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We will not prove here this other possibility of the definition of
equivalent extensions, although this definition is valid not only for
groups, but for many other mathematical structures

Definition. E and E’ are equivalent extensions if the commutative

diagram exists (where = means identity transformation).

) s
| K sE—sF— 1
| s
;’ f §f (31)
oK F s G—1
il sl
Aut K

In agreement with our convention, the existence of f" and therefore
the property of f to be an isomorphism, is a consequence of the rest
of the diagram.

So the old problem: “Given g % Aut K, find all inequivalent
extensions E of G by K, satisfying (10)”’ has become: “Find all
normalized factor systems, up to a trivial factor system.”

This problem is a classical one for mathematicians, but to help

the physicist benefit from the mathematical literature, we first have
to explain to him that, by following this lecture, he was just doing
“cohomology”’. (As the master of philosophy explained to Moliére’s
“Bourgeois Gentilhomme’’, when he spoke he was making prose.)

4. Cohomology

Let us consider the following sequence of abelian groups (denoted
additively). We call it a “complex’ and it is:

not exact sequence

5~1) 0 o i 81\C2 52 3 .'.Sn.l(:n Sn oML

(32)

0

where the homomorphisms 6 are such that

Im(8,+108,) = 0. (33)
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That 1s

Im 6, < Ker &,+;. (34)
Let Zn = Ker 6, and B® = Imd,_;.

The groups
Hn = Zn|/Bn (35)

are called the cohomology groups of the complex.

If we had for all n, H® = 0, the sequence (32) would have been
exact. Thus the cohomology group measures the ‘‘lack of exactness”
of the sequence.

We can also define C = ©®%,_oC" and respectively we can
form Z, B and H with § = ©@,5, one sees that 62 = 0, hence
B = Im Sc Keré = Z. Then H = Z|B.

The elements of C” are called n-cochains, those of Z", n-cocycles,
and those of B7, n-coboundaries. We define the abelian groups:

(G, K)

to be the n-variable functions «, defined on G with values in K,
with the further condition (so called ‘‘normalization’’) that «, = 0 if
at least one variable is 1. Since the sum of these functions o, (x1 . . . xy)
is defined by the group law in K, they form a group. Furthermore,
since G acts on K, we can make it act on C*(G, K). Now we define
the homomorphism & as follows:

Bn[an(xl . e xn)] = (Snan)(xl o xn+1) = xlan(xz, . e xn+])
n

+ z (-— l)"'ocn(xl, ooy XEXE4]y o e xn+1) + (—~ 1)"“0@,(361 . .xﬂ).
o (36)

Let us consider the cases n = 0, 1 and 2.
The C9G, K) are constant functions of G into K. That is they
are elements of K. Thus we set

C%G, K) = K. (37)
Since x € G induces an automorphism on K, x C? can be defined.
Now:

(801@)(36) = X%g — oQ.
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Hence
Ker g = K&

the fixed elements of K under G.
By definition we put B = 0. (Im 6~ = 0.) Therefore

HY(G, K) = K6, (38)
Let us write d,a, for the case » = 1 and 2.
oifaa(x)] = (dron)(, ¥) = xa(y) — ofx, y) + o(x) (39)

Sa[aa(x, y)] = (S222)(x, y, )

40
= x(y, 3) — afay, 3) baln y3) - almy).

We see that relations (24), characteristic of a factor system, can be
written:

(Sw)(a, b, ¢) = 0. (41)

In other words, a factor system is a 2-cocycle.
Relation (27), characteristic of a trivial factor system can be

written:
O(a, b) = (5¢)(a, b) (42)

that is a trivial factor system is a 2-coboundary.

Since the set of inequivalent group extensions of G by K is the
set of factor systems defined up to trivial factor systems, we have
for a given G 4, Aut K:

Ext(G, K) = H%G, K). (43)

Cohomology theory was born in mathematics for the study of
algebraic topological properties of topological spaces. But the same
mechanism could be used for different mathematical objects. For
groups, the first papers on cohomology theory are by S. Eilenberg
and S. Maclane, 1947, “‘Cohomology Theory in Abstract Groups,”’
I and I, Ann. Math., 48, 57, 326. I strongly advise you to look at
them, and also at the review of S. Eilenberg, 1949, ‘“Topological
Methods in Abstract Algebra, Cohomology Theory of Groups”’, Bull.
Ann. Math. Soc., 55, 3. Cohomology theory and, more generally,
the related methods in algebraic topology (hology, homotopy,...)



QUANTUM MECHANICS AND GROUP EXTENSION 167

~can be applied to so many mathematical objects, that they have
become a full-fledged thenry of their own. This theory was ex-
pounded for the first time in book form by H. Cartan and S.
Eilenberg, Homological Algebra (Princeton, 1956). See also Chap. 1,
“Algebre homologique” of Godement’s Théorie des Faisceaux
(Paris, 1958).

There are methods (reduction theorems) for computing H?(G, K)
in terms of H"'(G, K') with n’ < n, but with K’ a much larger group.
For abelian finite groups, there is a general constructive method for
the computation of the H”, “‘the method of the free acyclic complex”’.
In this approach the cohomology groups H*(G, K) are finally given
by those of a complex such as (32). Here we shall only give some
results.

Let us consider the case that G is a finite cyclic group of order p;
that is there is x € G such that x? = 1 and the elements of G are
1 x, x ., XP~1 (x is a generator of G ) Let o € K. We define the

“norm’ of Na by:
-1
No = >  xka (44)
k=0
N is an endomorphism of K, that is N € Hom(K, K).

Let Do = (o — xa). It is € Hom(K, K) with Ker D = K¢, One
sees easily DNo = 0 = NDa, that is DoN = 0 and NoD = 0 where
0 is the trivial homomorphism € Hom(K, K). Hence Im N < Ker D
and Im D < Ker N.

One proves the following theorem (the result is independent of the
choice of x). See for instance S. Eilenberg and MacLane in I, s. 16,
or H. Cartan and S. Eilenberg, Chapter XII, p. 250.

] >
HY(G, K) = {Ke; D/Im N, neven = 2 (45)
Ker N/Im D, n odd

In particular, if K¢ = K (G acts trivially on K), then Im D = 0
and Na = po and the traditional notation for Im N is pK, in other
words it is the subgroup of elements of K divisible by p. On the
other hand, Ker N is the subgroup ,K of the elements « € K such
that pa = 0. Then

K/pK = Ky forevenn > 2

46
K for odd n (#6)

Hn(G, K) = {
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We can find this very easily for p = 2; then G has two elements
v and x2 = 1. A 2-cochain of G is given by the value w(x, x), since
o(l, 1) = o(l, x) = w(x, 1) = 0.

It is always a 2-cocycle (6w = 0) and it is a 2-coboundary only if
there exists ¢(x) such that

w(x, x) = 2¢(x), ($(x2) = 0).
That is w € 2K. Then:
H%G, K) = K2K = K» (47)

Of course, if every element of K is divisible by 2, Ky = 0.

