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Abstract
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jod

s paper studies the number and the nature of the fixed points of

<3
the renormalization group for the ¢ model, as used for instance in

e Landau theory of second order phase transitions. It is shown that
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where the scalar fiel d & (v) has n components (the n values of its index) corresponding
to inner degrees of freedom, while « is the space dimension. Brézin, Le Guillou and
Zinn Justin [2] have written the renormalization group equations for this model and
reached some general conclusion on the properties of stable fixed points, e. g. for
n <0 4 there is only one stable tixed point, that which is O(n) invariant (see Eg.

N

DL

e

a Hamiltonian density appears in the Landat %és;z@r}’ [3] of second order phase
transitions:  the field values are the » component Landau order parameter. As a mean

field theory one obtains good selection rules for the nmetry change in the transition

but the wrong critical exponents: so one has to take account of the fluctuations at the
critical points and applications to the Landau theory of the renormalization group tech-
niques have been proposed [4-7], and many have been performed since.

The aim of this paper is different. Very few studies have been made up w now of
the group covariance properties of the renormalization group techniques {8-10]. Here
a more systematic study is made. As a result it is shown that, when it exists and for
n # 4, the stable fixed point is unique: it often has a greater symmetry group than the

starting polynomial:  some sufficient conditions are given for this phenomenon to
occur. In the applications studied in the literature few / stable fixed points were found;
so there is a wi}’}}éiiﬁ;{ {e.g., Dzyaloshinskii [11]) that ;E’é@s, is a topological obstruc-

tion to their existence when the quarti
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of parameters larger than three
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1. THE RENORMALIZATION GROUP EQUATIONS

In Eq. (1) the g. ikl re coupling constants of the term quartic ;*& ®. They are com-
pletely symmetrical in the four indices so their number is N Mg“ j Their set can be
considered as a vector in the N dimensional real vector space J, of quartic p{;é /nom-
ials with n ?&;é;&%}%@i;. This vector g generally depends on gﬁ?&m% parameters. Let

be the renormalization parameter. The renormalization equations are:
Aodg . AR)
Bl g (.1
dh GRSk 5 (1

To simplify notations we will often use a multi-index « taking N values: then Eq.
(1.1) reads:
Adg (R)

The fixed points of ¢ of these equations satisfy:
B(g)=0. (1.3)

. .0
It can be shown that the matrix {}iﬁ has real @igﬁ%%éﬁ}%s which are related to the
B,

;;v

éﬁ

value of the critical exponents when the fixed point g is stable, that is when the
satisfy some partial positivity condition that we will make precise below.

The functions B, are not known exactly, but the first few terms of an expansion in e
= 4 — d have %}éfzg computed by Brézin et. al. [2]. Imposing the irreducibility condi-

+ & pther terms obtained by permuta

g

.+ 3 other terms obtained bv

This can be written pictorially in a condensed notation: each g is “tetravalent”, inter-
nal bonds express saturation of indices and average on the permutation of the indices

corresponding to the four external bonds is assumed:



66

(1.6)

o
&
P
S

ssion)

expre

g
jpgse rskl

J

Y

& ipg

8k

3

i
i

d notation for this

g s
¢ g

¥
Ip

e condense
)8;34/8k

).
, to this order 8

£
3

{

£78
a

(1 +

4
2

+

) (—¢

&

JE
A
4

xed points becomes:

P

troduce an even mor
have shown th

1
i

i

5

) (1 +
€ 8B ijut

g

il
4
98 ikl

- g{
—(

i
JD(e, g}

17
ia

Wallace and Zi

g)

B (
Pk €4

ratently:

Bie, g}
or instance (and we i

B

2

0.

s

10.5)

-

¥

e

o

il

e e bpe
15 are exue

%

.

LoN




3

Symmetry and Renormalization Group 67
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and the symbol g ¢ has been defined in Eq. (1.7). The symbol \/ defines an abelian
algebra on T4 by
g h= ”%Eiéf + h) g+ h) - g8~ I éz§ : (1133

It has O(n) as the group of automorphisms. T%zi algebra will be studied in Section 4.
As said in the introduction, the extrema of O are idempotents of this algebra. In-
deed:

d®'ig") .
—d =0 =% eg (1.14)

In Sarti . (n ,

In Section 5 we will study general properties of the extrema of ®'!. The last sec-
tion, Section 6, will study the family {’EY ; of irreducible discrete subgroups of
O(n), their invariants, and give the counter ﬁ%émgi s to the Dzyaloshinskii conjecture.

