Invariance in Quantum Mechanics and Group Extension

Louis Michel

I. Introduction

Group theory was the main theme of the Istanbul Summer School.
The subject of group extensions has never been taught in a physics
summer school. It seemed to me a good opportunity to do it, but I
have to explain why this subject can be of interest for physnclsts

We phys1c1sts have to consider several kind of invariance:
relativistic invariance, gauge invariance, strong coupling invariance,

. (read the title of chapters of some other sets of lectures). How
are related the different invariance groups? This is a fundamental
question to answer.

Too often physicists consider them separately (that is, they con-
sider their direct product) because they do not know of other solu-
tions. Let us show on a simple example how this attitude can be
misleading. If one considers separately invariance under the space-
time translations .7 (with infinitesimal operators P*) and the con-
nected homogeneous Lorentz group %, (infinitesimal operators
M**) one finds three linearly independent invariants: P2 = p*p, the
square of the mass, M» M .« and €, ,,V,]W “Mrr. However relativistic
invariance has to be described by #, the connected mhomogeneous
Lorentz group, also called Poincaré group. The group # is a semi-
direct product of ¥y by 7. The group Z, yields only two in-
variants: P2 and W2 = WA, with I}, = e,\,“,pP ‘M¥r; this last
invariant is related to the spin of the particle. It is strange to see
that many papers in relativistic quantum mechanics used to con-
sider invariance under .7 and %, separately. Historically, the
emphasis on the role of the inhomogeneous Lorentz group #; in
relativistic quantum mechanics is mainly due to Wigner. We shall
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refrain to quote him in order to avoid the accusation of cult of person-
ality; however we shall have often to refer to his paper “On unitary
representations of the inhomogeneous Lorentz group”’, Ann. Math.,
40, 149 (1939). We will refer to it simply as Wigner “F’ (F for
fundamental).t

These lectures do not presuppose much knowledge of group
theory (see the appendix of this Introduction). After two chapters
(IT and III) written from physical motivations, the mathematical
problem of group extensions is developed (IV). This problem is:

Given two groups 4 and B, find all groups E such that 4 is
invariant subgroup of E and B is the quotient E/A4.

If 4 is abelian and if it is moreover required: 4 < center of E,
the group E is called a central extension of B by A. These notes
contain the characterization of central extensions of the connected
Poincaré group 2, by an arbitrary abelian group. The solutions
presented are rather trivial. Unhappily the non-existence of other
solutions is not proven (see V).

The corresponding extensions for the complete Poincaré group,
including P, C and T, are presented in VI. The classical mathemati-
cal theory of group extensions allows to generalize the above results
to extensions by a non-abelian group K. This is explained in VII.

The preparation of these lectures has been done in collaboration
with F. Lurgat. We intend to publish together another version of
the same subject. Here, these notes are mainly intended to incite the
reader to become acquainted with the classical mathematical litera-
ture on the subject. The possible physical applications are not
systematically and thoroughly investigated.

F. Lurgat and I are grateful for their help in different ways, to
H. Epstein, J. Lascoux, many other physicists and few French
mathematicians, especially J.-P. Serre.

F. Lurgat has not seen the actual text of these notes. Mr. Jaffe has
seen part of it and I am indebted to him for his brave attempt to
correct the worst sentences of my dull and ungrammatical English.

T As a point of history we also want to reproduce here Wigner’s acknow-
ledgment: Wigner, “F,”’ p. 156: “The subject of this paper was suggested
to me as early as 1928 by P. A. M. Dirac.”’
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Appendix

We just want here to remind to the reader some concepts and
results of group theory, and to accustom him to the mathematical
vocabulary.

1. Mappings (for Sets)

Let G and G’ be two sets and f be a mapping of G into G’; that is
/f is a function defined upon G, with range in G’ (for each x ¢ G,
f(x) is one element of G’). The range of f is denoted by f(G) or by
Imjf. More generally, let X' be the set of values of f(x) for all
xeX < G. We write X’ = f(X) or X = f~}(X’). Remark that f1 is
not, in general, a mapping of G’ into G. Indeed, for any x' € G,
J7Y(«") is not generally an element of G, but a subset of G, which
may be the empty subset.

The relation f(x) = f() is an equivalence relation for the elements
of G. For each x" € G, the f~1(x") are equivalence classes. The set 0
of these equivalence classes is called the quotient of the set G by the
equivalence relation f(x) = f(y).

If Im f = G, the mapping f is surjective. If f(x) = f(y) > x = y,
the mapping is “injective”’. A one-to-one mapping is both surjective
and injective.

2. Some Vocabulary Exercises on Groups

Given a subset X of the set of elements of a group G, we define
two subsets of G:

The centralizer ¥(X) is the set of all y € G such that for every
xelX, yxy ™l = «.

The normalizer 47(X) is the set of all y € G such that yXy-1, = X,
Hence ¢(X) < 47(X).

T'o help eventually the reader to assimilate these two new words,
we use them in sentences which are either theorems easy to prove or
rewording of definitions of well-known concepts. Of course, if X has
only one element x, €(x) = A (x).

%(X) and A47(X) are subgroups of G and A~ (G) = G.

%(G) is the center of G. If %(G) = G the group is abelian.

If H is a subgroup of G and if 4" (H) = G, the group H is said to
be invariant subgroup of G (some authors use “normal’’ instead of
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invariant). As an example .#'[ 6(G)] = G; the center of G is an
invariant subgroup of G.

Theorem. (.X) is an invariant subgroup of .#°(X).

To avoid confusion, for algebra, we shall use the word “com-
mutant’’ instead of centralizer (see Chapter III).

