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Chapitre §

LA GEOMETRIE DU DOMAINE DE POLARISATION f

Positivity,

Convexity,

Symmetry plane of a convex domain,

The one particle polarization state with B-symmetry
and/or even polarization.

L0 B s

1. Positivity,

In this appendix we consider the Hermitian operators on the Hilbert space
.'}Cn of dimension n . They form a n2 dimensional vector space 8 9 on which we
can put the Euclidian scalar product (as we did in equat‘on 1(4)),
So 8 9 is an Euclidian space; the distance between the two points pl and p2 is
" 12
Py -0y = 0y -Py- Py -0y

A Hermitian matrix can be written

R = L X, P, (2)
1 1 1
where )’i are its eigenvalues (real numbers) and Pi are Hermitian projectors,
i.e.,
*
P =P = p? (3)
i i i

the multiplicity of the J\i eigenvalue is given by

tr Pi = rank Pi (4)

f Ce chapitre est le texte, avec quelques corrections, de l'appendice I. A6

de notre preprint "Polarization density matrices", First issue,
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Definition, A Hermitian matrix is positive (or semi-positive) if all its eigen-
values Ai are >0 {or > 0),

Outside this appendix we generally use the word positive for semi-positive
In this more technical appendix we shall distinguish the two notions., We shall

note R>0, R>0 for R positive, R semi-positive,

Theorem 1. R>0 (or R>0) ¢ any |x>€.1cn , <x|Rx >>0 (or 20).
Let R = £ ). P.
171714

then <x|Rx > = Ei )Li <x}Pix > = Ei )‘i < x]PiPix > = Ei }\i < Pileix >

since <P.x]P.x>= ﬂP.xu‘?;O sy A= 0 = <xIRx> 20
it i i
(Note |x># 0 = some Pi]x>f 0 since ZiPi =1 , so Ai>0 = <x|Rx> > 0),

Conversely if for all |x > e'}.{’n , <x|Rx > >0 (or > 0) this is true for
the eigenvectors of R ; e.g. if P, [x >=|1>, then <i|Ri>= A > 0 (orx0),

hence all eigenvalues are >0 (or > 0)

Theorem 2, If o(i >0, Ri >0, then Eg(iRi >0 . Indeed for every

w =
x>ew o, < x!Rix > >0 so L, <x|Rx> = < x[Eio(iRix > >0,

Definition, A cone 2‘5 in a vector space with vertex at the origin is a set of
points such that a€% and \ >0 implies \a € £,

As a corollary of theorem 2 we see that the pogitive matrices on 'K form
a cone ‘(‘; in o » Which is an open set of ?; . The boundary of the cone,
3 G » is the set of semi-positive matrices whlch are not positive ; those matri-
ces then have some eigenvalues zero, The rank of a matrix p is the dimension
of its image space pﬁc . Positive matrices have rank n ; matrices of 66 have

rank < n, Let us call b G (k <n) the set of semi- -positive matrices of rank k

U ae

O<k<n
As we saw in I, in some experiments an upper limit r of the rank of the polari-

zation matrix is known. So it belongs to ‘ } o 6 . We denote
k ~n
O<k<r
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"@n = ﬁnu bGn the closure of En . It is the set of P > 0 , Note that if p1 >0

and p2 =0, . Py By is not necessary > 0, However :

Theorem 3, If P, 2 0 and P, > 0, then trP1 92 > 0. Indeed p , can be written

= 2} )\i Pi = Ei Ail i><i| where the [i> € :ycn form an orthonormal basis of
eigenvectors of p1 and Ai > 0. Then

trpm, = L <ilp,|i>

which is > 0 by theorem 1. More specifically, if Py >0, P, = 0, theorem 1
shows that (p 3 ,pz) > 0. Indeed

trplpz = Eixitrpzri with Ei Pi =1, Ai>0.

Since
Zi trp2 Pi = trpz = 1, at least one of the terms ’zr;:\zl"‘i = <1IP2$1>' is >0

80 trplp2>0.

Hence as a corollary, if two polarization states are orthogonal, they are

both in agn .