2. GROUP ACTIONS -- THE ACTION OF O(N) ON REAL N-
VARIABLE POLYNOMIALS.

We first recall some é’}ggi{: concepts and results on group action. When a group G
acts on a set M, the set of transforms of m € M is denoted by Gm and is called the
G-orbit of m. The elements of g which leave m invariant: g-m = m, form a subgroup

G, of G which is called the isorropy group of m. Note that:

So the set of isotropy gre
& '} f

We denote by [H] the d;?;;géi;z; ¢

e
isotropy groups form an equivalence class that we ezéwﬂ’sg by [GH] The set of all
i3 .

ACM e, A€ TM). The centralize

which leave fixed every element of A: it is a x;;%:zmzmgf C A CG
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C (A) = M G, . (2.3)

mEA

The normalizer fzf{;{;%} of A is the set of elements of G which transform A into itself,
It is a subgroup of G which contains the centralizer C_.(A). For instance in the action
of G on itself by conjugation, x = g r g !, C_(A) is the subset of elements of G

iz

which commute with every element of A; e. g. {f{;iG} is the centerof G. If HC G
and N.(H) = G, H is called an invariant subgroup of G and we denote it by H <{ G.
More generally, N .(H), the normalizer of H in G, is the largest subgroup of G which
has H as an invariant subgroup. For a general G-action, we remark that:

C,A) TN A) . 2.4)
(Indeed, let ¢ & {{;{fi}% n & f%f(;é;%}; oranya € A, nle(n @) =nn " a=a) So

from the definition of the normalizer of C 5{%),
F

N(A) C N (C ) . 2.5)

B
o
e
[

=

We study a situation when the equality holds. We first remark from Eq. (2.1) :
(2.2) that:

HC i;g;@f‘f} ) (2.6)

but the equality is not necessary. In any case:

P

" © g agtt . .
M = MCAMD 2.7
We now prove that Eq. (2.5) is always an equality when A is of the type Vi
L B PP,
N (MY = N (¢ My (2.8
i3 = kS

dense.
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We now study the linear action of Otn). the n dimensional orthogonal group on the

VeClor space of n variable polynomials.  O(n) is the group of nxn orthogonal

atrices, =« acting on the real n-dimensional vector space 1 . We denote by
! . 3

& one of its vectors. and by i‘z‘}}.‘ I= its coordinates. 0 also acts on the fune-

tions defined on '}

o

[

fld) = flu 'y .

o

This action wransforms polynomials into polynomials. preserving the degree of homo-
4 o s

direct sum of the O(n) invariant vector spaces 7,

geneous polynomials. Hence 7 is

a
containing all homogeneous n-variable g}{%%}f;’aiﬁé%i;ﬁig of degree k.

o Ttk 10 o
dirm 7 P = ) {(2.1hH
. K

“

Note that ,5 , 18 the set of real numbers and that 7 = iﬁ For £ = 2. the represen-

tation of @{F?} on the space 7, is reducible. Indee i in 7, there is, up to a factor. an

invariant polynomial, the orthogonal product
(b, &) = é}g b, . (200

So every quadratic form can be decomposed into two irreducible components.

1 e g d.d) .
‘ - o kb oy e kT 312
gld) = 4y b, iff;; n ;}“‘}? é}; . H ) (2.12)

Using the Laplacian

. 5 . -
A= 0 gy 2.13)
g :jj§{§} [
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We can also say that A is a surjective linear map

Foe= 0, (2.15)
k -z

whose kernel is 7,"%. So. from Eq. (2.8) and Eq. (2.13) we deduc
o kel s k=30
dim &% = ) - (2.16)
& k-7 .
For instance:

. Li 3y .,
dim £ = (4 + Jun

Cdim E = (n o+ 6)n F Dintn — 1)/24

[

A7y

We are especially interested in the case k = 4. We denote by Ulu) the operator
representing the action of u & O(n) on F

4 The decomposition of U into irreducible
representations yields for the carrier space:

¥ i E { [ Y
1 g - : t KE 18;
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the irreducible components of ¢ © T, we use:
hy & &

T
-
—

and, for a homogeneous polynomial of degree k

v £ K
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(v 5 = MR (2.23)
and from Eq. {2.19) and g{ig = 5 (5, g} {5, 8) ' one obtains
(5. 8) = 55 £ (2.24)
4
We will find it convenient 1o use the shorthand notation
gy = *f; (s, &) (2.25.0)
53
f0 = S XE (2.25.h)

We will be led to study the polynomials of J, whose isotropy groups are irreducible:
i.e., their n dimensional representation {ie;‘?*fﬁw*? as subgroups of O(n) is irreducible.

