4. 0dd polarization of the spin 3/2 particle.

4.1. Measurement of the odd poiarization of the spin 3/2 particle.

The angular distribution of the strong two-body decay of a spin 3/2
particle supplies information on its even polarization only (cf. 3.1). But the
odd polarization of this spin 3/2 particle (that we call A) can be measured
whenever the polarization of the spin 1/2 decay product (that we call B) is
observed. This is the case if, as indicated in Table 4.1 (a) , B undergoes a
weak decay (case of the cascade of Z* and E* particles). Let us call C
the spinless decay product of B . Then for measuring the odd polarization
of particle A it is sufficient to consider the degree of longitudinail pblar—
ization of particle B in the rest frame of A . The angular distribution of this
longitudinal polarization , I(G,@).PL(B,w) , is related to the odd polarization
parameters t(;)'and t(g) of particle A by expression in Table 4.1(b).
Recall that this longitudinal polarization, PL , is defined by the mean value
(c) of the same table, as function of « , the asymmetry parameter of the’parity
violating second decay (cf. Table 1.l(c) and (dl))' The angle 91 is simply
defined in the rest system of B as the angle between the three-momenta of A
and C . The inverse expressions, which supply a method of independent me;sure~
ment for each one of these odd polarization parameters are also given in Table
4.1(d) and (e). The brackets <...Pp...> in (d) properly indicate a double
experimental mean value : (a) the mean value PL of the B decay angle 61 , for
each sub~ensemble of events with the same direction, 8,9, for the decay of A,
and (b) the mean value of inclosed expressions on 8,p for the different dir-
ections of this first decay. In fact it is enough to measure the three angles,

6,@,81 , for each event and to obtain a single mean value of the expressions for

the whole ensemble (cf. part I, AS5).

In the case of B-symmetry for the production process of the spin 3/2

particle, 6 of these 10 odd polarizastion parameters have to be zero. They are
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(L)

the r y  Pparameters with M odd in the case of transversity quantization, and
these with M positive or nule in the case of helicity quantization, as indicated

in Table 4.1(f) and (g).
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TARY o - Measurement of the odd polarization of spin 5 particie

(a) Cascade decay
+ 0 (strong interaction)

ST
¢

(weak interaction)

[{CE TSN
&
o]

Angular distribution ef the longitudinal polarization

(b) 1(8,9) P (8,9) = /—2—_%‘; [ ;::1 {(:{) Y(;&)(@,(p) -3 ﬁ: {(3) 1‘(;)(Q’¢)3
(c) P (8,0) = g < cos @5
Multipole parameters
(a) t(;) = JBor < Y(;)(e,¢) P (®,9) > M= -1, 0, +1
t(z) - -J/§g£‘<y(ﬁ)(e,m) P (@,9) > M = -3, ~2,... +3
(e) r(g) = 4/2%51 t(g) L =1, 3
r(i;) = (-1)M / Re t()ﬁ) M=1, 2, ... L

-M N 3

Condition of B-symmetry in the production process

(f) For transversity quantization

Tr(1) R AR r (D ) r 3 g ) .
1 fo1 T S L T
{g) For helicity quantization
H (1) H (1) _ H {3) _ H_(3) _ H_(3) H (3)
ry = r'y = rig = r2 = ry = r, = 0




4.2. Relation between different odd polarization parameters of the spin

3/2 particle,

In any refereace frame, the odd part of the density matrix of the spin
3/2 particle has the form indicated in Table 4.2(a) (cf. Part I, A6). Remark that
it is traceless and has to be added to the trace one, even part given in Table
3.2(a) in order to obtain a meaningful density matrix. The;e matrix elements
of the odd part are related to the multipole parameters of Table 4.1 by the

relations given in Table 4.2(b).