Consider now equations (6) to (8) of part I, where ﬁN is the nz-l dimen-
sional subspace of ‘f, defined by the condition trp= 1, It is an Euclidian sub-
space of ’6 and the polarization domain 4‘2) » i.e,, the set of densxty matnces
paz0, trp = 1 is .

g =€Ng,. (6)
The density matrix of the unpolarized state is

1
Po = 31 (7

Since the vector P, in E 2 is orthogonal to the subspace ﬁ of the Euclidian

spacezz, with
p = / p'+P (8)

we deduce
S R |
(np) — trp! +=
BO
1 _
12p.p)2 o = (e .p) (9)
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Relation (9) satisfied by spin density matrices has been used in the physics
literature. It is much weaker than tro=1, 2>06., We saw in Fig. 1 pagel. 2-3,
that @n is inside the sphereéfNal . intersection of ?f,N (trPp = 1) and of the unit
sphere JN((P,P) = 1) of gnz = gN+1 . Furthermore, the domain

@nﬂ E)ON - algbn (10)

is the set of density matrices of pure states, i.e., rank one projector

P = P.2 tr P, = ’ch.2 =1,
i i i i

In part I and in all applications, we will multiply the length in the N dimen-

sional Euclidian space ‘gN by the factor /;;—?—i so that the sphere cf -1 of

center po has radius one in the new scale,

2. Convexity,

Definition of convexity. A domain D of a real vector space 8 is convex if all

vectors da + 8b with 0 <« L 0, «+ B = 1 are elements of D when aéeD,
b€D ., We can also say that all points between a and b on the straight line

joining a and b belong to the domain when a and b do,

Example of a convex domain : the linear manifoids of gn that we also call
k-planes when their dimension is k sn.,
It is easy to check that

a) The intersection of convex domains is a convex domain,

b) The linear transformed of a convex domain is a convex domain,

c) A convex domain is connex,

Theorem 2 shows that the cone G of positive {also the cone E of semi-
positive) matrices in Kn is convex,

From property a) and equation (6) the polarization domain @n is convex,
Since ocbn is in the Fuclidian spaces ;gNC }g o » W& want to make some geome-
trical remarks on convex domains of Euclidian space ’153 and their orthogonai
projection on a subspace §©, st P be this orthogonal projection; it is the
identity on # and Pz =P, Let Dbea domain of é’ , the domain { = P P

is called the projection of £ on ® _ From remark b), <0 convex » PD convex,
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OVX
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F1G.1

Fig.1l. - Point x of a Euclidian vector space, with its projection Px on the
subspace ? , and its symmetric Kx through 5b . Remark that
Kx = 2Px - x.
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of course C = r@n @ - r We can always consider an Euclidian space ”&’ as a
vector space, after we have chosen a point 0 of ‘é to be the origin of the vector
space, so if a,b€§ , a+b is defined. An involution K of ﬁ is an Euclidian
transformation (i.e.,it preserves the distance) whose square is the identity I
in i i.e., Kz = I, It can be shown that the fixed points of K form an Euclidian
subspace =% and K is the symmetry through  i.e.,if P is the projection
on P and x€§ one sees (see Fig.1)
Kx X -2(x~Px) = -x+ 2Px (11)

i,e. K -1+ 2P (11")

(Note that ¥ may be reduced to a point ! ). From now on we denote by K@ the

it

symmetry through P .

Definition., If K®$ = , then P is called a symmetry p-plane for %) s
where p = dim .

Theorem 4. If P is a syrametry plane of the convex domain & , then

C =[ where C ==3Dn@ and [ = Pp@ .

Let a€[", there exists b€& such that Pb = a, Since P is a symmetry
plane K@bé@ and from the convexity %(b + K _b)e® and from (11)

®
-21-(b+Kb) =Pb=a so a€C, hence ['=( and since Cc [, therefore C=[".

Of course, this was geometrically obvious,

The diagonal matrices of @n .

Let us remark that there are p-planes ¥ such that gbn P = PQ?’@ which
are not symmetry planes of $0 . Such an example is obtained by the domain An
of the semi-positive diagonal matrix of trace 1. So Anc: gbn the domain of densi
ty matrices. Let ¥ be the n-plane of ‘é 2 containing all diagonal Hermitian
matrices on Kn . By definition An = J?]gﬂ‘n . We now remark that if p > 0, each
diagonal matrix element pii is positive. Indeed let |i> the vector of coordinates
£°( = 6?( K = 1to n) then <ilpli>= Py > 0 by theorem 2. Hence Ppﬂ@n = AJ

If n=1 or n=2, the n-plane of diagonal matrices is a symmetry plane

of @n . This is not true for n > 0 as it is shown by the two Hermitian matrices



A, A with tra=trX =1, X =K X (i.e.,the non diagonal elements are changed
of sign). - ~ s 2
1 1 1 -1 -1
1 ]
= = = - - 0
A 5 2 1 0 by K@)\ 1 2 1
1 2 -1 -1 2
0 0 0 0
- e -

.
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the eigenvalues of A are -;—, %(2+\f2.), -é(Z-\['Z), and n-3 times zeros, those of

A' are 3 -;-(1+\{'§), %(I-V'i), and n-3 times zeros and 1-y2 <0 =)' is not

5" 5
semi-~positive.
Note that the convex domain An is the regular polyhedra in Rnc: E 5
I

0<),, T A = 1. Itisin & (trp = 1). It is the regular n-hedron (for n=3
n=4

equilateral triangle,
Its n vertices are the n diagonal rank one projectors Pi (one )u:l =1,

are zero), The straight line Pip0 cut the n-hedron in Q‘ at the center of the fac:

. 1
: tetrahedron, etc...) whose centeris o = T 4.

all other

opposite to the vertex P1 and it is perpendicular to it.