3. Homomorphisms (for Groups)

A mapping f of the group Ginto the group G’ is a homo-
morphism if it preserves the group law: for every x,ye€G,
S()f(y) = flxy). Let e and €’ be the unit elements of respectively G
and G'; ¢’ € f(e). Images and inverse images of subgroups are sub-
groups. Moreover, if H' is an invariant subgroup of G, Y H) is
invariant subgroup of G. As a particular case, f71(¢’) is an invariant
subgroup of G called the kernel of f and denoted by Ker f. :

If Ker f = e, fisinjectiveand Im f ~ G (we use ~ for isomorphic,
that is: there exists a one-to-one homomorphism). If Ker f has
other elements than e, there is a natural group law on the set O of
equivalence classes f1(x'). We say that Q is the quotient group
G/Ker f. One has the fundamental isomorphism:

Im f~ G/Ker f

We denote by Hom(G, A4) the set of homomorphisms of G into A.
This set is not empty: it contains at least the trivial homomorphism
f(G) = €. If A is abelian (and noted additively), for every x € G
and every pair fi, fo of homomorphisms, fi(x) + fa(x) is a well-
defined element of A that we denote by (f; + fo)(x). It is easy to
check that A abelian = f; + f; is a homomorphism. Hence, when 4
is abelian, Hom(G, A) is an abelian group. Its zero element is the
trivial homomorphism.

If a group has no invariant subgroup, except e and G itself, it is
simple. If G is non-abelian and simple, if 4 is abelian, then
Hom(G, A) = 0 (that is, it has only the element zero). We also recall
a more precise result: given a group G, its elements of the form
xyx~1y~lare called commutators; they generate the subgroup G’ of
G, called the derived group of G. Then, one proves: if 4 abelian
and G’ = G, then Hom(G, 4) = 0.
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We shall need often the notion of direct product of groups. Given
two groups G, Go, the direct product G = G;® G5 has for elements
the pairs (¥, x2), which are the elements of the set product of the
sets G1 and Gy, and for multiplication law: (%1, x2)(y1, y2) = (x1y1,
x2y2). We can define the direct product of a finite number of groups;
the operation ® is associative. When the group laws are noted addi-
tively, we shall use the synonymous expression “direct sum’ and the
sign ®. However, for an infinite set of groups, these two expressions
are given two different meanings in mathematical literature.

2. Lie Groups With the Same Lie Algebra

Application: the relation between isospin and hypercharge.

We shall review the general method to determine all connected
Lie groups which have a given Lie algebra, and then work out in
detail a simple example which corresponds to the minimum sym-
metry of strong interactions.

All physical schemes for strong coupling contain three observables,
T1, Ts and T3, whose Hermitian operators satisfy the commutation
relations

[Ti, Ty] = deisp Tk (1)
An equivalent set of relations is
[Te Ts] = FTu, [T+, T—] = 2T; (1)
where
T,=T + iTs (2)

In addition, the commutation relations with the electric charge
operator Q are

[73, Q] = 0 and [Ty, Q] = 3 7T.. 3)

Expressions (1') and (3) define a four-dimensional Lie algebra over
the field of real numbers. If we set

Y=0-T; 4)
Then relations (3) are equivalent to
| [Ti, Y] =0. ()

This shows that the four-dimensional Lie algebra .# defined by (1)
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or (1") and (3) or (5) is a direct sum
P = 2 L(SUy) (6)

where #; is the one-dimensional algebra. (It is unique up to an
isomorphism.)

Does this mean that the isospin T and hypercharge Y are separ-
ately conserved with no relations between them? If we consider the
Lie algebra alone, we have the answer yes by basic principle of
invariance in quantum physics. However, if we do not restrict our-
selves to invariance under infinitesimal transformations, then rela-
tions are possible. A poll among physicists (made by reading their
relevant articles) revealed that a large majority favor invariance
under finite transformations, while a few physicists are either against
this approach or are “‘undecided”. The reason that finite transforma-
tions are considered necessary is that they also allow the considera-
tion of discrete operations. Thus we are led to consider a global
invariance group. In our particular example we have finite hyper-
charge gauge transformation and finite isospin transformations.
Another example to support this point of view will be discussed in
Chapter III.

Since there are several Lie groups which have the same Lie
algebra, the physicist is forced to choose the relevant one. Each time
he writes down a finite transformation, the physicist makes a choice
at least implicitly. In our example, which of the five groups should
we take to describe isospin and hypercharge conservation? My
preference is to list all the possibilities before making a choice. As
an example of the general method, we start by stating two theorems.
Corresponding to the physical situation, we shall only consider finite
dimensional Lie algebras over the field of real numbers.

Theorem 1. For every such algebra ., there exists one and only
one connected group which is simply connected and has % as its
Lie algebra.

This group is called the universal covering group ¢ of the Lie
algebra .Z.

(Simply connected means that all closed curves in g obtained by
continuous mappings of a circle into ¢ can be contracted by con-
tinuous deformation to a point. See Prof. Speiser’s lectures.)

Theorem 2. All connected Lie groups ¢ which have % as Lie
algebra are the quotient of the universal covering group ¢ of 2,
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by one of its invariant discrete subgroups D (i.e., I is discrete for
the topology induced by that of ¢).

One then shows that D < Center of . Indeed, let a € D and
x € ¢, then xax~! is a continuous function of x; since /) is invariant
subgroup, the range of this function is in D, and since D is discrete,
this function has a fixed value: ,

Taking x = 1, it 1s found to be a. Hence, for all x € ¢, xa = ax.

These two theorems will guide us for the study of our example
where # is defined in (6). However, an answer to the general
problem is not that simple. In fact two isomorphic discrete groups
Dy and Dy may yield non-isomorphic quotients ¢/; and g/Ds.

