip-
soid are the new observables which can be measured when the initial state is polarized.
They are not arbitrary but must satisfy some conditions, e.g. when rank g, = 1 (total
polarization) rank g, = 24, 4 1, and hence the density matrix oo, (is on the surface of
the cone C of positive matrices acting on ', (we assume dim #, > 2j, + 1).
For parity conserving two body reactions it is easy to prove that the joint density matrices
0o and g, are B-symmetric, while o, and g, are B-antisymmetric. Indeed the B-symmetry
operator for particle 2 [ef. (A1)],

By, = —iy,ty, (A27)

decomposes the matrix g, of (A24) into

o+ T 02 By, . B," = 0y, (A28)
with

1 :
0oy = (1 + z7.), Dy =% — (vr, + AME (‘\ 29}
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Since the density matrix ¢, = 15,0 2/(2j, + 1) and the transition matrix 7' are B-sym-
metrie, if we call

00r = T(oy © 0y ) T, ' (A30)
we obtain B
Bioos Byt = oo, (A31)
and
00+ = 0o(00 + 20.), 00, = ao(w0, + yo,). (A32)

4. Amplitude reconstruction for reactions with spinless beam and spin 1/2 target
when the final polarization is completely observed

We suppose for the beam spin j; = 0. Then the initial state density matrix is that of the
target, 9, = 0., with dimension, dim .#, = 2. The most general form for the operator W
on A} ) Ay is

W =i 0 X,, (A33)

since 7, = 1, 7, #,, 7, form an orthonormal basis on # .
Substitution in Eq. (A5) of the expansion (A33) of W and (A 25) of o, use of the identity
tr 7,75 = 20,5, and comparison with the definition (A26) of g,, yield X, = g,0,, i.c.,

W = U'Ozafa @ 9us (A34)

which is Eq. (3.9) of the main text. Using the ordinary representation of the Pauli
matrices, this equation reads

90 + 0, , O + Z.’Qy
W = o, , (A34)

Oxr — le 09 — 0,

The separation order is superfluous for the initial spin space, since there are only two
indices: u, = 1/2 € S, and p, = —1/2 € §,. The matrices T . are then identical to the
matrices 7', . If we introduce the separation order for the final spin space, we may iden-
tify the two W expressions (A 32) and (A34") and we obtain the following block expres-
sions for the polarization transfer matrices:

—iC )

AlO A 0 ' C
Qo = |\——|—); ©0.=¢ ) 0= ) 9y =¢
0| B 0| —B Ct i v iCt
(A 35)

with
200 = T.7T.7, 200B = T_T_", 20,0 = T.7T_%. (A 36)

The sign ¢ is the function of parities and spins given in (A 15). Remark that 4, B, C are
rank one matrices, and 4, B are Hermitian and positive. The so called “reaction polari-
zation” is

Pp=tro, = ¢(tr.1 — tr B). (A37)

Let us study the amplitude reconstruction in the cases in which the final joint polari-
zation can be completely measured, i.c., when one observes 7909 In the experiment with
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unpolalimd target, og0, and 640, in the experiment with transversally polarized target,
and ogo, in the experiment with longitudinally polarized target. In this case, with un-
polamzul target, all the transversity amplitudes 7', and 7'_ can be reconstructed up to
the overall phase and one ghost phase, as proved by Simonius (cf. Section 2, and Table A1
for j; = 0). Indeed, by the “conventional amplitude reconstruction” (cf. Section A1),
from the observed matrices 6,4 and ¢,B we can obtain

a) = CAR (2004),  |b) = CAR (20,B), (A38)

which are 7', and 7'_ up to arbitrary phases. The Simonius ghost phase @, is the relative
phase between 7', and 7'_. 1t can only be obtained from C, which is observable in experi-
ments with either transverse or longitudinal target polarization. From Egs. (A36) and
(A 38), we see that the observed matrix ¢,C must satisfy

saoC = |a) (b] ei?, (A39)

and that the amplitude vectors |a) and e-#|b) can only differ from 7', and 7'_ by an
overall phase, which we disregard.

The number of amplitudes is given by the dimension of 7', . The number of observables
and of their linear and non linear constraints in experiments with different target polari-
zations are easily obtained from the dimension, Hermiticity and rank properties of the
matrices 4, B, C. The dimension of the one column matrices 7', and the square matrices

A, B, Cis

= (21 + 1) (G + 1/2), (A40)

where I and j are the integer and half odd integer final spins. We recall that a n X n Her-
mitian matrix depends on %2 real parameters. If the matrix has rank k, these parameters
satisfy (n — k)2 constraints of degree k + 1. The results are summarized in Table A 2.
For | = 0 equivalent numbers are presented in Table 1. For [ = 0 and j = 3/2, the
explicit amplitude reconstruction is presented in Section 4.2. of the main text and in
Tables 5—6.

Table A1

Number of ghost amplitudes in reactions with an unpolarized spin j particle and an (unpolarized or
polarized) spin 1/2 particle as initial state

7 0 1/2 1 3/2 2 integer half odd integer
Ny 1 7 17 31 49 8j(j + 1) + 1 1/2) — 1
Np 0 1 4 7 12 24(j + 1) ] - 1/2) ]
Ny 1 6 13 24 37 6j(7 + 1) -+ 1 6(j + 1/2)?

The tabulated numbers of real amplitudes are:

N,- = ghost amplitudes for unpolarized initial state
Np = ghost amplitudes for polarized spin 1/2 initial particle
Np = Np- — Np == amplitudes reached by initial polarization.

Note that identity of particles, internal symmetry (isospin charge conjugation) and, for elastic reac-
tions, time reversal may decrease N
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Table A2

Number of amplitudes, independent observables, and observable constraints in reactions of type
01/2 —1j (I = integer, j = half odd integer) for different initial polarizations and complete measure-
ment of the final polarization

1 3 2 0 1 1 2 1 1
2 7 6 2 1 7 8 1 7
3 11 10 8 1 17 18 1 17
4 15 14 18 1 31 32 1 31
5 19 18 32 1 49 50 1 49
) n —1 4n—2 2n — 1) 1 2n% — 1 2n? 1 2n% — 1

Terminology:

A = number of real amplitudes (up to the overall phase)

U7 = number of observables for unpolarized target (o1 beam)

T = number of new observables reached with transversally polarized target (or beam)
L = idem with longitudinally polarized target (or beam)

The subindices classify these observables into

I = independent observables
N = non linear observable constraints
L = linear observable constraints

(Linear constraints coming from B-symmetry have not been counted, otherwise the total number of
observables is multiplied by 2).
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