(Note that (Q))45 = ?I%‘i"“om’ 5

)
i 0ig -
The square of the distance p P, in ﬁN is tr( % - Pi)2 = —r-l-;-]-l- , in 'f,'N is 1.
1

1
3 ¢ § Gy m—
’ m‘gN is =5

. 3 -4 2 -
The square of the distance poQi in ﬁN is tr(po - Qi) o
Finally, the scalar product in ‘f,'N of two distinct pure states is
. n ~ 1 . .
(ifi) == tr (P, - po)(Pj -p) = -7 as equation I (8) shows sm(:fe

PP =0= (P,P)=20.
i™j i’7]

3, Symmetry planes of 2 convex domain.

Involutions in ﬁ . We will now study some physically interesting examples of

involution in ﬁ 9°
n

Let U(n) be the unitary group of nxn matrices on }Cn . It acts on "2, 5 &
n

p~supu® = upu&1 (12)
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Since such a unitary transformation respects the scalar product on 9
n

- - -1 -1 _ -1 -1
(p,,p,) = trpp, = trupu up,u (up, u ~, up,u ) (13)

it is an isometry of f,, 5 - Furthermore it preserves the eigenvalues of 0
n

so U(n) transforms @n in itself, If u2 = 1, the transformation (12) is an invo-

lution on ‘% 9 Let us give examples of such involution :
n

The B-symmetry. For the B-symmetry, that we shall denote KB

w =095y or u=e D(Jk'nk)(s ) (14)
n Kk n
‘where Sn is the symmetry in space-time through the reaction plane (three-plane
of Pa+ Py Be» the energy momentum of the beam particle A, of the target
particle B and of the observed particle C), n is the unit (space-like) vector
normal to this three-plane. Since S:' = 1, u2 = (-1)2"i (see equation A1 (25)
or Al (26)) then P—we,uzp u‘z = p': the B-symmetry does induce an involution

on f, 9 - The fixed points of this involution form the p-plane # of B-symmetric
n

matrices, with
2

1 . .
P —é-n if n is even
1, 2 (15)
p=—2-(n + 1) if n is odd
So
C@ = (Isnﬁbn = f(;b (16)

is the set of B-symmetric density matrices.

Indeed, (as we shall see in part IV) in an experiment with polarized target
if we observe only the B-symmetric part of the polarization matrix, it is a posi-
tive matrix which is that which would have been observed if the target had not

been polarized.

The set of alignment matrices. As we have seen inl.4, if KH(E) is the 2j+1 di~

mensional Hilbert space of polarization states of a particle of spin j and energy
momentum p, the little group iap of the "rotations" and space-like symmetries
of the Lorentz group ia which leave p invariant, acts on Kn(g) through the 2j+1

dimensional irrep of the orthogonal O(3) group (three-dimensional rotation and
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symmetry group)D(J’ Tl). Therefore this group acts on ‘f, 9 by the representatio
n

D(J’ m@ D(J’ m ~ D(J’ T])® D(J’ g ~ 023 D(L’+”. This induces the decomposi-

L=0
tion of Z o 1into the direct sum of space
n
- g2l (L)
énz " %-0 2 (17)
- @l (L) '
by =o, & (17)
and the corresponding decomposition of pe¢ € 2
n
- 2j (L)
o= p + ZL-'I p (18).

A density matrix 0 is an alignment matrix if all its components p( ) = Q
for L. odd; we also say p has only even-multipoles, The generalization to

r . . .
1w = ¥
"n ﬁ=1 ® ij+1(pk) ,» the Hilbert space of polarization states of r particles

with spin jk’ energy momentum Py s is straightforward. (See I(11') for two
particles), The irrep of O(3) on :Kn is ﬁ D(Jk’nk) and p can be expanded in

r- uple multipoles

2Jk (Lkl'LkZ’ ...,Lkr)

p=I3 -0 P (1._9)
ki
(Lkl 9 see g Lkr)
p is an alignment matrix if p = 0 when Ei Lki is odd. Note that
the polarization matrix of the i-particle is
2j.

- ) (0,0,..:,1—1 ,...‘0)

P, z;Lk=0 p k (20)

so that the alignment matrix of p1 is just that obtained from the single-particle

polarization matrix,

We can define the involution K_ on E
a n?

Kp =123 b, (21)

Q L=0
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when o is given by (18) and
2], ZLp, (Lygg,eeesly )
i i ™ 1 n
Kp = oo (=1 p (22)
S TR

when p is given by (19).