‘The simplest application of these theorems is to the one-dimen-
sional Lie algebra ). Its universal covering group is R, the additive
group of real numbers. Let oy € R. It generates a group Z(og) which
is isomorphic to Z, the additive group of integers. (The elements of
Z(ao) are no.) The quotient R/Z = U; is given by the homo-
morphism R 7, Uj, where J'(x) = exp[2ima/ag]. The group opera-
tion in U, the one-dimensional unitary group, is written multiplica-
tively and f'(nap) = 1. Since the choice of o is irrelevant, we will
usually choose a9 = 27 and define the homomorphism

veR1 U f(2) with f(x) = el (7)

Has R other discrete subgroups?

Let oy ¢ Z(ag). If aj/ag is rational a1/p = ao/qg = « where
P, g€ Z. Then Z(oq) and Zj(ao) are subgroups of Z(«'), and the
quotient R/Z(o) yields again U, up to an isomorphism.

If ay/og is irrational, the elements of the group generated by o
and «; are mog + may where m, n € Z. This group is iso-
morphic to Z @ Z: But it is not discrete in R. Indeed, given 2 € R
and € > (), it is always possible to find m and #» such that

imag + nxy — o) < &

1.e., the group Z(xo) &> Z(«) is open and dense in R. (Its closure is
R itself.)

T'o summarize:
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There are only two, non-isomorphic, one (real) parameter Lie
groups, the groups R and U];.

We can now study our example & given by (6). Let us first recall
some results well-known by physicists. The covering group of the
Lie algebra generated by (1) is SUs (the group of unitary 2 x 2
matrices with determinant = 1),

We shall denote its elements:

a(n, 0) = exp(—ifn . /2) (8)
where 6 is a real number modulo 47; n + =t is a short hand for
3
Z n;T;

i=1

where 7; are the three Pauli matrices, and 7; are three real numbers
such that Zin2 = n.n = 1.
The group law is the matrix multiplication:

o-l(nl, 01)0’2(1’12, 02) = (0'10'2)(11, 9) == G(n, 0) (9)
The center Zs of SUs has two elements
o(n,0) =1 and o(n,27) = —1

"The quotient SU»/Z, is isomorphic to SO3 (the group of 3 x 3 real
orthogonal matrices with determinant = 1), that is the rotation
group in three dimensions.

The universal covering group of the four-dimensional Lie algebra
defined by (6) (or by (1) and (5)) is the direct product

§=R®SU, (10)

with the multiplication law

(3(1, 0'1)(0(2, 0'2) = (0(1 + ao, 6162) (10')

and the unit element (0,1).

Table 1 gives the complete list of the connected groups ¢ which
have .# as Lie algebra. They are obtained by a quotient 3/D
when D is a discrete subgroup of the center R @ Zs of ¢.
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TABLE 1
9 =9g/D D isomorphic to D generated Group law of
by
¢ =R x SU: {1} = one element 0, 1) (a1, 01)(az, o2)
= (o1 + oz, 0102)
R x SOs {0} x Z2 & Z2 0, -1) (o1, €1 01)(o2, €2 02)
= (o1 + ag, €0102)
U x SU: Zx{1} 2 2=, 1) (€™, o1)(e™™2, o)
- (ei(a1+az , 0102)
U: x SOs Z x Zs (27, 1) and (eial, 6101)(81'0(2, €203)
0,-1) = (ei(d‘+a2), €0102)
U: A (m, —1) €%1qy 12 gy

_ e:(oc1+ozz) o109
The € are arbitrary signs

This table gives the complete list, up to an isomorphism, of the
connected groups ¢, which have # as Lie algebra.

For all the lines of Table 1, except the last, D is a direct product
D = D; ® Dy and we obtain the quotient ¢/D by the elementary
theorem.

Theorem 3. 3|D = (1 ® $2)/(Z1 ® D2) = (91/Z1) @ (92/Z2).
Let us study in more detail the last line. The group D is generated
by (m, —1); its elements are

(m —=1)F = [km, (= 1)] (11)

when k& is an integer.
Consider now the homomorphism g of ¢ upon U, defined by

95 [«, o(n, 6)] —> exp(ia — fn. T/2)
0 . .0 (12)
= ei“(cos — — 1T .nsin ——).
2 2

The elements that g maps on 1 are defined by
6

siné = (), et cosé = 1, hence 0 = 2km, o = km,

ie. [km, (—1)k] g
and they are also the elements of D.
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Hence 7% 2D = U, (13)

Of course, the matrices ¢/*, multiples of the unit, form the center
(Un) of Us, and we have the relation

Us/Uy = SOs. (14)

If one does not normalize og to 27, it is easy to check that there are
no other (non-isomorphic) groups solution of our problem.

We now want to study the list of unitary, irreducible representa-
tions of the different groups ¢ which have the same Lie algebra .#.
(For indeed in the physical formalism the invariance groups will
act through their unitary representations.)

Let us emphasize that a representation is a group homomorphism,
so it might not be faithful. For instance, the irreducible representa-
tions of SU; are usually labelled by the integer 2j > 0. When j is
integer, the representations are not faithful, but they are faithful
representations of SO3. The representations of SU, with 2j odd
are not representations of SOs.

The unitary irreducible representations of R are given by o — eir*
where 7 is a real number. They are never faithful, and they are
representations of U; only when 7 is integer.

Hence we can write down the four first lines of Table 2.

TABLE 2

List of Inequivalent, Unitary, Irreducible Representations of the
Group ¢ of Table 1

(The representations are labelled by two numbers » and J which satisfy
the conditions)

x SUsz 7 real 2j integer
x SOs3 7 real J integer
Ui x SU; 7 integer 2jinteger
Ui x SOs rinteger j integer
Us r integer 2] integer

R
R

VvV IV IVIVIV

0
0
0
0
0 and (-1)¥*" =1

For the last line, the group Uy, we have a relation between j and
r; indeed, in the first line, the element (7, —1) of ¢ is represented
by e!"7(—~1)% in the representation 7,j. This representation is a
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representation of Uz only if the element (7, — 1) is represented by 1,
that is
exp(inr)(—1)% = (=1)24r = 1. (15)

In the physical interpretation of our example j is the isospin ¢
and r is the hypercharge y.