Another possibility for the two element group G to act on K is
that Yya e K, x« = —a. Then Na = 0 and Da = 2«, which corre-
spond respectively to D and N of the previous case.

We just give here some results that we shall use later for the
discrete operation of the Poincaré group.

(a) G = Zy =1, x]
We consider two possibilities for G — Aut K.
K¢ = K = HYG, K), H»*1(G, K) = 2K

1 48

S H2(G, K) = Ky (+8)

w2 = —a, HY(G, K) = K& = 1K, H2(G, K) = K, ,

(2) , B (48°)
H2(G, K) = K

(b) G=2Zox Zo=[,X,Y,Z,1 =X2=Y3, XYV =YX=2

(49)

(1) K¢ = K = K = HYG, K), H\(G, K) = 2K @ 3K, HX(G, K)
= Ko @K ® K2 (49
(2) Xo = %, Yo = —2, then Zx = —x; K& = oK = HY(G, K)
HU(G, K) = 2K ® Ks H2G, K) = oK @K ® Ko (49")
HYG, K) = 2K @K @ Ko@® Ko,

Quaternion Group Q

[t is the 8-element group generated by Pauli matrices. It often
occurs in group theoretical problems. For example, there exist
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nonabelian groups in which every nonabelian subgroup is an in-

variant subgroup. All these groups contain the quaternion group as

an invariant subgroup. The cohomology of O is also cyclic.
Examples: 1f O does not act on K,

HYQ, K) = K = K9, H%+1 = ;K + oK, H#2 = K,
Hrt3 = 4K and H% = K,.
Note that when
K¢ = K.
Then
HY(G, K) = Hom (G, K). (50)

If G acts on K and K, it acts in a natural way on K @ K'. By
repeated use of theorem 3 of Chapter II, it is easy to prove that:

Theorem 1
H?(G, K ® K') = H%G, K) ® H2(G, K").
Theorem 2. If G is a finite group with % elements, for all
ae HYG, K), ke = 0
Proof: Let wy, be an arbitrary n-cocycle. We define:

n1(x1, X2. . ., Xn1) = > wn(x1, . . ., Xp).
z, € G

Now from (36), we find that:
O = z (awn)(xl, v e ey xn+1)

Zp+ EG
= (&/;n_l)(xl, C xn) + (—~ 1)"+1kw(x1 .. .xn)
le.,
dwp = 0 = kwy > (—1)"8¢y,—1, so kZn = Bn hence kH" = 0.
We want to close this chapter by a study of the group law of
H%(G, K). If wi(a, b) and ws(a, b) are factors systems for two exten-
sions E; and Ey, wi(a, b) + wo(a, b) 1s also a factor system.

Let E be the extension corresponding to it, we will note V the
relation

E = E\VE; = E2VE,
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which is called “‘extension product” and is group law of H2(G, K).
We shall now give a canonical definition of this product.
Let E, Es be two extensions verifying (51):

1 Ly
l— K —sE—sG—l i=12 (51)

whose elements are
di, by . . .
Let us consider the following groups:
E; x Es with elements (d, f)g).
F with elements (4, d2) such that 51(d1) = so(d2) = a € G.
K x K with elements («, '), K x K < F since sj(a') = so(f’) = 0.
K with elements (&, «'~1).
We have the inclusions:
R<cKxKcFcE xEs (52)

K x K is an invariant subgroup of E; x Ej, hence is also invariant
subgroup of F.

F/(K x K) = (41K, d:K) = (coset of a, coset of a) ~ G
K x K/K s {8, y')«, «' 1)} = {(B', y'a'~1)}
= set of these elements for all x € K
i.e., this elements of K x K/K is the class of all pairs (u',v') of
elements of K, such that
v = B’y = constant
p'v' = By (53)
or
B + y = constant
K x KIK ~ K
We denote:
K x K/ = K*.
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Now K is invariant subgroup of F, indeed
[(d1, d2)(o, o' ) (a1 71, d271)] = [ax, (a0)"}] € K (54)
We define:
E = FIK
and summarize all these results in the following diagram. Commu-

tativity is easily verified and the consequences are written in wiggly
arrows.

1 1
::xG
: A
ke §s
N A B
1 > K > F E 1
| l gi
,~ J P’
1 >K KxK > K* 1
1 1

From Ker(po, 1) = Ker p’ = j'(K) and lemma 3’, one obtains the
injection 2.

From j(K) = Kerp < I(K x K) = Ker ¢, lemma 4 yields s.

Hence E is an extension of G by K. We will compute one of its
factor systems.

Let k be a mapping of G into F such that gok = identity on G.
Then pok is a mapping of G into E, such that

so(pok) = gok = identity on G.
We can write % in the fashion:
k(a) = [ki(a), ke(a)].
Hence the factor system of E is:
w'(a, b) = plk(a)k(b)k(ab)~1]
= plki(a), ka(a)lp[ki(b), ka(b)]p[k1(ab)~1, ko(ab)~1]
= plwi'(a, b), wy'(a, b)]
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and by (53) and the fact that the diagram is commutative:
w'(a, b) = i[wi(a, b) + ws(a, b)]

which proves the relation:
E = F|R = E\VE,.

Appendix

We give here the proofs of lemmata 1 to 4.
Lemma 1.

h = g()f

If acKer f, 0 = gof(a), hence Ker f < Ker A.
Let f the restriction of f on Ker 4 : that is f e Hom(Ker h, B)

and for every a € Ker A, f(a) = f(a). We have:
Ker f = Ker f < Ker A. (1)
Furthermore:
h(Ker ) = 0 = gof = 0
hence
Im f < Kerg. (2)

The exact sequence:

1 —>Kerf—>Kerh—f>Kerg

is equivalent to (1) and (2).

Lemma 2. Let b € Ker g. The homomorphism f is surjective. Hence
fYG) is not empty. Let a€fYG); then h(a) = g(b) = 1, hence
a < Kerh and b = f(a). Hence Im f = Kerg.

Lemma 3 is a little less trivial. We have

and Ker f <= Ker A.
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The homomorphism f is surjective, for every b € B, f-1(b) is not
empty. We choose @ and @’ € f~1(b). Then
ala’ € Ker f < Ker k.
h(a) = h(a') = h[f "l(b)] = ¢
We write ¢ = g(b). It is a mapping B % C such that & = gof - Isga

Hence

homomorphism?
g(0)g(6’) = h(a)h(a’) = h(aa’)
where
f(a) =b, f(a')=1b
Hence N
From & = gof, flaa’) = bo'

8(0)g(b’) = gof (aa’) = g(bd"). .
Lemma 3'. From lemma 2, 1 — Kerf — Kerk % Ker g -1
From Ker f = Ker &, we deduce Imf = 1. Since f is surjective.