Note that the fixed points of Ka'form the p-plane (0 of aligned matrices,

and K_ does not change the length of the matrices (K_P, K p)=(p,pP).
a & gt a

We want to show that Ka'leaves @n invariant, so (L is a symmetry plane

of Qn .
Consider the involution qu which transposes the matrices of ‘gnz :
Kp=o (23)
%
Its fixed points form the subspace of the symmetrical matrices of g 5 K”G does
not change the eigenvalues of the matrices so it transforms @n in itself,

Let us call K, the involution induced (as in 12) by

- n‘j'"’(sn(z)) -apd, A1.(53)

where
0. S j=A <-A

T AN CE VR R A1.(50)

indeed u? = (j“j)2 = (—1)23’3.
We remark that

KK = K,K._,, (24)

€t & %
indeed
cleh™H T - ploTph!
because

(rHT = A . A1.(51)

Furthermore the product of two commuting involutions is an involution.
This is the case of K_K, = K,K_ . We have shown in A2, that
T4 I

Ka = KtKJ (25)

Indeed equation A 2.(57) is

L _ piplTopiy-1 L_L
I@’%TM [Pry) (D7 = )7y
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Since both KC?,A and K, transform gbn irto itself, this is also the case of K .
[

X

To summarize, the subspace of alignment matrices is a symmetry plane

ofc@ and CCL FCL/

Theorem 5. Let YV and U} be two gymmetry planes (which might be of dlffereni

dimension} of the convex domain '@n

P P = P_P 26
v T R o e
then Y is a symmetry plane of C 'l/'h D = 1;) D = FV' . (By syntactic
symmetry UVis a symmetry plane of 'U)r",,@ ).
From (11!), K_ = -I+ 2P  we obtain that P form a set of
11, Ko % w S S

commuting operators, Let a€Y= ?/"% So there emsts x guch that a = P{) X

Ka=EKTPx = P
T A T A

Hence U/ is a symmetry plane of ¥: it is also a symmetry plane ofa&

hence it is a symmetry plane of their intersection 'I/ﬁ@ .

Corollarz. Of course, instead of (26) we could have used

K K_ = KK (261)
vw o ww
; - = 1
in the theorem, since I;a =3 (I + K@).
We note that K_ and commute, Indeed for one particle states, if we
shorten D(J’ n)(S ) inte I)J we have
- T - 1
K Kop = (PIdpody 1 pd) )T < Fiplapd)-Fi)t < piplp Ty 1pi-

since p and KOLKQP are Hermltlan matrices and [“J [‘], (A1.50); usmg
equations (A 1.49) . [‘D[" , and (A1.51) : FJ" - (-I)ZJFJ - (["J

can transform this equation into

= pipd=1 T j i-1 =1 T 5 nj Taj-1
K K,p = DI o I =k (9 -k (T ik ko
a @ ® " [ & o
For r particle states
j (3, m3)
D= @D (S_)
i n
i Ji
and [** is to be replaced by ®.[‘
1

and the proof still holds.
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So theocrem 5 tells us that ﬂb"\@n the domain of B-symmetric density
matrices has (I, the domain of aligned matrices as symmetry plane and alsc

is a symmetry plane of an@j .
I
From now on we will prefer the expression even pclarization to alignment.

One particle-state, B-symmetry, even polarization and pure states.

As we have seen in A 3, for one particle, B-symmetry imposes to o the

conditions
!
in transversity quantization pmA .= (-—)m mpth L (27)
m m
. . . . 1
in helicity quantization o = [pl . (28)

For a pure state p = x> <x . Let § be the components of x .

In transversity, B-symmetry is equivalent to

either EJ“I = 53—3 = 53‘5 = ,.. = 0, (29)

. - -
or o= g et - =0, (29')

it
i

In helicity, B-symmetry is equivalent to r|x> = x‘x> with ;\2 = (_)23 gince
FZ (-)231 so, explicitly
NET e R (50

As we have just seen, to say that the polarization matrix 0 has only even

polarization is equivalent to the condition, for any quantization axis

T -1 -
p- =[pe["" =p. (31)
It impiies for pure states

(x>

iIf we multiply by F both members we obtain

(x> = ArE>,

i

it

Ax >

- 21
so A X = (-) 3. Hence
Theorem 6 : For half integer spin, there are no aligned pure states, i, e,, pure

states with even polarization only.



I. A6 - 13

4. The one particle polarization stiate with B-symmeliry

and/or even pelarization.

We had noticed in A 3 that the one-particle polarization matrix can be
considered as a checker board with
- black squares if (m-m') is even (this includes the diagonal)
- white squares if (m-m'} is odd.

