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Abstract : This review paper studies explicitly the important example of

Landau theory of second order phase transitions. The consequence of the 0(n)
covariance of the renormalization equation is explicitly analyzed. Some purely
group theoretical criteria for the existence, non existence of stable fixed

points and their symmetry are presented.
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The "renormalization group" equations are a system of first order
differential equations of the form

du(})
E—TEE—X = B(u(N)) (D

where A is the scale parameter and u is a variable defined in a vector

space P (generally a set of coupling constants) and R(u) is a vector field
on P . We will be interested by the case where the vector field is covariant
for a compact group acting on P . The fixed points of the flow defined by (1)

are solutions of the non linear equations

B(u*) = 0. ")

The stability of the fixed point u* is given by some conditions that we will

precise later, on the spectrum of the linear operator on P :
* dB, x
W = S8eu®), )

In a quantum field theory the renormalization may introduce a spontaneous
symmetry breaking, Lee [1], Lee and Gervais [2], Symanzik [3]. In the proposed
theories which unify the fundamental interactions (so-called GUT's for grand
unified theory) the spontaneous symmetry breaking is introduced by Higgs fields
or technicolor condensates; these theories are renormalizable and the renorma-
lization restores the symmetry at very high energy ( ~ 1016 GeV) . In order

to deal with a concrete example, I will restrict this lecture to a rich family

of applications : the study of second order phase transitions with symmetry

changes.

The theory proposed by Landau [4] and several times reviewed in these
colloquia considers a finite dimensional orthogonal representation g b D(g)

of the Physical symmetry group T . Often T 1is a crystallographic space group or
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the symmetry group of a mesomorphic phase [5] (e.g. liquid crystals...) . Let

£ be the real vector space carrying the representatio D(g) which is assumed
irreducible over the reals;we denote by $'$ , ; € E a T ipvariant scalar
product. The equilibrium state is described by the lowest value of a TI'-invariant

Landau potential :
V=233 «o® (3

with JZ p(A8) = p(3) = p(D(g)8) >0 when ¢ #0 . (3"
A

The coefficient a 1is an increasing function of the temperature which
vanishes for T = Tc . When T > Tc the minimum is at the origin z =0 and
I' is the symmetry group of the system. When T < TC , the potential V has,
at least, one I orbit of minima : the system is in another phase whose symmetry
group is described by the isotropy group of a point of the orbit of the minima
(when V takes its minimum value on several [I'-orbits there is an exceptional
degeneracy). If V had a degree 3 term, when a decreases but is still positive,
V would develop amother minimum which would become negative and be the lowest
minimum for a value a >0 of a ; then the equilibrium state would jump from
; =0 to a $ of this minimum orbit; this would describe a first order phase
transition. In order to avoid it, Landau assumed that there are no [I'-invariants

of degree 3 on E .

The Landau theory gives in general good predictions for the symmetry
changes in second order phase transition, but it fails completely for predicting
the correct critical exponents. Learning from Kadanoff and Wilson, one under- e,

stands that fluctuations have to be taken in account by renormalization. One -

-+ >
considers ¢ as the value of an n-component field ¢(x) and the potential

V becomes a part of the Hamiltonian density : :

&l
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3
H(x) = V((x) + 3 —3-3 . —2—-$ (4)

a=1 3x& ax

with the historical normalisation of the quartic polynomial [6]

4-d
PG) = B—uG) , ue) = e SRS MRS ©

+
The renormalization equation (1) is applied to wu , vector of the (n43)

dimensional vector space P4 of quartic polynomials in n variables. This is

also the space of "coupling constants" Ujskg which form a rank-4 completely

{ symmetrical tensor on E . (These two points of view correspond to a mathema-
| ’ tical isomorphism). The renormalization equation (1) may yield a stable fixed
point u* ; if it is positive for all 3(x) # 0 , it yields in (3) and (4)

respectively the effective Landau potential and corresponding Hamiltonian.

§§" The special quartic polynomials for u :

(6a,b)

were respectively studied by Wilson [7] and Aharony [8] . The general case of
an arbitrary quartic polynomial was studied in 1974 by Brezin, Le Guillou,

Zinn-Justin [6].