Kerg = 1.
Lemma 4 1s an obvious consequence of lemma 3. Indeed
h=gof=Imh=1Img.
Remark

We used lemmata 3 and 4 to complete the last diagram of this
chapter. Doing so we proved a very simple and well known theorem:

Theorem 3: in diagram language:

1
i
P
1 > H > G >G/H >1
‘} ]
1 }il K >K/H —1
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or in plain language:
Theorem 3
Let H, G, K be groups such that H < K < G and H invariant

subgroup of G. Then:
GH G

K/H K

Since the reader has not been taught to reduce fractions (i.e.
theorem 3 for the group Z) in the language diagram, I feel sure he
rightly finds pompous by now the extensive use of diagrams in this
chapter.

Indeed this chapter was written as a “‘first step book on diagrams”’.
By reading the present mathematical literature, one gets a sense of the
good use of this language.

5. General Extensions of the Connected
Poincare Group %,

1. Definition of the Groups %y, Z), and of their Universal
Coverings %, Py

la. The group £ and #y. We denote four-vectors by a, b, c. . .,
their time component by a9, their space part by a, their scalar product
by a+b = a%0% — a b, their square by a-a = a2. Vectors with
a2 > 0, a2 = 0, a® < 0 are respectively called time like, light like,
space like.

We define for all vectors a, the function n(a) with values 1, 0, —1

by
7(0) = 0;a2 < 0, n(a) = 0; a2 > 0, a £ 0, n(a) = a%[a%| (1)
The homogeneous Lorentz group £ is the set of linear trans-
formations which leaves invariant the scalar product of any pair of
vectors. .Z is not connected. Let .#y be the connected component
which contains the identity. It is a 6 real parameter Lie group. We

shall denote its elements by A, M, . . ..
The parity operation P transforms

a = (a% a) into Pa = (a9 —a);
The time reversal 7T transforms q into

Ta = (—ab a);
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So
P2=T2=1 PI=TPand PTa = —a

Then & is the union of the four connected sheets:
o?:goupgouTgoupTyo (2)

The four-element group 1, P, T, PT is isomorphic to Zy @ Zs,
so % is the semi-direct product:

L = Yy x (Zz@Zz) (3)

The function n(a) is invariant by % , P% (that is 7(Aa) = 5(a),
but is not invariant by ..

16. The group P and P,. The Poincaré group &, or inhomo-
geneous Lorentz group, is the group of inhomogeneous linear trans-
formations, which leaves invariant (a — b)2. The connected com-
ponent is the semi-direct product:

.‘702‘ ﬂ—x g() (4)

where " is the groups of translations. Its elements are in a one-to-
one correspondence with the four-vectors and we use the same nota-
tion a, b, . . . for them. So the group law of 2 is (see IV.11):

(a, A)®, M) = (a + Ab, AM) (5)
where Ab corresponds to
(Ab, 1) = (0, A)(b, 1)(0, A)~2 (5)

2 is the complete Poincaré group. The commutative diagram (6)
exhibits the relations between these different groups.

1 1
1 757‘ > éao 7370 1
1 TP & 1 (6)
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(See also Prof. Wigner’s lectures.)

le. Symmetries with respect to hyperplanes. Let n such that n2 # 0.
We define the symmetry with respect to the hyperplane orthogonal
ton by:

n

S =1-2

n

t-3 Q

where @ means here the tensor product of vectors. This symmetry
transforms the vector ¥ into:

¥=2x=x-2n.)nn)t (8)
n
The square of X is the identity transformation.
Lemma 1.
menz=0-3 > =3 3
nooon, n, on
Lemma 2.

ni? . ng? > 0>Z z € %.
noon

2

We will also use:

> n=-—n 9)
n
n.a=0<«> a=a (10)
If
a?=0%@-02#0:> a=b> b=a (11)
a-b a-b

(@ + b)2 # 0: > =-b> b=-a (12)

a+b a+b

Lemma 3. If a®2 = b2 and (a — b)? < 0, there exists A € .Z such
that Aa = b and Ab = a.

Indeed we can find 1t such that n? = —1, n+-a = n+b6 = 0. Then
from lemma 1, lemma 2 and Eqs. (10) and (12):

A=3S
1 a-b
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The following pairs of vectors satisfy the assumption of this
lemma.

a% = b2 > 0, 7(a) = n(b) (13)
a2 = b2 =0, 7(a) = n(b) and a.b # 0 (13')

Theorem of Cartan. Every element of . is the product of at most

4 symmetries. Every element of % is the product of 2 or 4 sym-
metries.

For a proof, see for instance E. Cartan, La théorie des Spineurs
(Hermann, Paris, 1937).

1d. The group %o universal covering of ¥y. As explained in Prof.
Wigner’s lectures, we can build two one-to-one mappings between
complex four-vectors and two-by-two matrices:

aesa=a"4a.vand aeva=a"—-a.x (14)

where 1t are the three Pauli matrices.

areal < a = a* a = a* (15)
a2 =aa = ga = det a= det a (16)
a.b = }(ab + ba) = }(ab + bd) (17)

From o’ = Xja, we obtain:

-~

a = —nan1 and @' = —nan1 (18)
and from
a” = Z Z a

ﬂs nl

we obtain

-

a" = nomix(nan1)~1 = ngmixming(ny2ng2)-1 (19)

When mi2n2? > 0, we define v/ ni2ng? the positive square root of
ning?2 and we define:

B = nanj/vV/ ny2ns? (20)

det B = det no det 131/‘(1121122 = ] (21)
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So (19) can be written:
a" = BaB* (22)

since * = .

From Xn = X_n, we see that B and — B represent the same
A e Py We call £ the group of the B, that is the group of two-
by-two matrices with determinant = 1. It is _easy to check that the
correspondence B — A is a homomorphism £ - % %o, and Cartan’s
theorem shows that s is a surjective. It is also easy to compute
Ker s; it contains the two matrices 1 and —1. The exact sequence
(23) summarizes the situation:

1—>Z2—>j08—>$0—>1 (23)

Topologically, #g is_a simply connected Lie group, which is the
universal covering of # (see Prof. Speiser’s lectures). Z; is called
the first homotopy group of Zy.

le. The universal covering Py of Py. With the definition
Ba = s(B)a (24)

we can make o__?o act on 7. Then 2, is the semi-direct product
Po =T x Lo. The commutative_diagram exhibits the relations
between the groups £y, %o, Lo, Po:

1 1

J y

VA m—y A
1 T Py Lo >1 (25)
1 T P Lo 1

1 1

2. What is known on H?( %y, oZ)?

Wigner “F” has computed H2( %y, Uy) = Zs where Uj is the
one-dimensional unitary group (group of phases). It is obvious from
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Wigner “F” that the same proof is valid for the extensions of %,
by R the additive group of real numbers: H% %y, R) = Z,. By
theorem IV.1 the computation of H2(#,, &7) can be extended to an
abelian # parameter Lie group .« which is a direct sum :

oA = @ity (26)

where each .&/; is a one-parameter Lie group, hence isomorphic to
either Uy or R. This might be the only interesting physical case.