Then, in any quantization axis

i) the black square matrix is symmetrical

i 1
Even polarization through the second diagona

. . =
any quantization ii) the white square matrix is antisymmetrical
through the second diagonal.
We saw in A, 3
B-syminetric .
. . . &= white squares have zero.
Transversity quantization
(i) the black square matrix is symmetrical
B-symmetric — i through the center

Helicd uwantization . o . .
v ii} the white square matrix is antisymmetrical

through the center.

By combining the two sets of conditions we find for one particle,

B-symmetric, even polarization density matrix p

white squares are zero,
Transversity quantization The black square matrix is symmetrical
through the second diagonal.

The matrix is real = hermitian and symme-
trical through the first diagonal.,
Helicity quantization The black square matrix is symmetrical .
‘ through the center and the second diagonal,
The white square matrix is antisymmetrical
through the center and the second diagonal.

When j is half-integer, let us shuffle the indices of both lines and

columns (by a unitary transformation on ¥ .+1) and write them in the order

2]
j: j‘zn j‘4:“°: 3"j: ]-"ja "j» “3.4'21 “ ey j"l



1. Ag - 14

for example

.3 3 1 3 1
for'3~~2-, order 2,-§,~§, 5

.5 s 1 3 5 1 3

I 2 3+ 2+ T3 TZ Ta302

Then p , in transversity quantization is the direct sum of twice the same

hermitian positive matrices (j* %) by {j+ é—).

When j is integer, with the order of indices
jn j~2,..., 2-j, J 5 j“‘l: j“’3: e v e 3 1‘j
p is again a direct sum of two hermitian positive matrices of size (j+1)x (j+1)

and (jxj) which both are symmetrical through the second diagonal,
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Deuxiéme Partie

APPLICATIONS A LA POLARISATION

D'UNE SEULE PARTICULE DE SPIN DETERMINE

0.- Introduction.

Dans cette deuxiéme partie nous appliquons notre étude géométrique des
domaines de polarisation aux cas les plus simples : étude de la polarisation
d'une seule particule de spin 1, 3/2 ou 2 produite dans une réaction 3 quasi
deux corps, conservant la parité, a partir de cible et faisceau non polarisés
(réactions B-symétriques). Nous nous intéressons plus particuliérement au
domaine des parameétres mesurables par distribution angulaire. En général
c'est le domaine des parametres de polarisation paire, Cependant, pour lcs
résonances de spin 3/2 qui se désintégrent en cascade, la polarisation impaire

étant également mesurable, nous 1'étudions dans un chapitre spécial,

Les cinq chapitres suivants sont écrits en anglais. Leur rédaction a été
congue de maniére que 1'expérimentateur intéressé par la polarisation d'une
particule de spin déterminé puisse lire directement le chapitre qui le concerne,
I1y trouvera la maniére de mesurer les parametres de polarisation, la rela-
tion entre les différentes parameétrisations possibles, la géométrie du domaine
de polarisation et les régions de ces domaines prédits par certains modeles
dynamiques courants,

Le chapitre I concerne le spin 1/2, Il a été introduit ici pour des raisons
pédagogiques, afin de montrer que les parameétres multipolaires et les domaines
de polarisation ne sont que des généralisations duvecteur de polarisation de
Stokes et de la sphere de Poincaré.

La table 0.1 donne une vue globale du nombre de parameétres de polarisa-

tion de divers types. Les nombres encadrés donnent la dimension des domaine.
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de polarisation étudiés dans les cing chapitres suivants,

Dans ces chapitres d'application nous décrivons les différents domaines
de polarisation sans montrer comment on les calcule explicitement, Le calcul
explicite de ces domaines est rédigé en frangais dans 1'appendice A2 placé a
la fin de cette deuxiéme partie, Avant cet appendice nous avons également
inclus un appendice, noté II A1, rédigé en anglais, dans lequel nous étudions
la relation entre la matrice densité et le vecteur de polarisation qui décrit

un état pur d'une particule de spin 1.,
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1 :
1. Polarization of spin 5 particle.

1 .
1.1. Measurement of the polarization of spin 3 particle.

i 1 articies uch & B d akly int ne
Some spin 5 particies (suchas A, § - .5 ) decay weakly into o

spinless and one spin %— particies. as indicated in Table 1.1 (a). Angular momen:
tum conservation allows two amplitudes : the parity violating and the parity con-
serving ones. They define the first asymmetry parameter « in Table 1 1 (c). Thi
angular distribution depends on this asymmetry parameter, and is given by the
expression in Table 1.1 (bl)h P is the Stokes polarization three-vector, and g
is a unit three-vector whose polar and azimuthal angles 6 and ¢ fix the direc-
tion of the spinless decay product, in any frame in which the decaying particle is
at rest. This angular distribution is equivalently given in Table 1.1 (b2) as func-
tion of the multipole parameters tli/ll) and the usual spherical harmonics YIS/II) .
The inverse expressions, which supply a method of independent measurement

for each component of the Stokes vector, or equivalently for each multipole para-
meter, are given also in Table 1.1 (dl) and (dz)n The angular brackets ¢...>
indicate experimental mean values of the enclosed expression for the ensemble
of events. N_ = is the number of events with cos ® £ 0 and analogously for
the other axes. Note that the orthonormalization of the multipole parameters

r(L) has been performed in such a way, that for spin -;— they are identical to

M
the components of the Stokes vector.