The renormalized version of Landau theory has had good success in its
Predictions although it seems still imperfect for describing some experiments :
€rystals are not perfect and their defects may plan an important role in the
Phase transition. I refer to more competent reviewers for giving a balanced

account of the present situation.

The aim of this lecture, as is fit for this colloquium, is to give a
review on the group theoretical properties of this theory. As you will see, from

this point of view one can say much concerning the existence of fixed points,
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their stability, their symmetry and the value of the critical exponents. Four
years ago when I began to study these questions I found that few papers were
devoted to them : two general papers by Wegner [9] and Khorzhenevskii [10] and
most of the others dealing with particular points. I will quote those I know
and ask the authors I may not know to excuse me and send me reprints of their
work. I will have to rely essentially on three papers (11], [12] , [13], the

*
middle one published two months ago, the two others unpublished yet( ).

The explicit form of the quartic polynomials depends on the orthonormal
basis chosen on the space E . Such a change of basis is an orthogonal trans-
formation (element of 0(n)) . Physics must be independent from this choice of

basis. Hence : In the renormalization equation, B 1is an 0(n) covariant vector

field on PA » the space of quartic polynomials, Similarly the critical expo-

nents are O0(n) covariants.

We are led to study the orthogonal representation of 0(n) on P4 . It

is an orthogonal representation : it leaves invariant the scalar product :

(u,u) = g (7

u,.. u,.
1ikg ijke ijke,

(It can be expressed directly from u(¢) with the n-dimensional gradient and

Laplacian, see [11] equ. (15)).

- plo) (2) (4)
P, = P 0P @Y, (®)

(n+3) = 1+ (n+2) (n~1) . (n+6) (n+1)n(n-1)

\ ]
4 7 74 , (8"

dimension

Dynkin notation of irreps : (0,0,...) + (2,0,...) + (4,0,....). (8

)

P is spanned by the 0(n) invariant polynomial s ,

P

(o
4

(4) . . .
4 1s the space of harmonic polynomials

(*) Although [11] was written before March 1982, it seems to have been blocked
in a Yale computer. Unhappily I have not had the possibility to correct the too

many misprints it contains. I found Khozhenevskii's paper very inspiring.
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n 2
u (4 € P(A) - Au(b) =0 where A= I 2 ©))
4 i=1 %%,

e
e Tﬁz) is the space of polynomials z-z q(¢) , where q(¢) is quadratic and

bg =0 .

3 To simplify, let us denote simply by g. the action of g € 0(n) on

P& + The covariance of B is simply

Vg € 0(n) , Vu € PA , 8°B(u) = B(g-u), 9"
We denote by PE the set of quartic polynomials invariant by

B u($) = g-ul¢) = ud(y)g) .

We denote by H the image of the irreducible representation of T on E (i.e.

H is the set of matrices D(y) , y € T) . The physical problem forgets the kernel
of D and "feels" only the image H » which is an irreducible subgroup of
0(n) . No polynomials of Péz) can be invariant by H . So the space of
H-invariant quartic polynomials

- g - plo) (4)
ph nrPEcp -7 0P (10)

. 4 genm

- is in P just defined. Our global approach will concentrate on the study of

- the polynomials in P .

The O(n)-covariance of g (equ. (9') implies that the trajectory
u(d) of u by equation (1) is tangent to the stratum of u in the O(n)
wlre action on P, (We recall that the stratum is the union of all orbits of the same
5 irpe.i.e.,with the same conjugation class of isotropy groups). Moreover, if
b(ﬂbu is the isotropy group of a non fixed u » it leaves invariant every point

: °f the trajectory u(\) . It is the isotropy group of all points of a dense

subset of the trajectory and we call it the isotropy group of the trajectory.

80 the isotropy group of a fixed point contains the isotropy group of all tra-

IR o, X T

~ jectories Passing through this fixed point : this renormalization process can

0nly increase the symmetry. We can now precise the stability condition : Given
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the physical symmetry H = Im D = D(TI'), the quartic term in the Landau potential

(3) and the Hamiltonian density (4) is defined by a vector u € P? ; its

trajectory stays in this subspace and the stability condition for u*, one of the
dg

fixed points, depends only on the restriction to P? of the operator m (u®y,

Precisely

Re(Spectrum g% w*] ) >o. (11)
ph

4

The stable fixed point leads to a second order phase transition only if
Yo £0 , u*(¢) >o0. (11")

In [12] formulae giving dim PE for a given H are recalled.