Of course a choice of ap # 27 would also have given the set of
integers 7, and the same relation (15). If we want the possibility for
the hypercharge of physical states to be any integer, the identifica-
tion must be y = 7.

The famous relation between the electric charge g, the third
component #3 of isospin, the baryonic charge b and the strangeness s

b+ s

g =13+ 5 (16)
can be written with b + s = y
2q = 2t3 + y. (17)
It implies
2t + y = modulo 2, i.e. (18)
(—1)v =1 (18")

which is exactly the relation (15).

Many papers have required that the strong coupling invariance
group contain SUs (isospin) and U; (hypercharge) as a direct product
(third line of Tables 1 and 2). (For references see other lecturers.)
It seems more appropriate to require only that it must contain Uy
as a subgroup.

Let us recall how Uj will appear naturally in any field formalism.
The requirement that the Lagrangean be invariant when the field
of 1sospin ¢ 1s multiplied either by the unitary matrices which corre-
spond to the representation j = ¢ of SUs or by the first kind of
gauge transformation ei*¥, where y is the hypercharge of the field,
is equivalent to choosing the ordinary multiplication as the multi-
plication law of the total invariance group. Table 1 shows that it
yields Us (fifth line) and not the direct product of line 3. Indeed the
products ei*c and (—€i*)( — o) are identified; this yields Us as
quotient:

U ~ (Up @ SU»)/Z (19)

where the two elements of Z are (1, 1) and (-1, —1).



146 LOUIS MICHEL

This long chapter will probably seem trivial to the physicist, so I
would like to end it by a question I am unable to answer.

I could have considered another Lie algebra isomorphic to .2,
but generated by the isospin 7" and the baryonic charge B. The
commutation relations are indeed (1) and

[T, B] = 0. (20)

If T had considered only non-strange particles in the nucleon and 7
fields, I could have taken Us as invariance group for the strong
coupling part of the Lagrangian. But if one considers all known
particles, there are no relations between baryonic charge and isospin.
Hence one has to consider the direct product

Ul(B) X SUg

asan invariance group, and one must not multiply together a baryonic
charge gauge transformation and an isospin transformation applied
to the same field.

The same reasoning applies to strangeness and isospin.

To summarize, among the six operators T\, B, S, Y there are five
linearly independent ones (Y = B + S), which form a five-dimen-
sional Lie algebra

L@ LD ZL(SUs)

It seems that the invariance group of strong coupling must contain
the group

Uy ® Us

where U corresponds to the baryonic charge and U to the isospin
and the hypercharge. In particular, this is the case of the two
fashionable examples wrongly ascribed, in physics literature, to the
group SUjz for strong coupling invariance: the ‘“Sakata model” and
the “eight fold way”". The strong coupling invariance group of these
two modes are respectively:

For the Sakata model: Uz which does contain Uy ® Usy; for the
eight-foldway: U; © (SUs/Z3); the second factor is SUs; divided
by its center; it does contain U,. In this last model, baryonic charge
conservation 1s a completely independent conservation law.

Why is there no relation between baryonic charge and the other
strong coupling quantum numbers # and y?
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This lecture was given as a seminar at CERN in December 1961,

and at Bruxelles (Centre interuniversitaire de Physique nucléaire) in
February 1962.

3. A Mathematical Framework for Quantum
Mechanics

(This chapter is based on work done with F. Lurcat. T'wo pre-
liminary short notes have been published; F. Lurcat and L. Michel,
Nuovo Cimento 21, 574 (1961), and Comptes- Rendus of the Conference
of Aix-en-Provence, p. 183.)

We are aware that an axiomatic approach is rarely the road to
discovery in physics and that the mathematical framework presented
here is still so general that it cannot yield many physical results.
However, such a framework contains just what we need to study
invariance in quantum mechanics and to shed some light on the
points we want to emphasize. On the other hand, we do not want to
be dogmatic and we will choose this mathematical structure only as
a possible one, not as an exact or definitive choice. So first we shall
try to give the axioms in a physical language; only afterwards will we
attempt to make a mathematical translation.

1. Axiom a

“In quantum mechanics, observables are represented by hermitian
operators acting in a Hilbert space.”

Among the observables are the density operators R, which
describe the physical states. The R, are positive definite and bounded
(see below), and for convenience we normalize them by:

Ir R, = 1.

-4

The set O of observables can be used to generate an algebra;
it is this algebra which we shall use as a handy mathematical tool.

Like nearly all physicists, we choose an algebra over the field of
complex numbers. In the beginning of his book, Dirac justifies this
choice, but there are tentative reasons to choose either the field of
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real numbers, e.g., Stiickelberg and his school, or the field of quater-
nions, e.g., D. Finkelstein, J. M. Jauch, S. Schiminovich, D. Speiser,
Jour. Maths. Phys., 3, 207 (1962) for the latest reference.

Chosen the field of the complex numbers, there are different
mathematical techniques to derive an algebra from (: they produce
non-isomorphic algebra. The existence of several such possibilities
is irrelevant for our study of invariance. We shall choose the ‘“von
Neumann algebra”. (We could not take an algebra we don’t know!
At least we can learn about the von Neumann algebra from the
excellent book by Dixmier, Les algébres d’opérateurs dans Pespace
hilbertien (Paris, 1957), quoted below as Dixmier).

We shall not deal with the mathematical difficulty of consider-
ing . |, the von Neumann algebra generated by the set (¢ as canoni-
cal; as we said, we consider the observables as given by hermitian
operators on.#". But there remains a difficulty: some operators of @
are unbounded; in other words, their norm is not finite.