In the case of B-symmetry for the production process (i.e., produc-
tion in a parity conserving reaction with unpolarized target and beam, cf. I. A. 3),
the Stokes vector has to be criented along the normal to the production plane,
that is along the axis z in the case of transversity or along the axis y in the
case of helicity quantization, as indicated in Table 1.1. (el) and 1.1 (fl)'
Likewise, the multipole parameters r (1) with M either odd or positive must

M
be zero, as indicated in Table 1,1 (e2} and (fz)ﬁ
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TABLE 1.1. - Measurement of the polarisation of spin 5 particle

(a) Decay é = % + 0 (weak interaction)
Angular distribution
1 o
(b,) 1(6,9) = 7= [1+aP.e(0,9)]
+1
1 a (1) (1)
(b,) Ie,9) = H+-= 5 )L oy
2 ! 47 ,\/47[ M=-1 M M

(¢) Asymmetry parameter
2 re 4(0) x(1)
‘IA(O)lz ) lA(l)lz

’

o =

(dl) Polarization three-vector

3 2 N+z 3 N-z
Pz = <cos . 6> = I N TN
+z -z
2 N+x - N-x
Px = % <&in 6 cos 9> = o N TN
» +x -Xx
2 N+X 3 N—x
Py = 5 fb;n O sin ¢> = o N TN
+y =y
(d2) Multipole parameters
1 N 1
t(M) = 2 <Y(M)(e,q,)> M= -1,0,+1
(1) (1) _
r = Jﬁ t 0 = Pz

r(l) = ~v€ Re t(i) = P

X

rfi) = —vE‘Iﬁ t(i) = Py

Condition of B-symmetry in the pProduction process

For transversity quantization

(el) TP = TP = 0 (e2) Tr(;) = Trfi) = 0

(1,) Bp o oH, _ | (1,) Hr(é) _ Hr(;) _ 0
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1.2 Relation between different polarization parameters of spin 5 particle.

The density matrix of spin - particle is conveniently written ss func-

2
tion of the Stokes vector and the Pauli matrices GX | o‘y . G, ., see Table 1.2
(al)’ The very elements of the density matrix given in Table 1.2 (az) could be

used as polarization parameters. But every physicist will prefer to measure the
components of the Stokes vector, which are identical to the multipole parameters
(1)

Iy They are related to the density matrix elements by equations in Table 1.2

and (bz)n

For each particle, several pairs of reference frames for transversity
and helicity quantization can be intrinsically defined. Each pair of frames is fixed
by the normal to the production three-plane and some space or time like direction
(like the four-momentum transfer, which is associated with the s,t or u channel
of a two-body reaction, cf. I.A.1). Associated transversity and helicity frames
are simply related in the standard conventions by a rotation of g radians around
the x - axis. And two different pairs of transversity-helicity frames, say a and
b , are related through a rotation around the normal by an angle Vba (which
usually will be a complicated function of the kinematical invariants s, t, u of
a two-body reaction, cf. 1. A.1). To these two kinds of frame rotations corres-
pond analogous rotations of the Stokes vector in polarization space. They are

explicitly given in Table 1.2 (c¢,) and (dl) and in Table 1,2 (cz) and (d2) for

1
the terminology of multipole parameters.

As has been mentioned, in the case of B-symmetric production the
components of the Stokes vector along the production plane, and their corres-
ponding multipole parameters, have to be zero. They are the parameters written
in the last columns of Table 1 2 (cl) and (cz) and in the last line or column of
Tablie 1.2 (bz). Note that in this case, for transversity quantization, the matrix
element (71_1 is zero. and the density matrix in Table 1.2 (a) has a "checker-
board pattern" ; while, for heiicity quantization, the real part of Pl-l and the

difference \31] - Ql | arezero, and the density matrix without the trace is

pure imaginary.
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‘TABLE 1.2. - Relation between different polarization parameters of spin 5 particle

Density matrix for spin - particle

5
1 - -
(al) P = é[l"'P.d]
P P
11 1-1 -
(a,) Po= | Poaer = 1 - Py
Pi-1 Po1-1

Relation between the density matrix in (a ) or (a ) and the pola-
rization parameters in Table 1.1. "