Wigner, in his fundamental paper, was in fact interested by the
unitary representations up to a factor of Zg and he showed (s 5.A of
Wigner “F”) that this factor could be made a continuous function
of the elements of #;. Our problem here is different: what can be
said on H%(Zy, /) for an arbitrary abelian group &/? So we want to
avoid the use of any topological property for 7.

One can prove, purely algebraically,

Theorem 1: H¥( %0, o) = H2(Z,, /)

Theorem 1': HY Py, /) = HYF, )

(their proofs might be published by Lurcat and I).

Also by an algebraic proof, in the next paragraph we shall compute
H2( %y, o) if H( L, o) = 0 is assumed. -

So our question becomes: What is known on H2(.%, .«/)? Let us
recall first a theorem on abelian groups:

Definition. An element x of an abelian group A4, noted additively,
is divisible if, for every integer n, there exists y € 4 such that
x = ny. The element 0 is divisible.

Definition. An abelian group A is said to be divisible if all its
elements are divisible.

Definition. An abelian group K is said to be reduced if it has no
divisible elements except 0. Example. Every finite group is reduced.

Theorem. Given an abelian group A, it has a largest divisible
subgroup D; furthermore 4 = D @ K where K is a reduced group.

One can prove for a reducible group K that H% %, K) = 0.
Theorem IV.1 yields from

A=D@K (27)
HX (%, A) = H(%,, D) (28)
and from the next paragraph:

H2( Py, A) = 2K @ HX(ZL, D) (29)
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We do not know, yet, if there are no algebraic central extensions of
%o by a divisible group D. However, we shall compute H%( %, 4)
only with the assumption that H2(%p, A) = 0 - hich is true if
enough topological requirements are made on A.

3. Computation of H2(.%,, 4) for Central Extensions
This computation is based on the assumption
H2(Lo, o) = 0 (30)

We shall denote by 4, B, ..., the elements of Zo, by 4, B, .
those of #y. By the homomorphlsm Lo 5 Lo, A = 5'(A).
Let us consider an extension &g of £y by &, with the multiplica-

tion law:
(O(, A)(B: B) = [OL + B + w(Aa B)’ AB] (31)
We can define from & an extension &o of Lo by 7 by the law:
(o, A)B, B) = [« + B + (4, B), AB] (32)
where
w(4, B) = w[s'(4), s'(B)] = w(4, B) (33)

The mapping p:
(2, A) = (o, A) = p(x, A)

is a homomorphism. Its restriction to &/ < & is the 1dent1ty
Since H2(Ly, ) =0, &= & @ Lo and (4, B) is a co-
boundary:
w(d, B) = (3¢)(4, B) = $(A) — 4(AB) + #(B) (34)

Given w(A4, B), the 1-cochain is unique. Let ¢; and ¢2 be such that
3951 == 89‘62 = w; then 8(({)1 —_ (}52) = 0, that is

$1 — ¢o € Hom (Lo, &) = 0, s0 ¢1 — ¢2 = 0.
The injective homomorphism of Lo into & is:

(d) = [-4(4), 4
Indeed, J(A) = [-¢(Ad), 4] (35)

[—¢(A), A[-¢(B), B] = [-$(4) — $(B) + (4, B), AB]
= [-#(4B), 4B]

This j, allows us to define a homomorphism %o 4 6o by

f = poj:
N fd)=( - $(d), 4, (36)
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We can now prove that there are no other homomorphisms f such
that the diagram

1S commutative.

Indeed, let us suppose there exist two such homomorphisms
/1 and fo. From

A (AN =gfr (D) - yofe (A7) = S (A) S (A7) = 1
we see that

h(A) =fi(d)fo(d)ei ()
Let us prove that #(4) is a2 homomorphism,

—_h
Lo 1 (A)

Indeed
h (AB) = f1 (4B) fo (B*471) = fi () h (B) fo (A7)
and since & is a central extension, i.e. i(%) = (&),
h(AB) = f1 (d) f2 (A7) h (B) = h (A) h (B)
However Hom (%, &) = 0 implies & = 0, so
A fe(dY) =lorfi = fo

Since f is unique, f(Zo) is invariant by all inner automorphisms of
¢ (this can also be checked by direct computation); that is f(.%)
is invariant subgroup of &.

f(=1) = [=#(—1), 1] € center of &p (37)
and from f(—1)2 = f(1) = (0, 1), we have:
—~24(~1) = 0. (38)
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We summarize the situation by the commutative diagram:

Zs

14——‘-——-——4‘{% é%(-wzvffo«:————-————-l

S

v
1

In a unique way, by the homomorphism f, we have defined for
the extension &9, an element ¢(—1) of 2.0/, This mapping
[ HY &, ) Todisa homomorphism. Indeed, let us consider
two extensions &, &¢@ with their factor systems w; and ws and
the corresponding éi(—1), $o(—1) € 27. To their product
EoM V &p@ corresponds the factor system w; + ws and therefore
the element ¢i1(—1) + Hi(—1)[ € 2.7].

We now show that f’ is surjective (upon); that is givene €3 o7, we
built an extension &o(e):

1 >Zy > @ Lo > Eofe) -1 (39)
where Ker p’ contains (0, 1) and (¢, —1) €./ x Z,.
p'(o7) is identified with &/ = &g(e). If € # 0,
P (%) ~ %o
p'(=1) =00, =1) = p'(e, 1)

identified with e€./. So the mapping € - &y(e) is the inverse
mapping of f' : H3( £y, o) T 57, and we have proven

H2( Lo, o) ~ 2.

and

By theorem 1,
H2( %y, A) =~ HN Py, A) ~ 2.

We have characterized all central extensions of the connected
Poincaré group by an arbitrary abelian group ..
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Given € € 997, the corresponding extension is:

(ﬂ X @0)/22
where
Z2; {(0; 0,1) and (e; 0, —1)}.
6. Extension of the Complete Poincare
Group. Discrete Invariances P, C and T
1.

We begin this chapter by a theorem. Let &’ be the semi-direct
product &' = 2y x G where G is a finite group: G = Z'|P,.
Given an arbitrary abelian group & and a homomorphism g’:

2 % Aut of (1)
with
Py < Ker g’ (2)

Theorem 1. For a given g', HY P, o) = 9/¢ @ H(G, ).

Upon our request, this theorem has been kindly tailored by J. P.
Serre for F. Lurcat and 1.

Let us remark first that g’ defines (because of (2))a homomorphism :

G % Aut /. 3)

Conversely, given (3), we can define (1). Indeed, let Oy, Qs . . . the
elements of G and (a, 4, Q) of #’'. We define

g'(a, 4, Q) = gQ) *)

For the reader we want to see things explicitly written, we shall
write the group law of #':

(a, 4, Q1)(b, B, Q2) = (a + Q14b, AQ1BO17, 0102)  (5)

(The physical interpretation of Q is P, T, C, . . .).
Let us consider an extension & € HX( %', o/)

(6)
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Its group law is:
(2 a, 4, Q1)(B, b, B, Q2) (7)
=[x+ Q1B + w(a, 4, Q15 b, B, Q2), a + Q14b, AQ1BO1™Y, 0102]

Let &y = s71Y(Py). It is the subgroup of elements («, a, 4, 1). It
is an invariant subgroup of &. It is a central extension.