Let us recall that the norm of a linear operator A4 is the
Sup(l[4x]|/||x|) for all x € #. By definition, a bounded operator has
a finite norm. (Two examples of operators with norm 1 are the uni-
tary operators U* = U-land the hermitian projectors P2 = P — P*)
The sum and the product of bounded operators are bounded
operators.

Unbounded operators are not defined everywhere in A, so the
definition of their sum and their product is not obvious.

We could refer to a paper by J. M. Jauch (Helv. Phys. Acta, 33,
711 (1960)) for the construction of . #" from ¢. However, it is useful
to give here some details, . . . and some definitions!

Definition. </ is a *-algebra of bounded operators (over the field
of complex numbers €) if Di,Dsec.d, v € = aD1, Dy + Do,
DD, Di* € .o/. (The symbol D* means the hermitian conjugate
of D.)

Definition. Let .«Z be a *-algebra of bounded operators on J#';
let .«/ contain the unit operator. Its closure for any of the four
topologies: weak, strong, ultra-weak, ultra-strong, is “‘the” von
Neumann algebra generated by .o/ (Dixmier, p. 44).

Instead of A, an unbounded hermitian operator of the set ¢,
we shall consider the set of its spectral projectors P,. You all know
that the proper values of .4 = {* are real, and that the proper
vectors corresponding to an isolated proper value A, form a subspace
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Py of A" (P, is a hermitian projector: Py = Py* = P,2). Further-
more A # p = P)P, = 0. The set s(A4) of values of X is called the
spectrum of 4. If this set is discrete,

A=7 P,
A

is called the spectral decomposition of 4.
When s(A4) is not discrete, X must be replaced by a Stieljes integral:

where the E, are hermitian projectors such that

A< X = E# < Ep .

The commutation of bound operators is well defined, as usual;
we extend it to unbounded hermitian operators.

Definition. A bounded operator B commutes with an unbounded
hermitian operators A, if it commutes with all projectors (P, or
E)) of the spectral decomposition of 4.

Again we have to use some preliminary definitions and lemmas.

Definition. Let A be a set of operators on #'; A’ the commutant
of A is the set of all bounded operators on S#, which commute
with all operators of .

One can define (A#£') = .#" and so on .. ., and can easily verify
that (#")" = (A")", which we denote by #"".

Lemma 1. If A is a set of bounded operators, # < A".

Lemma 2. 1f A and A" are sets of bounded operators,

M N = N < M

Let # be an arbitrary set of operators. From lemma 1, we have
M < M and A" < A1V, but lemma 2 applied to A < A"
yields 41V < #”. Hence #" = MV = M ,»Viandalso M " = MV

Definition (Dixmier, p. 2). o is a von Neumann algebra if it is a
*-algebra and &/ = &7,

Given any set (€ of hermitian operators, it is easy to check that
(" is a *-algebra. Then it is a von Neumann algebra. We say that
it is “the’’ von Neumann algebra generated by €. (Note, however,
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that unbounded operators of @ do not belong to ”; only their
spectral projectors do).

We will call A" the von Neumann algebra generated by the set O
of the observables.

‘The center 2 of V" is A"~ N7, If 4" abelian, then N4 < "
= V', hence 2 = _#". Dixmier, p. 120, calls an algebra .+~ whose
commutant " is abelian, a discrete algebra.

We can call 47, the set of hermitian positive operators of 4", It
is a convex set which contains all density operators of state mixtures.
The set ““.#" the envelope of .#7,” contains all density operators of
pure states, i.e., one-dimensional projectors:

P=Px=p2 T/P=1

Now that we have constructed the handy mathematical tool ¢
from the set of observables, we must make a physical assumption
giving some properties to .

2. Axiom b

‘"There exists a complete set of commuting observables.”
We refer to J. M. Jauch (Helv. Phys. Acta, 33, 711 (1960)) for the
translation of this physical requirement into the mathematical axiom:

Axiom b again

“There exists a subalgebra .«# of .#" such that .«&¢’ = 7.

Such an algebra is a maximal abelian subalgebra. By lemma 2,
N = © N ie., ¥ < A and the algebra is discrete.

In a subsequent paper, J. M. Jauch and B. Misra (Helz. Phys.
Acta, 34, 699 (1961)) draw the following conclusions: for every
X e O there exists o/(X) such that P(X)e #(X) = A'(X)e N
(where 2(X) = set of spectral projectors of X). That is, in physical
translation, every observable can be a member of a complete set of
commuting observables.

Furthermore, the intersection of the .&/(X) for all X is .
Hence if welet @ = @ be the subset of observables which generates
A", then @ = .4". The observables of @ commute with all
observables; every observable of @ belongs to each complete set of
commuting observables.
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The important physical question is therefore: what are the observ-
ables of (7 Jauch and Misra show that in electrodynamics, the
electric charge O belongs to @. The general answer we propose here
will be chosen as axiom c.

Axiom c

““The set O of observables which commute with all observables
is generated by the charges.”

We will take B, O, L for the operators representing baryonic,
electric and leptonic charges (or Ly, Ly, . . . if there are more charges).
The spectral decomposition of A" yields a direct sum of Hilbert
spaces:

fzzp,\f———@,\fk
A

For mathematical convenience we take the sum to be discrete.
This is the case if axiom c is true; then the label X is given by the
set of values b, g, /. . .of the charges. Let P, be the hermitian projec-
tor on ). The P, generate A4". Let |x) e 4#; the projector
|x> (x| ||x]|~2 commutes with all P, if and only if |x) belongs to one
). If it does not commute, it cannot be an observable.

Hence, not all vectors of 5 represent physical states; only those
of the #°)’s do. The J#°, are called “coherent’’ subspaces; two state
vectors belonging to two different J#, are said separated by a
“superselection rule”. This notion first appeared in G. C. Wick,
A. S. Wightman, E. P. Wigner, Phys. Rev., 88, 101 (1952), where
it was deduced from Lorentz invariance.