The relations between the multipole parameters for associated trans-
versity and helicity quantizations are given in Table 4,2(¢). And the relation
between the multipole parameters for two transversity quantizations are given

in Table 4.2(d), as function of the rotation angle arount the normal *ba

The six parameters that must be zerc in the case of B-symmetric praduc~
tion are conveniently indicated in the second column of Table 4.2(c) and in the
last lines or column of Table 4.2(b). Remark there that for transversity quanti-
zation the odd part of the density matrix in Table 4.2(a) has "checker-board
pattern" and is antisymmetric through the second diagonal (the even part had the
same pattern and was symmetric, cf. 3.2). And in the case of helicity quanti-
zation this B-symmetric odd part is pure imaginary (the even part was real, cf.

3.2).
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-~ Relatisn between different odd polarization parameters of spin 5 particl

(a) 0dd part of the density matrix for spin
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For B-symmetry and helicity quantization, the parameters in this column
are zero

For B-symmetry and transversity quantization, the parameters in these
three lines are zero.

(See continuation)
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{Continuaticn of Table 4.2)

(¢c) Relation between the multipele psrameters for transversity and

helicity quantizetions

(8)

-y

H(i) _ T?‘((l,) 5 Hr(i) i, Tr(:)
f BB) /—3“3) /; T, ()
Hr-(.«'zi) _ T (3) E Hr(g) } /};T (3) /?T S?i)

Hr(3) _ 5 T (3) /1 T (3)
1 -/ 16
1 Tr(B)_ 15 Tr(s)
J 16 3~ ./ 16 1

H(3)=/ET(3)fT(1)
-1

3 T (3 5T (3
-3 /'z;’”(z) ‘/'8t r(o)

it

{(d) Relation between the multipole parameters for twoe different trans-

versity quantizations (rotation on the normal of angle ¢ba)

T (L) _ T _(L) i

Yo T &f0 L = 1, 3

T AL , oy TL(L . T (L

br(M) = cos{My, ) ar(M) - aln(M¢b8) arEM) M = 1, 2,... L
B2)

T_(L : T (L T (L) (

BT (M) = s1n(Mdnba) ar(M) + cOB(Md»ba) arEM

(B) For B-symmetry. the parameters in thie column are zero.

(B2) For B-symmetry, M = 2.
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4,3 Polarization domain for the B-symmetric spin 3/2 particle,

e

The positivity of the full (even plus cdd) density matrix defines a
seven-dimensicnal polarization domain for the B-symmetric spin 3/2 particle. This
domain can be visualized by projections and secticns c¢f dimension three or less.
We have studied in 3.3 its projection on the three-dimensional space of even pola-
rization : a sphere of radius VT73 . Its projection on the orthogonal four-
dimensiocnal space of odd polarization is a truncated revolution hypercylinder with
spheres of radius VT73 as cross sections and height ASTERR Fig. 4.1 repre-
sents the sphere (P) of even polarization, and the projections on the basié (s)
and on the height (R) of the hypercylinder of odd polarization. The unpolarized
state is represented there by its projections Po’Qo’ and Ro . This "isotropy
center’ can be used as origin of a vector space. Any polarization state can be
represented by two three-dimensional vectors P and 3 inside the spher;s (®)
and (Q) , and a unidimensional vector R inside the segment (R) . The
coordinates of these different projections are given in Fig. 4.1 and Table 4.3
as function of the transversity multipole parameters Trcs) . This allows to fix
the relative orientation of these two spheres in a natural way. Remark that,
according to Tables 3.2(d) and 4.2(d), for a rotation of the frame by vab

arcund the normal, the spheres (P) and (Q) rotate by twice this angle around their

vertical diameters.

But these three projecticns do not completelv describe the positivity
domain, i.e., , for ?, 6 and R inside these projections, the representative
point can be outside the seven-dimensional positiviry domain. The supplementary
condition indicated in Table 4.3 is that the vector R has to be inside g shorter
segment Rle . This segment is obtained for each value of F and a by reducing

the length cf (R) by the lengths

¢, = P =T

+4-

as indicated in Fig. 4.1(R). Of course this supplementary condition implies that
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d++d_‘52V173 .

S
So, for a fixed 2 s 3 cannot be any vector inside the sphere (Q) . It has to

b
be inside a revolution cigar-like ellipscid, which has as a major.axis, the

d
giameter of (Q) parallel to ? and as foci the points g , as visualized in
Fig. 4.1(Q).