1 > >E 0> Py > 1 (8)

We can repeat for this extension what we did in s VI.5. Its multi-
plication law is:

(2, a, B)(B, b, B) = [« + B + w(a, A4; b, B),a + Ab, AB] (9)

We define from &g an extension of %, by ./, by the factor
system:

w(a, A; b, B) = w(a, 4; b, B) (10)
From theorems VI.1" and assumption V.30
H2(Py, 4) = HYF,, ) = 0.
We know that w(ad, bB) is a coboundary:
w(a, A, bB) = (8¢) (11)
and Hom( %, o) = 0 implies that ¢ is uniquely defined by w.
This defines uniquely the homomorphism f.
Po >0 @A) = [~ 4a, D), a A] (12)

Given an inner automorphism 8 of &, and # the corresponding

automorphism of 2, the unicity of f implies (the incredulous reader
can check it by explicit computation):

fob = Bof (13)

f(2) = Im f is invariant subgroup of &.
As in s V.3, we are interested by the image of (0, — 1) € center of

2. It is in the center of &. Let us apply (13) when 6 is the inner
automorphism of & generated by (0, 0, 1, Q). Then

foB(0, = 1) = f(0, =1) = [~ $(0, 1), 0, 1, 1]
00f (0, —1) = [~ 04(0, —1),0, 1, 1].
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Hence
040, —1) = 4(0, - 1) (14)
or
#(0, —1)eo /¢ (14")
With the method used for f* in s V.3, we can prove that the
mapping

HY P, )5 & > $(0, —1) € p4C

is a homomorphism.
Note that we still have the isomorphism:

HX( Py, o) ~ o057

but not all extension &g € H%( %y, &/) can be subgroup of the exten-
sion & € H¥Z', /). It must correspond, by the homomorphism f’,
to an element of the subgroup 2.97¢ of 5.97.

What is the kernel of /? It contains the extension & such that the
subgroup &y = &/ ® Py. So the group law (7) of & is more
simply :

(o« a, 4, Q1)(8, b, B, Q)
=[x+ 01 + w(Q1.02), @ + 0146,4 01BO:17Y, 01Qs]. (7')

Indeed f(Z) is the invariant subgroup (0, ¢, 4,1) and the
quotient &/f( %) has for group law:

(% Q)(B, Q2) = [o + Q1B + w(Q1, Q2), Q102]. (15)

It is an extension € H%(G, ).

Conversely, given the group law (15) of an extension of G by .27,
we can form an extension & € H2( %', o/) by the group law (7)
obtained from (15). Hence we have proven the exactness of the
sequence:

0 > HAG , o) —~ HAP', o) - 0 C. (16)

To prove that / is “‘upon’’ or surjective, we use a method similar
to that used in s V.3. Indeed given € € 7% we built:

Eo(e) = (¥ @ Po)|Zs(e)
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where Zs(e) is the two-element group generated by (e; 0, —-1).

Since G acts on .o/ and #, it acts on &p(€). Consider the semi-
direct product &y x G. It is an extension of ' by .« which is
mapped by 1 on & €29/, So we have found a mapping

2t 6 5 AP 1)
such that
lok = identity on 2.o/C,
We can check that & is an isomorphism, by computing
Eo(er) V Eo(ez)
that we find isomorphic to:
(&f (03] .@0)/22(61 -+ 62).

Hence H%(#', /) is the semi-direct product of 2.2/ by H%(G, ).
Since it is abelian, it is even the direct product.

2. Application to Time Reversal T

We consider for G the two-element group {1, T}. The time
reversal T"acts on &y by the automorphism:

203 (a, A) 5 (ap, A1) (17)

where
ar = (—ab a)

The group &' we consider in this paragraph is the semi-direct
product Zy x G where G : {1, T}.

As we have seen in Chapter III, the time reversal T induce an
automorphism on 4", the algebra of observable. In order to preserve
the sign of the energy, this automorphism is an antiautomorphism,
that is it contains a *-conjugation in.#". Since T'commute with the
charges O, B, L, the only effect of 7 on the center 4~ of W is the
hermitian conjugation.

The group <7 is the group of the unitary operators in 4. Any
element Qe.o/ is transformed by the antiautomorphism 7' into
Q* = QL

S0 .2/ is the set of Q such that:

Q=0Q%= Q1
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or
02 =1
HC = o/ = 50/C.
We have studied this case in 111 (48'):
H(G, o) = o4/.

The element of 9.7 which characterizes the extension of G by
o7, hence of &' by o7 is w(T, T); the square of time reversal.

that is

3. The Invariance CP

Since the discovery of non-conservation of parity, as predicted by
Lee and Yang, we know that neither P nor C are an automorphism
of .47, the algebra generated by the observables. However, it seems
that physics in invariant under the product PC = CP. This trans-
formation is a linear homomorphism of 4. What is its effect on
A", the center of A?

If we admit axiom c, the elements of 4" are functions of the
charges. As a shorthand we write Q for the set of operators which
represent the charges. The unitary elements of A4 can be written

Q = exp[imf(Q)] (18)

where f is a real analytic function. By the automorphism PC

PC )
Q—"> Qe = explinf(~Q)]. (19)

We call here G the two-element group generated by CP. We have
given in I11.46 the value of H%(G, «7):

H*G, o) = Ker D/Im N (20)

where
NQ = exp[inf(Q)] + exp[inf(— Q)] (21)
DQ = explinf(Q)] — explin /(- Q)] 1)

We do not discuss CP invariance independently. We will discuss
now the full Poincaré group.
4. The Full Poincaré Group of Quantum Mechanics

This is the title of a paragraph of Professor Wigner’s lecture. The
Poincaré group defined in V.1b, the geometrical Poincaré group, is
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not the group of invariance of quantum mechanics. Following
Wigner, we call quantum mechanical Poincaré group 2 the semi-
direct product:

P =Py x G (22)
where G is the four-element group:
G;[1,PC=CP, T, PCT]. (22%)

The group Z is a subgroup of the group of automorphisms of
A" We know how G, and 2, act on &/ the group of the unitary
operators of .#”. The computation of H2(G, 27) in the general case
is simplified by the property of ./ to be divisible. Indeed, let
Qe .o/ Its spectral decomposition is:

Q= qZ exp[if(q)]Pa (23)

where q is the set of values of the charges q : ¢, 5, /,... and P,
is the projector on the corresponding coherent Hilbert space of state
vectors. Then:

Qu = 2, exp|(in/n)f(p)]Pa (24)

q

is a n-th root of Q, that is Q,”» = Q.
The computation of 2.9/ is easy: it is the set of Q such that:

for every set q, f(q) and f( —q) are integers of the same parity. (25)