3. Relativistic Invariance

It is now time to introduce the relativity group of the theory
(inhomogeneous Lorentz group or Poincaré group, Galilean
group . . .). By definition, the relativity group transforms the set of
observables (¢ into itself, and no such transformation leaves all the
observables invariant. The mathematical translation is straight-
forward.
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Axiom d ’

“The relativity group of the theory is isomorphic to a subgroup
of the group of automorphisms of @.”

One could deduce general properties from this axiom. To be more
specific, let us take as relativity group 2, the connected Poincaré
(= inhomogeneous Lorentz) group. Let us also assume axiom c.
Since charges are invariant under 2, every A € .7, the center of
~¥", is invariant under the automorphisms which correspond to .
Then (Dixmier, pp. 255-256), one can prove that these auto-
morphisms are inner automorphisms of .#". That is, they can be
represented by operators of .4 such that:

Vde ¥V, 4" UAUL, Ue .V, xe 2, (2)

Furthermore, from x(.4*) = [x(4)]*, one shows that U is unitary.

Physically, this proves that the connected Poincaré transforma-
tions (hence the energy, momentum and angular momentum) are
observables. Had we admitted it as an axiom ¢’, instead of axiom c,
we would have found that all of @ (the observables generating A
that is those which commute with all of @) are invariant under
Poincaré transformations. We leave to the reader to reformulate
our final conclusions in this case.

Given an x € ), what characterizes the set of I/ which represent
the automorphism 4 %> x(A4)? Let U; and Us be two such rep-
resentatives, then UjUy! and UsU,"le ¥"; that is U, = U Q)
where () is an arbitrary unitary operator ¢ .#", the center of .

Hence the set of Q form an abelian group .«7. It is easy to see that
the set of all U for all x &€ 2, form a group %, homomorphic to the
Poincaré group #,.

/4 »-f»~> Ay

The kernel of fis o/, i.e., f(./) = 1 € P. In other words, we have
the relation:

Py = U|L (3)
Since .=/ < center of . and % < .V,
-/ < center of . (4)

We shall summarize these two statements (3) and (4) by

“ 1s a central extension of 2, by ./, 5
y

A e e
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We shall call Z the relativity group of the theory and % the
invariance group of the formalism. .«/ is a kind of gauge group.

Now the problem is: given an arbitrary abelian group .7, find all
the central extensions of #; by .«Z. This problem is solved in
Chapter V. I will now only give the results.

Let us call Ext(Z#y, /) the set of all groups which are central
extensions of Z, by .o7. There is a one-to-one mapping of this set
onto the set of elements of order 2 in .7 (i.e., the square roots of 1,
if .7 is noted multiplicatively). These elements form a group called
2«Z, and as we shall see, we can put a group law on Ext(Z, /),
which is isomorphic to 297. Indeed, the rest of the lectures will
mainly be devoted to the extension problem. We shall also give a
precise definition of equivalence for extensions; accurately Ext( 2, =7)
is the set of equivalence classes.

In fact, the different possible groups are easily described once
we are given w € 97, The corresponding % is

U, = (A @ Po)|Zs (6)

when 2, is the universal covering group of . Its center has two
elements, the unit (0 for translation, 1 for SLy) and what we physi-
cists call the “rotation of 27", i.e., e = (0, —1). The two elements
of the group Z; in formula (6) are (1 € &7, 1 € Z) and (w, ¢€).

The irreducible unitary representations of .7 @ % are the pro-
duct of those of .7 and those of ;. We shall use those of %,
which correspond to real mass. These have all been given by E.
Wigner: “F”.

For these representations, the rotation of 27 is represented by
(—1)%) where j is the spin of the particle. So in order that a repre-
sentation of .7/ @ %, be a representation of %, the element w must
be represented by (—1)%/. Since w is a function of the charges (by
axiom c), this yields one, and only one, relation between charge and
spin.

We can ask whether such a relation exists in nature? The answer
1s yes.

(=12 = (=1 (7)

[(—=1)2 = (=1)b=! is the same relation].



154 LOUIS MICHEL

By taki
o w = (~1)a ®)

we fix the group % uniquely.

The group # must be included as an invariance group in every
theory of elementary particles. Note that 2, is not a subgroup of
%, but only a quotient.

Note also that the irreducible unitary representations of % are
irreducible unitary representations up to a phase of %, and that they
are representations of Zy. This is in agreement with Wigner “F”’.

We can say that axioms a, b, ¢, d predict the existence of one and
only one relation between charge and spin. While the choice of
possible relations is very large (2.97) it is possible to inject more
physics into the mathematical framework outlined above by adding
a new axiom related to the existence of asymptotic states and the
possibility of forming their tensor products. Alternatively it might
be related to the property of the unitary representation up to a phase
2 of Py to contain all irreducible representations of 2 ® ;2
(where the tensor product is symmetrized or antisymmetrized
accordingly to statistics, that is to the sign of (—1)2/). Then it is
possible to reduce the possible set of extensions to the eight squares
root of the group:

exp[i(aqQ + opB + oyL)].

One of them does yield relation (7). (See F. Lur¢at and Michel, as
quoted in the beginning of the chapter.)