(b,) P = tr[p.d] (BP)

(b,)

- —— - . -~ - oo oo " > - o_ - S . S S P St o o o

Relation between the polarization parameters for transversity
and helicity quantizations (B)
B

HP = TP HP —TP
x x z Yy

Hr(l) _ Tr(l) Hr(l) _ _Tr(l)
1 1 0 -1

H T
(cl) Py = P,

-

O |

- — = o e

Relation between the polarization parameters for two different
transversity quantizations (rotation on the normal of angle ¢ba)

T

T .
(dl) . . be = cos ¢ba an + sin ¢ba aPy
P = P
b =z a z T . T T
be = -sin ¢ba an + cos ¢ba aPy
T (1) T (1) . T (1)
(dz) T (1) _ T (1) pT 1 = cos ¢ba WX 1 *+ sin ¢ba af-1
v ) ) (1)
T (1 . T (1 T (1
pF-1 = ~sin d)‘ma a¥ 1 T cos ¢ba a’-1

(BP) For B—symmetry'TP is along z, and Hp along y.

(BH) For B-symmetry and helicity quantization, the r parameters in this co-
lumn are zero.

(BT) For B-symmetry and transversity quantization, the r parameters in this
line are zero.

(B) For B-symmetry all the parameters in these two columns are zero.
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1.3. Polarization domain of spin —;‘ particie.

As is well known. the domain for the Stokes vector is & unitary sphere,
the Poincaré sphere. It is a requirement of the positivity of the density mairix,
i.e., a requirement of the fact that the probabilities of the pure states present
in the statistical mixture have to be positive.

This "polarization domain" can be studied intrinsically, i.e., inde-
pendently of any parametrization. It will always be & sphere of radius one, for
the conveniently normalised intrinsic metric of the matrix space. (See Fig.1.1(a))
The unpolarized state is represented by its center, O, and the pure state by its
surface. So that the distance to this "isotropy center", O, gives directly the
polarization degree. Orthogonal pure states (with magnetic quantum numbers '—*%
for some frame of quantization) are represented by the extremes of a diameter.
Any intermediate point of this diameter represents a mixture of these two pure
states. If the corresponding probabilities are materialized as weights at the
extremes of the diameter, the intermediate point is their barycenter. This des-
cription of a state as mixture of orthogonal pure states is unique for any repre-
sentative point inside the sphere, exéep’c the isotropy center,

A concrete frame of quantization will allow to fix a basis for the
polarization parameters, and to write down the inequalities defining this polari-
zation domain. Table 1.3 (a gives the inequalities and Fig. 1.1 (a) indicates

1 . . i
the axes of the multipole parameters r;,[) for any pair of associated transver sity

s . ,
and helicity parametrizations. They are related by a rotation of ) radians aroun:

OP1 . The points P3 and P2 represent, for instance, the pure states with ma-

gnetic quantum number + 3 for transversity and helicity quantizations.
In the case of B-symmetry,in which the polarization is necessarily
along the normal, the three-dimensionai polarization domain is reduced to a one-

dimensional one, as explicitly shown in Fig 1.1 (b) and in Table 1.3 (b).

In the next chapters we will study simple generalizations of this one-

dimensional domain for the case of higher spin. The use of the orthonormalized

multipole parameters will be necessary for this study They were superfluous for

the case of spin %« (Tables 1.1 to 1.3 would only gain in clarity by crossing out
all the expressions labelied by & letter with subindex 2), but they will supply &

natural generalization of the Stokes vector for the case of higher spin.



TABLE 1.3. - Positivity conditions for the polarization

parameters of spin % particle

For the general case
i

(a,) N R

(a) 2. g2, (12 oy

For the case of B-symmetry

T H
(bl) -1<'P = Pysl

(by) N S P
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2. Polarization of spin 1 particle,

2.1, Measurement of the even polarization of spin ! particle.

The most common decay of spin 1 particle is the two-body decay intc
spinless particles, as indicated in Table 2.1(a). Angular momentum conservation
allows one decay amplitude. corresponding to the p-wave. The decay angular dis-
tribution depends only on the even multipole parameters tﬁ) or réVI)’ and has the
form given in Table 2. 1(c) or (d) (cf.1. A.4). The inverse expressions, which supp.
a method of independent measurement for each multipole parameter, are given als
in Table 2. 1(e) and (f). The angular brackets «...> indicate experimental mean
values of the enclosed expression for the ensemble of events. Y§V2I) are the usual
spherical harmonics. Their arguments 6, ¢ are the polar and azimuthal angles,
fixing for each event the direction of any of the decay products, in any frame in
which the spin 1 particle is at rest.