5. Physical Interpretation

We leave to the reader, if he is interested, a more general discus-
sion. In order to indicate briefly the possible physical interpretation,
we restrict the discussion to the simplest possible .7, that group
given in Eq. (II1.9). |

A = {exp[i(0gQ + awpB + oyL)]} = exp(ia . Q). (26)
In this simple case:
: T , . PC ‘
exp(ix . Q) — exp(—ia . Q), exp(ia . Q) —> exp(—ia . Q),
(27)
exp(ia . Q)Ijg-{exp(ia . Q).
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The PCT transformation leaves invariant every element of
and from our point of view is more trivial than P, C and 7. Then

2@ = g0f = (—1)«Q+edB+ell = {(—1)eQ7) (28)

where each e = 1 or 0. The group 2.4 is the group of the eight square
roots of the unit element of o7,
According to theorem 1 and to Eq. (111.49")

HYP, A) = 9sd @ 24 @ 257 (29)

There are 8% = 512 inequivalent extensions. Each is characterized
by an element of H%(Z, /). Every element of this group is charac-
terized by the triplet:

(=1)Q, (=1)"Q, (=1)"q (30)

This represents more € whose value 1 or 0 has to be determined:
(—1)*"Qis f(—1) the image into 2.7¢ of the “rotation of 27 (31)
(=1)*" Qis (T, T) the square of T (31"

(=1)*""Qis w(PC, PC) the square of PC. (31"

The square of PCT is immaterial. It can be normalized to 1 € «7.

The first question to be answered for a physical interpretation is:
which extension &'(e, €', €”) is realized in nature?

To be able to choose among the 512 & we have to know their
irreducible unitary representations and “‘corepresentations” (see
Prof. Wigner’s lectures) for the operators 7%y and PCT %,. These
are representations and corepresentations up to a factor of the
quantum mechanical Poincaré group. They have been determined in
Prof. Wigner’s lectures. Here we give to the arbitrary phase a new
physical interpretation, as representation of .« the invariant sub-
group of & the extension of ‘2. A complete discussion from this
new point of view of the theory of “types’ will not be carried here.
It is left to the enjoyment of the eventually interested reader.

We recall that in Chapter 111 we have found:

€= (=0 eq=¢=1). (32)
This implies for the representation of & the relation
(=1)%7 = (=1)b# (33)

between spin and charge.
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To end this chapter, we will prove that for a one-particle state,
the eigen value of

w(CP, CP) = (—1)*"Q

is what is called “particle-antiparticle relative parity”’.

6. The Particle-antiparticle Relative Parity

Except of K9 K9 (and their resonances), the states of one particle
and the states of one antiparticle have at least one charge with
opposite value and therefore are separated by a superselection rule.
So the expression ‘‘particle-antiparticle relative parity’’ used in the
folklore of elementary particle physics is an image for something
which is not a relative parity.

Let | 4+, us+ ), a state vector representing a one-particle state. We
choose k(CP) as representative of CP in the extension & which
corresponds to the description of nature. We define the state vector

I T u‘> by
R(CP)| +,usy = | —, u_). (34)
The vector | —, u—) represents the physical state obtained by CP
transformation. As we have seen, because of the normalization
k(1) = 1,
[(CP)]? = w(CP, CP) = (—1)<"Q (35)
is an element of 2.2/ and is independent of the choice of the repre-
sentative 2(CP). For short, we will denote by €’ the number which

represents (—1)* "Q in the group representation describing one-
particle states: that is

[RCP)P| £, u.) = €' £, u,). (36)
Multiplying both sides of (34) by k(CP) we obtain:
RCP)| —,u-) = €| +,us). (37)

Let us consider the physical state of one particle and one anti-
particle which 1s described by

|+, 1) Os| =, u-) (38)
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where ©@g 1s a tensor product which has been symmetrized or anti-
symmetrized according to the statistics. Thhis state is a proper state

of k(CP). Indeed from (34) and (37):

k(CP)l +)u+> ®Sl ) u*‘> (39)

=" ""1)2'7| +:u+> ®S| —’u~>

where j is the particle spin.

We leave to the reader physicist to compare (39) to his usual treat-
ment of invariance of a state of one particle and one antiparticle
under C'P and to check that €” is what is abusively called the particle-
antiparticle relative parity (Hint: CP does not change the spin state,
so (39) 1s symmetrical for the spins; let 1 be the relative orbital
momentum, then the proper value of C is (—1)%+! so the proper
value of P is €"(—1)}).

The Dirac equation yields (CP)?2 = —1, so it is generally assumed
¢ = (—1)%. From our general scheme developed in III, ¢ is a
function of the charges. This function should be experimentally

measured in order to check if it is equal or not equal to (—1)2/
= (=1)p+,

7. Group Extensions by Non-Abelian Groups.
Miscellaneous Applications to Particle
Physics

1. Results of the General Theory

We have already defined the general problem of the extensions of
a group G by a non-abelian group K. We must first determine all
homomorphisms:

G % #(K).

‘Then for each homomorphism g, we have to find the set Exty(G, K)
of solutions E' of the diagram IV.9 reproduced here:
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(K)

1—-—-——>vavv\.~> EWN> G-—-—-————>I

Lk

1— I (K),—>Aut (K)—>s/ (K)—>1

1

We just give here some results of the paper “Cohomology theory
in abstract groups II. Group extension with a non-Abelian kernel”
by S. Eilenberg and S. MacLane, 1947, Ann. Math., 48, 326. We
refer the reader to this paper for more details and for the proofs.
We shall quote this paper as “E.M.”.

l.a. The three-cocycle {(a, b, c)e Z3(G, €(K)). Let k be a
mapping of <Z(K) into Aut(K) such that (see Diagram VII.1):

pok = I, the identity transformation on 7(K). (1)

Similarly, we consider a mapping &’ such that:
p'ok" = I, the identity on .# (K). (1)

Since Aut(K) is an extension of ./(K) by .#(K), the choice of
representatives in Aut(K) given by the mapping k defines a factor
system @ whose values are in #(K). If we consider the arguments
of w which belongs to Img, we have a “cocycle”

Va,be G, w(a, b)eZ?[G, #(K)] (2)
defined by:
w(a, b) . (kog)(ab) = (kog)(a) - (kog)(b) 3)

we wrote “cocycle @’ between quotation marks because the range
of @ is in a non-abelian group .#(K). So we cannot extend to this
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1
€(K)
j
K G
t
kop g
: J p
1 — J(K)———Aut (K) o (K) 1
k
g
1 Aut %(K)

Diagram VII.1

case all results of Chapter IV. However the associativity of the group
law of Aut(K) yields indeed:

a(a, b)a(ab, c) = a[a(b, c)]@(a, bc) 4)
where
al@] = kog(a)wlkog(a)]™ (+)
The relation (4) among elements of .#(K) can be mapped by £’ into
a relation among elements of K up to an element of %(K), the center
of K. We call {(a, b, ¢) this element. It is defined by:
{(a, b, c)k'[w(a, b)]k' [@w(ab, c)] = k'(a[a(b, c)])k'[a(a, be)].  (5)
This function {(a, b, ¢) is a three-cochain
{(a, b, c) € C3[G, €(K)]. (6)