From the remark that for such a group of the form

G = Oy = Ony u, N Oy 5,

and that all isotropy groups of non-vanishing polynomials of €% must be reducible we
deduce the

éfémzﬁé 2.1 {"‘ {}égn sze:éz:ii:%%g/ﬁ iz‘g*gﬁés% o) = 0, iégﬁs is g €Y
i) s - N - ) .

0 wtherwise
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(¢, ¢y = {3, 0}y =n . (2.2%3

The isotropy group of ¢ has been labelled B by Coxeter (see e. g. [17]). It is the
semi-direct product of the abelian group of (nxn) diagonal matrices with = 1 as
entries and (nxn) permutation matrices (i.e., zero everywhere except one element in
each row and column which is one). The order of this group (i. e. its number of

slements) is

&

The group B, is the symmetry group of the hypercube whose vertices have for coor-
I

dinates & In Schonflies notation B, = :i“%y 83 = sif??,? . For every n, 9 "»is

.
e

generated by 5 and ¢:

& U BN VIR iy

j@ g oy g (SN O L@,w‘?i}}
Moreover, for n = 2 and n = 3, every polynomial g € 7, whose isotropy group is
irreducible belongs to the stratum of [B ] or is a multiple of 5 : so by an orthogonal

transformation it can be brought into a linear combination:
as + Be €7 fﬁ :

n{ for the irreducibility

1

It happens that for n = 2 the condition (2.26) is also suffic

¢

of the isotropy group. Indeed:

o
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Both of the necessary conditions Eqg. (2.26) and Eq. (2.32.a) for the irreducibility of &
are not sufficient and %zi} are inequivalent as shown by the two following examples

| Table

[

t
taken for n = 3 see |18 for the determination of their isotropy group, which

< _ iy = (3 2 — & D b N (517
&= ,{33{5 s gy = \ﬁéfg é}z }é’zé’; R g = g == g{éﬁ;; . (2 334y
$. ¢ 3.7+ 32+ 24.°) (2.33.5)
hw wés Jpar 55 P SR H 350
S 2 2 ; 4 2_ 4 sy
G=C,, . g@d) =2(d — & )bb, + &% g bd=b =150, @
4h i 2 P2 3 SRl 12
L b = (d s
E;}is?’ & ipar é}f {?}; é} &) L

It would be interesting to have a simple set of sufficient conditions on g for the irre-
ducibility of the isotropy group G = (}SF} As we have seen Eq. (2.26) is sufficient
for n = 2 and I conjecture that Eq. (2. E{B} and Eq. (2.32.a) are sufficient for n = 3.
More generally, for harmonic polynomials A g = 0, the set of necessary conditions
fi:g‘i‘wzg = 0 for I = k = n—1 might be sufficient. For n = 4 an exhaustive study
has been done in [19]: including that of O(4), there are 15 strata corresponding to
irreducible isotropy groups, instead of 2 for n = 2 or 3. For n = 4, the maximal
dimension of a subspace J f for G irreducible is 11; all these subspaces are included
§;§} & ’3’5(}} of dimension 26. No similar results are known for higher n.

We end this section with some very important remarks: The isotropy groups of pé}%—

in

ynomials g € J, are closed subgroups of O(n) and for any mathematical discussion

such as those in this paper, one has to consider the isotropy group of O(n) _, i.e., the

exact invariance group of g. However this is generally not %, the physical symmetry

group of the Hamiltonian defined b m
7
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an orthogonal representation 4 —>0(n)

theory of
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3. THE DEFINITION OF STABLE FIXED POINTS

As we have seen, the isotropy group i}f.!s; = G of the quartic term g(d) of the
Hamiltonian éﬁﬁ%ziv (1) is the symmetry @r{}ﬁg; ‘of the Hamiltonian. It 1s a closed sub-
group of O(n), hence it is a Lie group of dimension m < {2) ; in the particular case m
= 0, G is a finite group.