The polarization degree is given by the distance of the represent-

a
ative point to the isotropy center in the seven-dimensional polarization space.

1
It is easily obtained by the Pythagoric addition of its three orthogonal projec-

tions \3‘ , ‘3{ , and R ...us pure states have

B] = (3] = |&] = V73

1 A
The last equation imposes d_  or ¢+ to be zero, and therefore P and 3
€

equal or opposite. Thus a pure state must satisfy

Bl =Vi/3 ,3=+7, r=2+ VI3

1
It is fixed by the direction of ? and the sign of R, € = + 1 . The direc-

4
tion of P can be fixed by the polar and azimuthal angles 6,% defined in the

13
standard way by the axis Tr(i) s Trfg) and Tr<§)

t
transversity quantization, and labelling pure states by their magnetic quantum

r
number we have the expression for the general pure state (up to an arbitrary

as axis X, Y, Z . In this

|3
phase)
|8,8,6 > = cos %te % > + sin g eieg‘-gé > .

These pure states form two connected sets, corresponding to ¢ = +1

»

<
and ¢ = -1 which are orthogonal. In each set, to be orthogonal, the pure

€

-

-y
states must have opposite directions of P , i.e.

8' =vw-9 , &' = 3Im.

Any B-symmetric polarization state can be decomposed in four ortho-

£
gonal B-symmetric pure states, defined by the sign of R , ¢ = + 1 , and the

¢ —
direction of their P vector:
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?(e,n) = n@® + Q) ,

with 1 an independent sign n =1 1 . The four corresponding probabilities

are given by

V3P + €| + VT &
4

re,n) =

This decomposition is unique if {?l #0, lai #0 and R ¥ 0O .

Fig. 4.2 proposes a convenient set of two dimensional diagrams, to
plot a point in the seven-dimensional polarization domain. The positivity
condition and the polarization degree are visualized in diagrams (Pl)’ (Ql)
and (R). These diagrams are invariant under rotations of the quantization
tetrad around the normal to the reaction plane. On the other hand, diagrams
(Pz) and (Qz) giving the angles Tréi} and Trég) depend completely on the

chosen parametrization. It would be therefore worthwhile to measure and to

draw these diagrams for s, t and u frames of quantization.
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TABLE 4.3. - Positivity conditions for the odd polarization

parameters of B-symmetric spin g particle

(a) Pogitivity conditions for transversity parametrization

[T,(g)]z . [T,Sg)]e . [r'(é)]2 < 4

- /1 (3) /1
3 + d+ < r 0 < 3 - d“
(b) Terminology

(1) 4 T (1) 1T (3
r (0 = /% r(0 B /:5; "(0)
, (3 1T (1 4 T (3
P 3 ‘/(; 1) J/;‘ ()

. J/}Tr(i’ SR L @) T2 1E) ()2

e

i+
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4.4. Rank condition and model predictions on the odd polarization of

the spin 3/2 particle.

For reactions of the type
+

0" 3 ——> 0" % (1)

¥

the density matrix of the initial state being of rank 2 , the density matrix of
the spin 3/2 particle must be also of rank 2 (cf. Part I, A3). This reduces by
two dimensions the seven-dimensional positivity domain. For a given even polar-
ization P (cf. Fig. 4.1) the odd polarization Q must be in the surface of

the ellipsoid on (Q), and R 1is

R = VI73 - |F-Q| = [B+Q] - VI73 .

Several models predict a null odd polarization for the spin 3/2
particles produced in two-bedy reactions, This is the case for the Stodolsky-
Sakurai model forreactions of type (1), for the models of single particle
or trajectory exchange in the t-channel (helicity amplitudes relatively real),
and for models imposing the higher symmetry SU(6)w (with real Clebsch
Gordan coefficients) to the t-channel vertex. Then 6 =0, R=0, and
in the case of reaction (1), ‘5! = \I73 . The representative point is
then (Fyag,Ro) with '? on the surface of (P). It describes a polarization

state with a rank 2 density matrix, as expected from I A.1.6 and 7.
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5. Polarization of the spin 2 particle.