4. Non-relativistic Invariance

The situation in non-relativistic mechanics is more complicated.
The relativity group is the Galilean group. Its irreducible unitary
representations have been determined by E. Inénii and E. P. Wigner
(Nuovo Cimento, 9, 705 (1952)). Under more restrictive hypotheses;
</ is the one parameter group #; and the extension is assumed to be
a Lie group (by “continuity of the phases’). V. Bargmann has shown
(Ann. Math., 59, 1 (1954)) that the Galilean group has already many
more extensions. Indeed in non-relativistic physics, the mass is a
superselection rule. So, instead of a discrete sum # = @, #,,
we have to consider # as a direct integral of Hilbert space and, in
the strict sense, no vector of # can represent a state vector!
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4. The Extensions of a Group G by an
Abelian Group K

The appendix I and this lecture (Chapter IV) have been prepared
from more detailed notes written with F. Lurgat. Chapter IV does
not contain any original results, but is an exposition of a classical
mathematical theory. See, for instance, A. G. Kurosh, The Theory
of Groups, 2nd edition, Chapter XII (Moscow, 1952) (English trans-
lation New York, 1955). The aim is to help physicists who want to
read the current mathematical literature on this and related subjects
by introducing them to the symbols, vocabulary, and concepts used
in such papers. While these concepts have not yet been integrated
into the physics literature, we are sure that they will be used more
and more in physics.

1. The Language of Exact Sequences and Commutative
Diagrams

A sequence of two homomorphisms

f r’

G Gl gl/ (1)
defines an homomorphism G onto G’ which is denoted f'of. (The
composition law ¢ is associative.)

Definition. A sequence of homomorphisms

Gu L5 Gt %% s 222 Gris 5 2)
such that for all n
Imf, = Ker fu11 3)

is an exact sequence.

From now on, all sequences of homomorphisms we shall write
with the arrows on a same straight line, will be exact, except if
otherwise stated.

Example.

1 -G _Z,G" means Kerf =1 (f is an injective homomorphism
that is G is isomorphic to Im f, a subgroup of G’).

G - G' -1 means Im f = G’ (f is a surjective homomorphism, or
homomorphism onto).
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1 - G_7,G" - 1 means f is an isomorphism (denoted ~).
This also implies that 1 < G« G’ < 1.

We have recalled to the reader (in Appendix I) that in the homo-
morphism G_1_,G’, Ker f is invariant subgroup of G and Im f is
the quotient G/Ker f. In exact sequence language:

1->Kerf——>G£>Imf—>1 (4)
and more generally
1 -4 - B — C —1 means the quotient C=B/A (5)

It G = G’, homomorphisms and isomorphisms are called respec-
tively endomorphisms and automorphisms.

The automorphisms of G form a group Aut G.

We remind the reader of the existence of the following exact
sequences, for any group G (or we ask him to accept them as defini-
tions of the group of inner automorphisms .#(G) and the group of
automorphism classes .27(G)!).

1 >%G) >G —»I(G) -1 (6)
1 > 4(G) > Aut G - .(G) -1 (6')

Here %(G) means the center of G. We have already met (6) in
Eq. ITI(3). Of course, if G is abelian, .#(G) = 1 and (6) and (6')
reduce to 4(G) ~ G and Aut G ~ A4(G).

Commutative Diagrams (for Groups)

A commutative diagram is a set of groups and homomorphisms
between them, such that all possible compositions of mappings
which define a homomorphism between two groups of the diagrams,
define the same homomorphism.

Examples. The simple example of commutative diagram is G == G'.
It is equivalent to G ~ G’ (isomorphism).

The second simplest example is:

f
A B

/

™\ /g is commutative <> h = g f.

N
C
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From now on, all diagrams we shall write will be commutative.
Furthermore, a sequence of homomorphisms is exact if only and only
if the corresponding arrows in the diagram lie on a straight line.
Note that this is not a universal convention in literature.

The reader can play with diagrams by proving the following
lemmata. (Proofs of 1 to 4 are given in an appendix of this chapter.)

Lemma 1.
f
A B
\ /»1—»Kerf~—>Kerh——>Kerg
C
Lemma 2.
f
A B 1
. /¢ = 1 —> Kerf—> Kerh - Kerg -1
C
Lemma 3.
f f
A B 1 A B 1
N and Ker f ¢ Ker & = N /
c c
Lemma 3'.
1
f f
A B 1 A B >1




158 LOUIS MICHEL

Lemma 4.
f f
A > B >1 A > B >1
N and Ker f < Ker h = \
C C
\ ' ¥ \

1 1 1

We shall make the convention that homomorphisms in a commuta-
tive diagram which are a consequence of the rest of the diagram, will
be indicated by wiggly arrows: vas~>. Examples:

Lemmata 5 and 5'.

D
NAAAAY =t

g

1‘12 > Ay ‘io >A 1 14-2

By—— By By B_i;——>B_»
1

1
o—>A h‘j——z

|

A
Bz——-——-> 31 > Bo B_.1 ‘B...g

T

¥
1 1

In lemma 5, the fact that the kernel of the homomorphism
Ay - By is 1 is a consequence of the diagram. Lemmata 5 and 5’
are known as the “5 lemmata”. (For a proof, see for instance H.
Cartan and S. Eilenberg, Homological Algebra (Princeton, 1956, p.7).)
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Note that 5’ can be obtained from 5 merely by reversing every
arrow and vice versa. (This duality of reversing maps is general and
fruitful.) Of course, commutative diagrams are nothing more than a
handy way to condense mathematical information.

2. The Problem of Group Extensions

Now that we possess this picturesque short-hand, let us go back
to the problem of extension. “E is an extension of G by K’, can be
written

1 >K5ES6 51 (7)

To say that {(K) is an invariant subgroup of E means that the inner
automorphisms of E induce automorphisms on K. (That is, there
exists a homomorphism E °» Aut K.)