Physically we need only to consider the case of irreducible subgroups G C O(n).
Indeed, when G is reducible, by choosing suitable linear combinations é}Z of the com-
ponents of the fields b, (x), one can split the Hamiltonian into a sum of non-interacting
but similar Hamiltonians, each one with a field of o' components, {(with E;;é@ = nj
and with isotropy subgroups G, irreducible subgroups of O(#'*). So émghg% only to
study the Hamiltonians with an irreducible symmetry group.

As explained in Section 1, the deduction of the renormalization equations (1.5)
. ) e \ . o or A0 o or (4
requires only the weaker hypothesis Eq. (1.4), equivalent to g € J f}} @ J,". How-

ever, the renormalization equations (1.1} are equivariant for the whole action of O(n)
on J
4

Vu€Oom |, Ut oBgle, ) = B f&“atgé}éé : 3.5

&

5

The quartic term g(¢) is the value of g(\) for a fixed value Ag of A (e. g. Ao = D If
G is its isotropy group, Eq. (3.1) implies that for every @aiuﬁ of X, g(\) is invariant
under G. We can also say that the trajectory of g(\) stays in the space 25746; More

precisely, the Topy group of g(A) has to be independent of k in a neighborhood of
A, when i # 0 and it m&y become larger at the fixed points g . The physical re-
quirement at%? stability is the positivity of the restriction of the matrix {Eﬁ to the

77 Agﬁ

subspace 7 4

%

This is expressed by the equation for g . the stable fixed point of g of isotropy




=

Symmetry and Renormalization Group 75

Gy = { §{;} &, (3.4
which acts effectively (i.e. no element of Q%’{}} different from the identity leaves fixed
every point of 7, ’). When Q(G) is not trivial, from a solution ¢~ of Eq. (3.2.a), by
the action of O(G) on ?,?é{; one builds in general an orbit of solutions. This was

already noted in [8] and [10]. If Qié}’; za » Lie group of positive dimension n’ | that is
the {iémefi‘;ésc;ﬁ of the orbit Q{{E}i;g 3} of g and the tangent plane at gﬁ fo this orbit is in
the kemel s:tsf 3B, ;o - We will show later that the stable fixed point, when it exists,

is unique.
We have now to take into account the fact that B(g) éi: known only through an
expansion f(e,g), so the solutions of ﬁéagé = ( define g as a function of €. Only

the solutions g (e) —> 0 when € —> 0 are physically relevant. It is difficult to §‘i‘§j{§§?
the convergence of the € expansion for € = 4 — 4 = [ (generally it is not convergent;
it is an asymptotic expansion). We completely ignore this problem here.

Assume the expansion

The first term g, is defined by a non-linear equation.

E . . N
5 8080 =0 (3.5)

)

0= égg_g”{}} < gzg} 4

The other terms are defined by a system of linear equations. For instance, that for g

reads:
,,,,, B N e
gf’f { ’%g; gi - E” g{} ‘ i:%,g?:}

m

This solution is unigue 1

z




76 Louis Michel

* 2z V
H(g"y = éiiﬁém &) 3.7
*‘fg

for the Hessian of a fixed point. We can now reformulate the simplified mathematical
problem we have to solve for finding stable points (from first order in the e expansion)
in the renormalization of Landau theory of second order phase transitions.
One is given a positive quartic polynomial on V' B
0#GEV, ., gd)>0 . gd) = \* g (3.8)
with an irreducible isotropy group G = ii?{;z} Find the extrema g* of ®1 g) (defined
mEq. (1.1Yon T {i They are defined %%‘é’

= g0 (3.9)

(i
I
h
Wy
SRy
'
it
w!&*«d
s
O
“?E

Such an extremum is a stable fixed point if and only if the Hessian at g* is strictly
positive.

€>0  HE);0>0. (3.10)

Moreover this stable fixed point is physically acceptable for the given polynomial g if
it is in the attraction basin of gi ie., d;}{“{g} never increases from g to gg on the
integral line of the gradient field. Finally one has also to verify that g*{'{i;} > 0 for e
# 0.