The way G acts on ¢(K) is unambiguous. Indeed to each element
x of &/(K) corresponds a class of automorphisms of K defined
modulo an inner automorphism. Since inner automorphisms of K
leave fixed every element of the center %(K), there is a homomo-
phism .o7(K) ¢_, Aut €(K). Hence G acts on €(K) by the homo-
morphism:

G 2%, Aut €(K). (6")



194 LOUIS MICHEL

If we calculate a[b[a(c, d)]w(b, cd)]w(a, bed) in two ways, we
check (E. M., lemma 7.1, p. 331) that {(a, b, ¢) is cocycle:

{(a, b, c) e Z3[G, €(K)] (7)

One also checks that: by changing the mappings k or %', the cocycle {
is changed by a coboundary; moreover, by a suitable change of k,
the cocycle { can be changed to any cohomologuous cocycle (E. M.,
lemma 7.2 and 7.3.). Hence, from Diagram VII.1, that is from G,
K and G _7, o/(K) we have determined an element { of
H3[G, %(K)] by the 3-cocycle ¢, defined up to a coboundary.

We can now state the theorem:

1.b. Theorem 1. There are extensions E of G by K corresponding to
the homomorphism G _¢_, «/(K), if, and only if, the corresponding
{ 1s the zero element of H3[G, %(K)]; in other words, the cocycle
¢ defined by (5) is a coboundary. Proof of the necessary condition:
Let E be an extension and % a mapping such that soh = I, the identity
automorphism of G (see Diagram VII.2).

1
v
¢(K)
N j’ i §
1 >K- E; > G >1 Diagram VII.2
4 R
/

k’%\ P Jf ) Jg
1———>j(K)-—{>Aut (I}()—,:mf(K)———»I

\ /

-~ #

- gl
1 Aut (K)

We define the mapping k& such that
kog = foh.

The factor system w(a, b) of the extension E, corresponding to the
mapping Az:
w(a, b)h(ab) = h(a)h(a) (8)
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yields for the @ defined in (3):

o(a, b) = flw(a, b)]. (%)
From (9) we define £’ by

w(a, b) = k'[a(a, b)].

The w satisfy (4), hence {(a, b, ¢) = 0. It is the null coboundary.
Proof of the sufficient condition: If {(a, b, ¢) is a coboundary, by
E.M., lemma 7.2, already quoted, we can choose k and k" such that
{ = 0. We denote k'(®) by w. Then, on the set product of the sets
K and G, whose elements are pairs («, a), we define the composition
law:

(@, @)(B, b) = (x-a[f]")w(a, b), ab) (10)

where a[f] is the transformed of B by the automorphism kog(a).

With the relation (4) satisfied by the w’s, Eq. (10) defines a group law.

One checks that the corresponding group is an extension E, solution

of Diagram IV.9. (Hint for the computation: w(a, b)ab[y] =
afbly]l(a, b).)

l.c. The next question to answer is: When G, K, G SN (K)
are such that { is a coboundary, how many extensions E are there?
Or, how many different mappings k yield inequivalent extensions?

The general definition of equivalence for extensions has been given
in IV.31 where Aut(K) has to be replaced by %(K) The answer is:

Theorem 2: For a given homomorphism G —? 5 o/(K), there is a
one-to-one correspondence between the elements of the set Exty(G, K)
and the elements of H2y ,[G, ¢(K)], that is the set of extensions
of G by the center of K corresponding to the homomorphism G 9%,
Aut ¢(K).

For the proof, we refer to M.E. Without proof, we shall give here
an explicit construction of this one-to-one correspondence. For this
we have to introduce few definitions and new kinds of group product.

Definition of G- kernels Given a group G, an abelian group A and
a homomorphism G __, Aut(4), we call G-kernel any pair of a
group K and of a homomorphism g of G ___, &/(K) such that:
A = €(K), the center of K and f = g'og where g’ is the canonical
homomorphism &/(K) _?, Aut(A).

Among G-kernels, there is the pair A4, f since &7(A) = Aut(4).
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Equivalence of G-kernels. K, g1 and Ko, go are equivalent if there
exists an isomorphism Kj__‘. K, which leaves invariant every
element of their common center .1 and such that, if j; is an auto-
morphism of K which belongs to the class gi(«), then loj10t 1 € ga(a)
forallae G.

Product of G-kernels. Ky, g1 and K>, go. The direct product K1 2 K5
has for elements the pairs («1, 22). Let .4 be the subgroup of pairs
(2, 2~ 1) where « € - the common center of K} and K». We define

K = KIAKy = (K} O Ky)/A. (11)

"T'he corresponding homomorphism g is deduced naturally from the
homomorphisms g; and gs.

We can now define the product of two extensions E; and Es or
G by the G-kernels K and K respectively. (Compare with the pro-
duct V defined at the end of Chapter IV). Consider the subgroup F
of Ey @ E» whose elements are pairs (aj, as) such that si(a1) =
sa(az) = a (see Diagram VIIL.2 for the notations). The subgroup A4
we have defined above (its elements are the pairs («, «~1) where
€ ) is invariant subgroup of F. We define:

E = EJAE; = F/A. (14)

One can check that it is an extension of G by the G-kernel K =
Ki A K. In the particular case K; = Ky = A, the product A is just
the product V defined at the end of Chapter IV for the extensions of
G by the abelian group A.

In IV we have indicated the general methods to solve the extension
problem in the particular case where the G-kernel A4, f is abelian; let
us denote by D; the corresponding extensions, elements of H2(G, A).
M.E. prove that, given ), an extension of G by the extendible
G-kernel K, ¢ all the non-equivalent extensions of G by the same
G-kernel are given by

E; = E()Z\Dg (15)
where D; € HyX(G, ). Please note that the set Ext,(G, K) of the F;
does not form a group.
2. Some Particular Cases

2.a. Extensions by a group without center. 1f 4 = %(K) = 1, then
H3G, d) = 0 and A, a group without center, is an extendible
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G-kernel for all groups G. Furthermore H3(G, A) = 0, hence there is
only one extension of G by K for every homomorphism g € Hom (G,
&/(K)). (This was proven by R. Baer, 1934, Math. Zeit., 38, 375.)

2.b. The homomorphism g is irivial. In this case we know there is at
least one solution: the direct product. (As a particular case of the
above theory, all @ defined in (3) are equal to 1, hence { is the null
coboundary). The other solutions are obtained by Eq. (15).

E; = (K @ G)AD; (15

where the D; are the central extensions of G by ¢(K). The charac-
terization of this particular case is: E is an extension of G by K such
that the inner automorphisms of £ induce on the invariant subgroup
K inner automorphisms of K.

Remark that g must be trivial when 27(K) = 1, that is when K has
no outer automorphisms; every automorphism of K is an inner
automorphism.