To x1, x3 € E belonging to the same coset of K (i.e., x1 = xga
where o’ € {(K)) there Torrespond two automorphisms of K which
differ by an inner automorphism. (Here U(K) >3 & - o'¢'a’~1) This
correspondence between cosets of K (or elements of G) and elements
of #(K) is a homomorphism. (Apply lemma 3, since Ker s = Ker s'of,
it yields g.) To summatize by a diagram, if (7) 1s given, then (8)

1
v
?¢(K)
t s (8)
l—-K—sF— G—1
? %

y Vv § ¥
- S(K)—>Aut K —>/(K)—>1

1
In the last chapter (Chapter VIII) we shall indicate how to solve
the following problem: given two groups G and K and a homo-

morphism G ¥4, &/(K), find all extensions E of G by K such that
(8) is satisfied. This problem is summarized by diagram (9):
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]

vy y
- 4 (K)—>Aut K -/ (K)—>1

As we shall show, this problem may have no solutions for a given g.
In this chapter, we shall study the easier case of abelian K. This
problem is summarized by:

) s
l—— Krrrrnv> E mrrcns G—>1
I
Aut K

(10)

That is, given a group G, an abelian group K, and a homomorphism
G 9% Aut K, find an extension E of G by K, such that the inner
automorphism of E corresponding to x € E induces on K the auto-
morphism gos(x).

This problem always has at least one solution (the trivial extension)
which is called the semi-direct product and which we will construct.
The direct product is the particular case of a semi-direct correspond-
ing to g = 0, the trivial homomorphism. In this chapter we use
Roman letters for elements of G and we denote G multiplicatively;
we use Greek letters of elements of K and denote K additively. The
elements of E are elements of the product of sets K and G, that is
there are the pairs («, a) and the group law of the trivial extensions
is

(%, 8)(B, b) = (« + ap, ab) (11)
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where af is the transform of B by the K-automorphism g(a).
We leave to the reader to check that this law is associative, that
(0, 1) is the unit element, that

(0, @)1 = (—alo, a1) (12)

that i(K) is an invariant subgroup, and that the inner automorphism
of E corresponding to («, @) induces on K the automorphism g(a).
We shall use the notation:

() = (o, 1) = o’ (13)
with

(e + B) = a'B'. (14)
Note that the set of elements of the form (0, a) is a subgroup of E
isomorphic to G. So the semi-direct product E satisfies:

Not commutative s
l>K—>E=2G=1 (15)
Two exact sequences: k

with 5o k=1 (I=the identity automorphism of G).

When the exact sequence (7) has the property (15), mathemati-
cians say that it “‘splits”. We will write £ = K x G.

If G is the trivial homomorphism (Im g = 1), then the group law
of the trivial extension is:

(@ a)(B, b) = (o + B, ab). (16)
Then E is the direct product E = K ® G. It satisfies:

not commutative: 1 = K % E -1% G = 1} (17)
and soz = 1 s'ot! = I’
We leave to the reader to prove that (15) and (17) can be taken as
definitions of the semi-direct and the direct product.

3. Structure of an Extension, System of Factors

Let us consider an extension E which satisfies (10). Any xec E
belongs to a coset of #(K) which is labelled by an element a € G. To
specify x, we must also give its position inside the coset. For this
we choose an element in each coset which we shall call k(a). Then
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there is o' €i(K) such that x = «'k(a). Note that k(a) is not in
general a homomorphism; it is only a mapping of G on E such that:

sok = I = identity on G (18)

(i.e., Ya € G, sok(a) = a).
Such a mapping, which is not a homomorphism, will be denoted
by a dotted arrow

Aut G
. g
1 §
|—sK— s Ec G —>1 sk =1 (19)
k

We can also use the language of fiber bundles for E. The group G
is the base and the cosets are the fibers. The set of k(a) for ae G

is a section. .
For a given mapping k satisfying (18), k(a)k(b) and k(ab) are in the
same coset (the same fiber). Indeed, since s is a homomorphism
sok(ab) = ab and s[k(a)k(b)] = [sok(a)][sok(b)] = ab.
This defines a function w’(a, ) on the set G x G, with values in
K such that
k(a)k(b) = w'(a, b)k(ab). (20)

It is called a factor system.
The group law in E is:

«'k(a)B'k(b) = o' . af’ . w'(a, b)k(ab). (21)
For convenience only, we shall furthermore require for % that:
k(1) = 1€ E. (22)

So, from (21), putting « = B8 = 0 and either a, b or both = 1,
w(a, 1) = o(l,b) = w(l, 1) = 0. (23)

A factor system satisfying (23) is said to be “‘normalized”. The
law (21) is associative if and only if:

w(a, b) + w(a, b, ¢) — aw(b, ¢) — w(a, bc) =0 (24)
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(To find this condition, compute in the two different ways the pro-
duct k(a)k(b)k(c).) .

Let us choose now another mapping k(a) satisfying (18) and (22).
It can be written:

Ka) = ¢'(a)k(a) (25)
where ¢(a) € K.
Then we obtain a new factor system d(a, b) such that
a(a, b) = w(a, b) + 6(a, b) (26)
with
0(a, ) = $(a) + ag(b) — ¢(ab). (27)

Note that 6(a, b) satisfies (24) which characterizes the factor
systems. Any factor system which can be written in the form (27)
is said to be trivial.

Hence the extension E defines a factor system up to a trivial factor
system. Reciprocally, given a normalized factor system w(a, b)
defined on the set G x G, with values in K, and given the homo-
morphlsm g: G % Aut K, we can form a group E whose elements are
pairs (o, @) with the composition law is

(%, a)(B, b) = [0 + af + w(a, b), ab]. (28)

The relation (24) makes this law associative; the unit is (0, 1), the
inverse is given by:

(0, @)t = [-ala — alw(a, at), a7 )] = [—ala — w(al,a),a]
(29)

since
w(a, a1l) = aw(a™, a). (30)

The inner automorphism of E corresponding to («, a) induces on
K the automorphism g(a).

Two factors systems which differ by a trivial factor system yields
two isomorphic extensions. These extensions will be said to be
equivalent. As a particular case, if the given factor system is trivial,
the extension is equivalent to the trivial one (E = K x G, or when
Img =1, K & G). Since by a change of the mapping k&, a trivial
factor system can be reduced to 6(a, b) = 0, then the group law (28)
becomes identical to (11).