4. THE O(N) COVARIANT SYMMETRIC ALGEBRA ¥ 4 AND ITS
IDEMPOTENTS.

Equation (3.9) means that the fixed points g are idempotents of th e algebra defined

sl

the symbol \/. In this section we study some properties of this éig bra similar to

those studied in [12]. For the linear representation O(n) , u —» Uuy on 7, the ex-

“

o
-
3
o
w
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which is invariant under any permutation of its three arguments and which is Q{?i}
invariant. I we fix # and v, O(u,v,w) is a linear form in w; so with the O(n) mvariant

scalar product (g,g) defined in Eq. (1.12), it can be written as the scalar product o st w
by

St

a fixed vector that we denote by u_ v

Olu,v.w) = ?zz V.ow (4.3

The correspondence from the pair &, v to & v is a linear ma
i 4

~2

- e L .
G & S L3 g
Iy & 4 3 4

which defines an algebra on J

{

Y = - 4y ; + oy + ¢ v + v

éié‘xji ) ikt & i ’gf:;g;g; %zsg;é*f ' ifg;}ag féngé:f ?iékg;zg pyil ikpy fég}zgji
; 1 A AN
4y . f. 4.4

Mo oV Vo, H .
Hpg  pgik Hpyg  pyi

The symmetry of © in its argument implies:

PN
Lh

(. v, wy = (v, u_w) = {u, v, w) = elc . ..
Y

N/ N\

For each ¢ € 7, we can define a linear operator D € $(JF ), on J | by:
& % £ 4 4 -

D ow=g w.

The first equality of Eq. (4.5) shows that D . is a symmetric operator

an Hig) s simply:
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To compute easily with this algebra on fourth degree homogeneous polynomials g(d)
one can introduce the nxn matrix

.
PR 3 o
7 ihy = i B : b .
£ "'}'}:;‘ 12add. ad
H F

which is quadratic in &. Note that:

gy =T i@)?é; &b, {é} (411 |
Ty, = TrT () = ff (4.12)
The algebra product of ¢ and 4 is simply:
e ho=Tr ?é:?“é (413
As an example we easily compute for s(b) = (. s:é}z (see Eq. (2.22.a)
= 33 &) + 26 ¢ ) (4.14)

SO

and more generally with
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We

s even a munpmnum on the

i,
s
o

result, independent of

Theorem 4.1: @
We first establish

For an extremum g
> () with the use of Eg. s;f%,f%; and Ea;
>0, 1e.,

- - + 7 .
0 < vigy < wydy =72 i :_%: (4.21)

. 1
+ 3 D44y 4
’Yféf?\ )

—)1-3D02) - 3D }. (4.22)
vis) ”

The trace of the product of 2 positive ope
show that Tr 5?{&3:?}?4} < 0 so that H{eg)P

3

will prove the theorem for n = 4.

>rators is > 0 for n = 4 we will
(4}
i X

is not a positive matrix and this

SN are linear forms on

E

We just remark that T
{4.8) and the fact that

are O(n) invariant. So they must be proportional to (s

Ir f*}!) and Tr af? . moreover Eqg.

S
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5. EXTREMA OF oV

extremum of ' = — & (o
From Eq. (4.20.b) we deduce:
{;i; : s ii-)i» \;gg’(;: §f ?ﬁf}}“‘ i _,__% "{g{»i ) Egaf?; )

Assume we have 3 second ¢ *ai remum A = € j an

the straight line containing ¢  and &~

By = - N A n) =€

i
e

Since A = O and » =
values must be extrema of U(4). Indeed:

correspond respectively

=l -@alro

-
et

N af%

We know that

§) we verify from Eq. (5.3) that s is constant.
= h does not

assume that:

O0=Higylg - h=e(3D. — 1) g — 1) = elg +

Itis athird d

to the extrema g

a third degree ?é}é‘{ﬁi}?ﬁia% has no other e

correspond to a zero eigenvalue of the Hessian H{% Y oor HRD).

g} - %fg g, 8) It satisfies

iy
ot
S
o
ey
Lo

d consider the restriction of

legree polynomial in A

[l - @] @n-3)-@ g } (5.3)

and £ of &'V these

L
i

extrema. So when (h, )