In the case of B-symmetry for the production process of the spin 1
particle (i. e., production in a parity conserving reaction with unpolarized target
and beam, cf.I. A. 3), two of these five even polarization parameters have to be
zero (see Table 0.1(b)). For transversity quantization (i. e., quantization along
the normal to the production plane) the two multipole parameters with M odd
must be zero, while for helicity quantization (i.e., quantization along any direction
inside the production plane) the two r{vz[) multipole parameters with M negative
must be zero, as indicated in Table 2. 1(g) and (h).

Another well known decay mode of spin 1 particle is the three-body
decay of the W particle into pions, like the type indicated in Table 2. 1(b): In gene-
ral, the description of the angular distribution of a three-body decay is rather
intricate (cf.I. A.4). But in this particular case (due to angular momentum and
parity conservation, and the concrete values of the intrinsic parity of these four
particles), it turns out that only the angular distribution of the normal to the decay
three-plane is significant, and is given by exactly the same formulae of Table 2. I(s
and (d). So the whole Table 2.1 is also valid for this case of the y decay. The pola
and azimuthal angles 8 and ¢ will now fix for each event the direction of the norma
to the decay plane in any frame in which the @ particle is at rest (the orientation oi
the normal in this case is irrelevant).

We recall that in these decays of vector particle, the three odd polari-
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zation parameters, réﬁl) or tﬁ) , cannot be measured since they do not appear
in the expression of the angular distribution, (see Table 2.1 (c) and (d)). in the
case of B-symmetric production two of these parameters must be zero (see
Table 0 1 (b)), but the third one, Trf)l) or Hr(_ll)) is not necessarily zero and
cannot be measured. It has to be practically considered as a "ghost parameter".
Only rare decay modes, like 90 into p+ pu~ , or accurate correlation measu-
rements in some double resonance production at a fixed scattering angle, could
supply information about this odd polarization of particles with spin-parity A
In the case of particles 1+ decaying into three pseudoscalars, the analysis of
angular and energy distributions allows also a measurement of the absolute

value of this odd polarization (cf. A. 2"



TABLE 2.1. - Measurement of the even polarization of epin 1 particle

Decays
(a) 1 - 0 + 0
(b) 17 - 07+ 0"+ 0" (strong interaction)

Angular distribution
+2 ‘
(2) y(2)
T 7€2) ¢ (e,9)
Mem? M M !

g

(c) | I(e,9) = an -

K

(a) I(e;¢)‘ =" e [1 - r(g) (3 cos20 - 1) -
-*vﬁ ein26 (r(g) cos 29 + rfz) sin 2¢)

- A3 sin 26 (r(i) cos ¢ + r(f) sin ¢)]

Multipole parameters

(e) | t(i) - - B <'Y(ﬁ)(e,¢) > M= -2,-1,..42
() NET e

r(ﬁ) = (-1) 5 Re t(i) M=1,2

(&) o ()M F (2

Condition of B-symmetry in the production process

(g) For transversity quantization

Tr(i) = TrSi) = 0

(h) For helicity quantization

Hrfg) = Hrff) = 0
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2.2. Relation between different even polarizaiion parameters of spin I particle.

For anyone reference frame, the even part of the density matrix of
spin 1 particle has the form indicated in Table 2.2 (a) (cf.1.A.6.). The very
elements of this even density matrix can be used as polarization parameters,
They are related to the measurable multipole parameters of Table 2.1 by the
relations given in Table 2.2 (b).

For each particle, several pairs of reference frames for transver-
sity and helicity quantization can be intrinsically defined. Each pair of frames is
fixed by the normal to the production three-plane and some space or timelike
direction (like the four-momentum transfer, which is associated with the s, t,
or u channel of a two-body reaction, cf.I. A . 1). Associated transversity and
helicity frames are simply related in the standard conventions by a rotation of
g radians around the x-axis. The corresponding linear transformation on the
multipole parameters is given in Table 2.2 (c), where the left T and H super-
scripts refer to transversity and helicity quantizations.

Two different pairs of transversity-helicity frames, say a and b,
are related through a rotation tround the normal by an angle (Vba (which usually
will be a complicated function of the kinematical invariants s, t, u of a two-body
reaction, cf.I.A.1). The corresponding linear transformation on the multipole
parameters is very simple for transversity quantization, It is also given in
Table 2.2 (d), where the left subscripts a , b, label any transversity frames.

As has been mentioned, in the case of B-symmetric production the
transversity multipole parameters with M odd or the helicity multipole parame-
ters with M negative must be zero. They are the parameters written in the second
column of Table 2,2 (c), and in the last line or column of Table 2.2 (b). Note
that in this case for transversity quantization the matrix element ()10 is zero,
and the density matrix in Table 2.2 (a) has a "checker-board pattern", while
for helicity quantization the imaginary parts of PIO and Ql»l are zero, and

the density matrix is real.