2.c. Extension by a “complete” group. A group K is called complete
if it has no center and no outer automorphisms: ¢(K) =1, #(K) =1
(Kurosh, 13, 92). In other words: K complete <+ K ~ Aut(K).

Then K belongs to both particular cases 2.a and 2.b. Hence:
the direct product K ® G is the only extension of the arbitrary
group G by the complete group K.

Examples of complete groups are:

{n, the permutation group of n objects, for n = 3 and n # 6
(Holder, 1895, Math. Ann. 46, 321).

Aut G, when G is non-abelian and simple (no invariant sub-
group) (N. Bourbaki, Algébre, 1, 7, no. 7, exerc. 3 and 4).

SOs3, the three-dimensional rotation group and other examples
among classical Lie groups, given in Prof. Speiser’s lectures.

3. Relativistic Invariance under 7, (the Connected
Poincaré Group) in the Strong Coupling
Approximation

We should study the strong coupling approximation in particle
physics in the spirit of Chapter I11. Here, we will only, as an example,
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look for the extensions of Z, by U; ® Us,, the smallest strong coup-
ling invariance group defined in II. These extensions can only cor-
respond to the trivial homomorphism since Hom[ 2y, (U, @ Us)]
= 1. On the other hand C(U1 ® Us) = Uy @ Uy, hence H?( P,
Ur ® Up) = 5(U; @ U)) = Zs ® Z» = the group of square roots
of 1 in the center U; ® Uj of Uy ® Us. These four square roots
are (1, 1), (1, =1),(=1,1)and (-1, —1); they will be denoted by
¢;. The four inequivalent extensions of Py by Uy @ Us are

E; = [(U1 X Uz) ® @0]/22 (16)

where 2 is the universal covering group of 2, and the two element
group Z3 is generated by (e;, w) where w is the “rotation of 2"’ (the
non-trivial element of the center of ).

The irreducible unitary representation of E; are characterized by
the baryonic charge b (for Uy), the hypercharge y and the isospin ¢
(for Us) and by the mass m and the spin (for Zy). By the method used
in II, we find for each E; some relation among these quantum num-
bers. For one, and one extension only, the corresponding relation is
verified by Nature. This extension corresponds to the square root
(=1, —1) (which can also be written (— 1)B£Y or (—1)S where S is
the strangeness operator); it implies the relation

(—1)btu+2e+2i — (17)

where any + sign can be replaced by a — sign.

The inclusion of the discrete operations P, C, T would yield many
inequivalent extensions. We shall discuss only the case of the charge
conjugation, since this is an historical example.

4. The Isotopic Parity

In 1952 T asked for myself the question “How to relate charge
independence and charge conjugation invariance?”’ I thought at
that time that the strong interaction invariance group was SQOs.
How is it enlarged when one adds charge conjugation to it? Since
SO3 is a complete group, the only extension of Z = {1, C} by SO
is the direct product SO3® Z; (SUs is an extension of SO;3 by Z,
which is not interesting for our physical problem). The group
SO03 ® Z3 is isomorphic to Og, the three-dimensional orthogonal
group (rotations and symmetries). Hence the quantum numbers for
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the invariance under both, charge independence and charge
conjugation, are the isotopic spin ¢ and the isotopic parity 7.

For example: what is the isotopic parity of the 7-meson? The
7+, n0, 7~ states are the three components of an isovector, and they
are invariant under the rotations around the third axis in isospace.
The state 70 is a proper state of C, the states 7+ and =~ are exchanged
by C. Hence C is a symmetry through a plane which contains the
third axis of isospace. The proper value ¢ of C7¥ = 70 indicates
the nature, vector or pseudo-vector, of the 7-meson for isotopic
parity. Since ¢ = 1, the m-meson is an isovector (and not an
isopseudo-vector) and its isoparity = — 1. Hence the isoparity of a
system of # m-mesons is (—1)”. For a state ¢, 13 = 0, one has the
relation » = ¢(— 1)t For these relations, for applications to nucleon—
antinucleon system, and for the representation of the inversion
through the origin of isospace by the operator U = iy C, see L.
Michel, 1953, N. Cim., 10, 319; footnotes 1 to 8 of this paper are
references to anterior works.*

However in these notes I tried to convince you that the strong
coupling invariance group was not SOz but contains U; @ Us as
subgroup. So, as a simple exercise we will look for the extensions of
Zo{1, C} by Ui ® Us. We first determine the homomorphism g
Zy s (U ® Us) of physical interest. We know that B and Y
are changed into —B and — Y by charge conjugation, and we have
seen above the relations between C and isospin transformations.
Hence, if (a, 06)e Uy @ Uz (o is a phase, ¢ is a 2 by 2 unitary
matrix),

8(C)(e, 0) = (=, o) (18)

where — means complex conjugate. The fixed elements (€(U; @ Us))Z»
of the center (U, ® Us) = Uy ® U are the square roots of the
unit, as we have seen in Section 3, they form the group Z: @ Zo.
The Extensions are in a one-to-one correspondence with the
elements of H3(Z,, ¢(117 ® 12)) and from Eq. 1V.(48") this group is

Zs © Zs = o(Uy @ UY), (19)

* I am very grateful to T. D. Lee and C. N. Yang for the great advertise-
ment thev gave to this new quantum number: N. Cim, 13, 749 (1956),
their footnote (3); however I disagree with them for having changed the
name ‘‘isotopic parity’’ into the unexpressive G-parity.
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This explicit correspondence is:
w(U, U) = €€ Ly @) Lo (19,)

where U = i¢75C. That is, independently of the choice of the repre-
sentative k(U), the square of k(U) is e: we can say that it is the
square of the inversion operator in isospace. We met a similar
situation (for the square of CP) in VI of Section 6. The connection
between the symmetry and the isoparity of a state composed of a
particle and of its antiparticle depends on the value ¢ of € in the
group representation describing one-particle states. Let us show it
explicitly (without proof). The irreducible unitary representations
of the group K = U; ® Uy can be labelled ,, yDe (with y + 2¢
even). According to the Frobenius theorem (quoted in Prof. Wigner's
notes) we deduce easily the irreducible representations of any of
our four extensions:

representation of £ its restriction to K

reduces to:
when b # Oory # 0 b, yDy b, yDt @ —p, —yD,
whenb =0 =y 00Dy" 00Dy

where 7 = isoparity

Let us consider a state of one particle of baryonic charge b, hyper-
charge y and isospin ¢, and of one of its anti-particle (— b, —y). This
state belongs to the representation (o, yDt)*. One easily computes the
decomposition of this representation into a direct sum of irreducible
representations of E. This yields

symmetrical
2 '
(5, yDr)? > for the part y = b = 0 D, 00D2p-yA¢
antisymmetrical
2t L
B i—o 00Dz e

where ¢ is the value of the matrix which represents w(U, U) =
€ € €(E) in the representation 5 ,D;.

In the physical literature one always assumes ¢ = 1. However
¢ could be +1 and it is a function of 4 and y(withe = 1if b = y
=()). This function should be measured experimentally.