Then we can ;:%z‘z’}af; that fi‘@ direction g

Indeed,

h—3g =20
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o g . o - B . g {1 . s
Ot course neither are they minima of the whole polynomial &'V, When (.
hy. since () has no other extrema than 0 and 1. the extremum with the shortest

fength is in the attraction basin of that with the biggest le *ng S50, This s

truc for any pair of extrema. This discussion establishes the following theorem:

e - o Lt . o
Theorem 5.2: For any subspace ¢ g &' has a minimum on &,
mum of &Y on € is on the

this minimum is unigue &ﬁ{fi any {éi*’m ‘a%z

boundary of the attractor basin of this minimun

This completes the proof of Theorem 4.1 for n < 4 since in that case § is a mini-
iy

mum. We also remark that for n = 4, y(§) < | (see Eq. (4.21)) and from vy(g) < y(§)

and Eq. (4.21) we deduce (g, §) < (5. §) for any extremum €g whenn = 4
. - . C ) . s G p
The discussion in Section 2 on zhs action of the normalizer fif’{}gg £ ;j; }oon ? ) and

the equalities (2.6) and (2.8) gives the following addition to Theorem 2.

and if &
roup is O

. has a

VESN(t)
{i?izz;‘{j’

Corollary 5.3: If g is an isotropy group on
minimum, this minimum is uni que and its invariant
the normalizer of G in O(n) .

”K‘Q

The interesting question would be to decide for which conjugate classes [G] of sub-
groups of O(n), and more specifically for which C{;;‘iigﬁag{f classes of irreducible strict
subgroups of O(n) , &V »,g ¢ has a minimum. Indeed this minimum vyields a stable
fixed point gﬁg} of the renormalization problem when its Hessian is not degenerate;
{when ﬁ’ez‘};’{g ; = 0. a study of the bifurcation has to be done). Foran = 2 or 3 we
have seen that the class of irreducible strict subgroups is unique, it is [B,] and , as is

well known, the isotropic fixed g}{}éfz%’ is the only stable one. When n = é the list of

=
o
&
=
WO

lasses of irreducible subgroups which are isotr opy groups on J s k
L= = £ g

c
we have shown here that § is still the only minimum of &V, but it is degenerate. We

9
%w

are studying the case n = 4 in collaboration with J. C. and P. Toledano. When n >

4, we have seen that § is never a minimum of

¢ Tor G wreducible.  In the next

section we will construct a family of

when # > 4 and is
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since we are interested in extrema invariant under an irreducible subgroup G C O(n).

We will also use the direct sum of orthogonal subspaces

Then we get from Eq. (4.17) and Eq. (4.18)

w = N A 12 A ;
g% 5,873 y(g)s + P ). (5.17)
If we apply D and D_ to § = {x + m§ and use iy = %; {&;i; + §‘“/§ we obtain o =

and

(+m=—12 - 2=y =@ (5.19)
I — (& ¥(®

n+ g

From the inequalities (4.21) and (5.10), and from the preceding equation, we obtain

the inequalities:

. . 4 {p + 23 .
0 < (@ + v < Inf ( 2 M} , (5.20.0)

y , )
n ot 8

0 < y(®) w¥ < 1 {(5.20.8}

(v(xy = 1) (v -

When n = 4 either vy(i) =

Lemma 5.4:
other exirermnum,

I is positive
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Lemma 5.5: When n > 4, either €¥ or €y is the minimum of &

We can have more knowledge of the Hessians of et and ey. Indeed, from § = [ ¥
+ n § we have a linear relation among the Hessians
o g

[ Hiex)y + n H(ey) = H(e) + el ~ [ — n} . (5.22y

/

From Eq. (4.19) and Eq. (5.19), and the values of [ and w given by Eq. (

m
a
joscd
[N

Eq. (5.18) we obtain by projection on f?t

{(v(»y ~

The two Hessians are proportional on “g}; and the proportionality factor is positive

when n > 4,
Let us apply these resuits to the 2-plane ’é B, spanned by ¢ = > @f’ and ¢ =

Y\A

{(d,d)". Note that:
(c,ay=(,0=n , yoo=1, cec=c, sc= %h + 2¢) . (5.24)

R g— M; o §___i..§ N S F - 3 Ay ot "
I3 - 5 ;e [ . { . o P .
When n > 4, ec’ is the minimum of ®' in éfc = fﬁ o indeed
Hie' Y (5~ 2¢) = e B (s — 2¢) (5.26)

"
f
[ W\
il
"
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H(c¢" ) has the same eigenspaces in € and the eigenvalues are muliiplied by (n—4)y/n.
. E

Since Sﬁ is finite, the dimension of the orbit of these extrema s nla—1¥2. This 15

half the dimension of Ker 535{{7“} = Ker H{¢"), so these extrema also have an

accidental degeneracy of dimension n{n—1)/2.