5.1. Measurement of the even polarization of the spin 2 particle.

The most simple decay of spin 2 particles is the two-body decay into
spinless particles, as indicated in Table 5.1(al). The other common decay mode of
spin 2+ particles is into one vector and one pseudoscalar particles, as indicated
in Table 5.1(a2). In both cases only one decay amplitude, corresponding to the
d-wave, is allowed by angular ﬁomentum or angular momentum and parity comnservation

The decay angular distribution depends only on the even multipole parameters

t(;),

modes (al) and (az) respectively (cf. Part I, A4). The inverse expressions, which

t(é) and and has the form given in Table 5.1(b1) and (bz) for the decay

supply a method of independent measurement for each multipole parameter, are given

also in Table 5.1(c1) and (cz) for the decay modes (al) and (az) respectively.

The angular brackets < ... > indicate experimental mean values of the enclosed
(4)

Y M

expression for the ensemble of events. Y(i) and are the usual sphgrical

harmonics, given in A4, Their arguments ©,p are the polar and azimuthal'angles,

fixing for each event the direction of any of the decay products, in any frame

in which the spin 2 particle is at rest. The relation between the real, o?tho-
(L) ¢ (L)

normalized multipole parameters r M and the standard ones M ¢ are expli~

citely given in Table 5.1(d).

In the case of B-symmetry for the production process of the spin 2
particle (i.e., production in a parity conserving reaction with unpolarized
target and beam, cf. Part I, A3), 6 of these l4 even polarization parameters
must be zero (see Table 0.1(d)). For transversity quantization (i.e., quanti-
zation along the normal to the production plane) the 6 multipole parameters
r(;é with M odd must be zero, while for helicity quantization (i.e., qﬁanti»

zation along any direction inside the production plane) the 6 multipole péra«

(L)
r

v with M negative must be zero, as indicated in Table 5.1(e) and (f)

meters



I1. 5 - 2 -

We recall that in these decay modes of the spin Z particle the 10 odd

r(l) and r(3)

M M cannot be measured since they do not

polarization parameters,
appear in the expression of the angular distributions in Table S.l(bl) and (bz).
They can neither be measured in the case of the decay mode (az), by observing

the angular distribution of the even polarization of the vector particle, the
only polarization that can be normally observed. In the case of B-symmetric
production 6 of these 10 parameters must be zero (see Table 0.1(d)), but the
other 4 are not necessarily zero and canﬁot be measured. They have to be practi-
cally considered as "ghost parameters". Only rare cascade decay modes (e.g.,

A, = poﬂ with pO - Q+uf) or accurate correlation measurements in some two body

reactions (e.g., K p = foA) at fixed scattering angle, could supply information

about this odd polarization of spin 2 particles.
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TABLE 5.1. - Measurement of the even polarization of spin 2 particie

Decays
(a,) 2 - 6 + 0
(82) 2% - 17+ 0 {strong interaction)

Angular distributions

4 T oo a2 =(2) J(2) ., e+t 2i4) ()

(b)) T@9) = - Jo AT Ty Yy B T ]
L e o2 p(2) (2) +4 -(4) (4)

(v,) 18.¢) = - /5 [ o™ £/ vy e T Yy 1

M=-2 M=-4

Multipole parameters

(2) 141 {(2) (4) _ i4n _ (4)
() Yy = - /% Yy~ thy = ST YT
(2) 567, (2) (4) T (),
(¢) ty = /75 w7 thy =/ w7
M = “2,.¢.+2 M = “"4;-00 +1
(L) _ 2L+1 (L)
(4) o T 4 o L = 2, 4
(L) M /2L +1 (L) .
riy’ o= (-1) = Re t \ M = 1, 2. ...1L
L) WM /2L + 1 (L
rgM = (’1) . ““5" Im v(M)

JUNIGI S,

Condition of B-symmetry in the production process

(e) For transversity quantizaticen

T_(2) T (2) _ T (4) _ T (4) _ T (4) _ T 4) _
L = rioy o= L = L = ria = vy = 0
(f) For helicity gquantizaticen
H (2) H (2) H (4) H (4) H (1) H (4) ,
T = r, = r_y = r o = r 5 = rE4 = 0
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§.2. Relation between different even polarization parameters of the spin

-

Z.particle.