6. THE ISOTROPY GROUPSG__,N=|] r , AND THEIR IN-
VARIANT POLYNOMIALS. ">

Consider the polynomials X e¢=9"Y+ ;f}é”‘é‘; with

4
pi-n -3 {2 .
- 32
For each value of j, {Q‘? é}?ﬁ } has O(p) as isotropy group; with the summation over

j the isotropy group is the i;‘:f?é}sj.i rect product

P = Op? 1 (6.2
PG ) §§g 4 )
where O(p)? is the direct product of g factors isomorphic to O(p) and E%{g is the permu-
tation group of ¢ objects. Particular cases are:

r . =owxn , I, =8 . (6.3}

PR

p.gq
made of @:g blocks of pxp submatrices; O(p)? has all its blocks zero except the diag-

The gziégg} I" is realized as a subgroup of O{n). The nxn orthogonal matrices are

ot

onal ones and each of these diagonal blocks is a pxp orthogonal matrix &€ s:’;é’;z}x The

permutation group EE{ is represented by matrices which have only ¢

»L
o
e
St
&
S
ﬁ:f“
w
o’
o)
T
o]
Fad

from zero, one per row and per column and each of these non-zero blocks 13 @QL@%E to

the matrix ';,_, e pxp unit matrix. We will prove later that the groups I’  are irre-

The quadratic invariants of the group 11 of permutations of the {;} are 1, they are
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S:{giéyaﬁ %¢:§§§)

[

It 1s convenient for our purposes to consider the n dimensional space ‘"‘ifﬁ as a tensor

product, V. =V @V
# p g

.
NP LN~

x X{Z;}T}%ggaﬁzs 8¢ . x =5

g . i ;

J P g
similarly one finds
§=45 R ; ¢ = &c
P g i

Then it is easy to compute:

x oy =pRLt8,
p.a4v/ p.g G p.g

= 1

P2, 4,2,

kY X Cox x
. 9 3 Tpg Vg 3 “ng

In the particular cases p = | or ¢ = 1 we find Eq. (5.24).

these equations for different pairs p,q; e.g.

.
(x x )=pgrikI= ¥ x
Vogr Ypg) T P AT ’ g pa.r

so the coordinates ¢ .. can be written as b, =p® ..
i & 2

Lapd {{\J

Then:

(6.5}

{6.6)

We can also generalize

)
o
2

Now we can consider a family of groups 3_:5} g Pa=n and their intersections. Let

2 o

be a decomposition of n in k factors, not necessarily prime,

3
iy ’%
= 3 G (G )




2
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G = 2" ﬂ (r. 1y . (6.14)
[ Lt = ;

It is interesting to note that for rEr, = =r, =1,
G, L= f (6.15)
Le., {Z} 5 , 18 isomorphic to the Sylow-2 g%‘{?iﬁt}ii of the Coxeter group Sﬂ‘si
We ver ;‘v %?k;{ ) _is an irreducible subgroup of O(n). Indeed it contains

Tyl s iy

the Abelian %g%}gz‘a}ag’; AN of di agonal matrices with elements = 1. The matrices which
commute with A are the diagonal matrices. We see that the permutation matrices of

2

s indesd

i

G, . act transitively on the basis {Q}i} of the n dimensional space

%Ees ordered ‘set of n basis vectors can be decomposed into nested sets of
Py Py - - . p,_, clements for ‘ih@ different levels of nesting. The permutations of

ﬁ permute the p, §~§§9mmé sets; inside one such set [T is the group of permuta-
H . ) Pl ” )
ment sets and so on. So ¢, can be sent to the place of any ¢ .1

H

?Li@?i% of the P, cle

= a = n. By conjugation the permutation matrices permute the diagonal elements of
é%ag{}s’;zié matrices; so the only matrices which commute with all elements of
G . ..., are multiples of the identity, i.e., G, . ... is irreducible

31;2} true of all O(n) subgroups which contain it. éz the Q%Eb;?’z?é*}& § g A€ also irre-
ducible
k
7. THE STABLE FIXED POINTS OF THE POLYNOMIAL }: }&é v (P).
i=0 '

We use a still more condensed notation

Wonodaiion:
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(7.3.h)
For i = j this equation shows that the v, are idempot

=
e

nts; they yield the fixed points:

From equations (7.3.a) and (7.3.b) we see that any pair of these fixed points satisfies
an equation of the form of Eq. (5.7):

. 1,12 M%‘,?E?N*Zw
T T e B T z} L=
] E {5}; + B p;+ 8 7 /

(7.5}
From Eq. (7.3.2) we obtain the orthogonality relations:

{.zgé,,z‘gm.zi;:}x% i=j=k

and similarly:

-~ I

, 2 Pt 2
’gf‘«.&;i‘% - ié} -

T (x, — x,}

(7.7
We deduce immediately for the Hessian of x. (see Eq. (4.9))
i

(7.8}

e
Tk

orthogonal to

£
perplane is in €,

ry ...r, orthogonal to ¢ = . The restriction to the Z-plane
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L,

(we have used p, = r,). The eigenvectors and eigenvalues of H(z") in the 2-plane &,

X, are (we use Eqg. (5.14.¢))

HZyi=¢ef . (7.10)

Th) =

The linear relation (7.9) implies for the Hessian:

i
r"aL
'4») ot

B r, ~~é§ o ai»é’éﬁ, . a»vi; _—
B T sidesins { E ...f. [P S— 5 - e — E; i Hy
(=} r { ) 3 (x; ) é%ﬁ?},s { j
and from Eq. (7.8)
" EN ’rs - é B
f;é?z}{}~x;~&g%/ . P=ji=4
i

To summarize: when n is divisible by r >4 and n/r can be written as the product of

a
l
at least k — | factors, one can consider the Hamiltonian Eq.(1) with a quartic poly-

»

depending on k + | parameters «; 1t has a stable fixed point Z“(¢). given by Eq.
i?,%‘ss which is physically relevant since it is a positive polynomial (the coefficients in
Eq. (7.9) are positive and the x, are positive). Mathematically, k + 1 can be arbi-
e{aﬂﬁj large. This example simply destroys the “conviction” in reference [11] that as

“a general con %iﬁ%z}f‘*f}éi of some kind of topological properties of the renormalization

group” no stable fixed points can exist for k > 2. We will e

another counter example wi

h




el

§
Yd~p uoym "y pue “d~

i

8

S121gPY S vy

3

1odie

"d uaym b@ ‘4

i
>ld

Ty Wy

2

m\bQ, ey N

it
T

e

d uaym

7t

. 1y
Aq pouurds g aus




~ and X, when 4< Py

!

<p

¥

i

when

hen PR<p <4,

i}

urm s ¥ow

e
st
o
E
3
4
et

v,
hy

Symmetry and Renormalization Group 91

s (7.14)

Why both H(z ) and H(b ) have the eigenvalues # € of multiplicity & is not clear to

me. It i1s 1o be noted that the isotropy group of the fixed points is much larger than

the normalizer of the isotropy group G, . - Indeed
omy.=I . omw.=1 nr_ . (7.15)
- réf’ ¢ ;};gfl ;{}d?:

The proof is easy in the second case since dim ﬁif’z}}} = n(r, - 1¥/2 while the normal-
izer of {;a o, is finite since 5;??) o, is finite and mﬁéﬁg%iﬁ and C O(n). The
polynomials X appear often in actual studies of Landau transitions.

Finally, I hope that the powerful method developed in this paper for computing fix-

ed points will also be useful for practical applications.
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APPENDIX

In Section 5 we studied the fixed points of some 2-planes. We give here similar
results for 3-planes spanned by x , x;and x, with 0 = h < <i;’ =< k; this implies that
1= < p. < p. = 0 we aﬁé ié@ condition that every s different from 4. An

Py P 7 ypi

j

interesting particular case is h = 0, j = n, so p po=1,p,=n.%x =cand X = s
e fixed points and the spectrum of the restriction of their Hessians

The component of tl
to the 3-plane are given in Table

We find that such & E»g}%s&zﬁﬁ has & fis
vertices of a polyhedron which a has the same faces

dimensiona

H
H

we conjecture that in the £

points forming a cube-like figure.
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