For any one reference frame, the even part of the density matrix of the
spin 2 particle has the form indicated in Table 5.2{(a) (cf. Part I, A6). The very
elements of this even density matrix can be used as polarization parameters. They
aré related to the measurable multipole parameters of Table 5.1 by the relations

given in Table 5.2(b).

For each particle, several pairs of reference frames for transversity
and helicity quantization can ﬁé intrinsically defined. Each pair of frames is
fixed by the normal to the production three-plane and some space or time-like
direction (like the four-momentum transfer, which is associated with the s , t ,
or u channel of a two-body reaction, cf. Part I, Al). Associated transversity and’
helicity frames are simply related in the standard conventions by a rotation of
'g radians around the x-axis. The corresponding linear transformation on the multi-
pole parameters is given in Table 5.2(c), where the left T and H superscripts

refer to transversity and helicity quantizations.

Two different pairs of transversity-helicity frames, say a and b , arc
related through a rotation around the normal by an angle *ba (which usually wiil
be a complicated function of the kinematical invariants s , t , u of a two-body
reaction, cf. Part I, Al), The corresponding linear transformation on the multi~
pole parameters is very simple for transversity quantization., It is also given iu

Table 5.2(d), where the left subscripts, a , b , label any transversity frame:.

As has been mentioned, in the case of B-symmetric production the trans-
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versity multipole parameters with M odd or helicity multipole parameters with
M negative must be zero. They are the parameters written in the last lines of
Table 5.2{c), and in the last column or three last lines of Table 5.2(b). Note
that in this case for transversity quantizat;on the matrix elements plo s 921 s
and p, , are zero, and the density matrix in Table 5.2(a) has a "checker-
board pattern" , while for helicity quantization the imaginary parts of P10 ?

Py1 » pl_1 s 920 > Poy and o are zero, and the density matrix is real.
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TABLE 5.2. - Relation between different even pelarization

parameters of spin 2 particle

(8) Even part of the density matrix for spin 2 particle

Pao  Pog  Pag  Pa_g Po.2
P21 P11 P10 Pi1-1 P2
P = 1 Pso P10 Poo P10 P20 bgp = 1 - 2(epy+oyy)

®9.1 P11 P10 P11 “Poy

Pa_g “Pa_1 Pog “P21 Pa2

(b) Relation between the matrix elements in (a) and the multipole

parameters in Table 4.1

’(g) = f% ( 2055 - P45 - Pgg)

r(é) = J3a ( egp -0y *30g0) o

r(g) = %? Re p20-+ %ﬁ Re Py_q rfg) = - 3? Im 50 %g_lm p1_1
’(;) = [F Re oo [HRe 0, rfg) = - /R ooy Fmo
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(BH) For B-symmetry and helicity quantization, the paremeters in this column
are zero.

(BI) For B—Bymmetry and transvelsity uantization, the parameters in these
q
three lines are zero.
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(Contvipnuation of Table 5.2)
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(¢) Relation between the multipole parameters for transversity and

helicity quantizations

5T (1), Jir ) [T T (4)
J16 Yo /1 T /18 Ta
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10T (4) _ [T 1 (4)
‘/;. T ’./8 T g
7T (4) , [ o1 (4)
g8 Y1 *J8 Ts
/E_Tmu /1 1 (4
16 T-1 16 -3

St - S

1]

T
T, (L)

T (L)
Y

T (L)
bY-M

#

(d) Relation between the multipole parameters for two different transver-
sity quantizations (rotation on the normal of angle ¢ba)

Tr(L) L =2, 4
g O
T (L) o T (L)
cos(M¢ba) T 31n(Mbi) aT M M=1,2,...L
g T (L) T (L) (BE)
s1n(M@ba) AR cos(Mwba) o M

(B) For B-symmetry, the
(BE) For B-symmetry, M =

following parameters are zervo.

2. 4.