To go deeper in the study of the covariance, we must usethe following
group theoretical concept. The centralizer C(Q) (respectively the stabilizer
S(Q)) in 0(n) of an arbitrary subspace Q © P is the largest 0(n) subgroup
which leaves fixed every point of Q (resp. transforms Q in itself). We
denote by C(G) and N(G) respectively the centralizer and normalizer of
G < 0(n) ; they are the largest 0(n) subgroups which centralizes (resp.
stabilizes) G by conjugation in 0(n) (equivalently : N(G) 1is the largest
0(n) subgroup which contains G as invariant subgroup). Finally, we use the
general notation < for subgroup, < for invariant subgroup, and when <X,
B<X, AB={ab, Ya€ A, vb € B}; A.B is a subgroup only when A.B = B.A ;
this is the case for instance if B< X . Then the general results are well

known and easy to prove :

€@ <@ , (c(6).G) < N(G) , N(H) < s(Pf) (12a,b,c)

H

and for u € Pis

H < c(Pf) <o < s(PZ) - N(C(Pﬁ)) _ (12"

L5
b
&
3

S

4 o g L~ e
A o Rl v el i
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It may happen that c(P?) is a strict subgroup of all isotropy groups O(n)u
Equation (12') leads us to two remarks : i) When H = D(I') is

a strict subgroup of C(PE) the relevant symmetry group of our particular
problem is C(P?) » larger than the physical symmetry (this was for instance
emphasized in [14]) and O(n)u is the relevant symmetry group for a chosen
quartic polynomial. ii) The stabilizer S(Pg) acts on PE effectively through

the quotient
H H
Q = S(PA)/C(P4) (13)

{# so, as was noted in [10], [15] , if s a fixed point in P? , all points
of the S(Pg) (or QH) orbit of u* are also fixed points and the corresponding
operators %% (u*) have the same spectrum :

dB

o (gu*) = g -g—g (u*)g—l. (14)

H

As we shall show in the appendix, QH is either finite or a compact Lie group
% of dimension 1 (when n is even and D(I') is reducible in the complex) or
Eus 3 (when n 1is divisible by 4 and U(r) 1is a quaternionic representation).

g _ Then note that

Ker -3—& W) > T #(Qu(u*), (15)

the tangent plane at u* to the QF orbit of u” . So when dim QH > 0 the

Sf{; stability is "marginal"”. More generally what is the meaning of this multiplicity
;f of equivalent stable fixed points ? As it seems suggested in [10] it is tempting
¥ to make the assumption : When it exists the stable fixed point is unique. This

l.‘L" has been proven in (11], [12], [13] for the g8 computed in [6] up to two-loop

%"» expansion in € = 4-d .

Indeed B can only be computed approximatively. We will not discuss
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here the validity of the e-expansion used for computing it. We remark that the

0(n) covariance limits strongly the number of possible terms occurring in an

expansion in powers. Let us consider first O(n) invariant homogeneous polyno-

(*)

mials of the degree k in u . They are obtained by saturating the indices

of k copies of wu.. and an arbitrary number of the invariant s whose

1jke
1
= 36

tensor is Sijkz ij6k£+6ik6j£+6ildjk) . To write these invariants we use
a short hand "chemical" notation where s and u are tetravalent. Up to degree 5;1
4 in u , a basis of algebraically independent invariants is found to be (this 17 &

list will be partly justified below : see equations (22)) 3¢

u
7\
ue (u,u) ; 3 : u/; u  (17)

1

ue (s,u) ; 2 :u

degree 1 : s

11
(=4

u = u u = u u

s X

ol

3
(17") i)

By the same method one can find the 0(n) covariant vector field as chemical ‘f
radical with 4 free valences : average over the permutations of the 4 free

indices has to be performed. We obtain the gradient (V) of these six invari-

ants
e u =2 v(u,u) (=u=u=) =41y /u (18)
- 5 V(u,u sy Uué=(=u=uyu =) = 3 u/;\h

and the constant vector field s =-% V(s,u) . The chemical notation is nothing

else than the short hand notation for Feynman diagrams :

(18") |

U 1 u =
e.g., = u “ =Z'V . ’
u- u =

DS
]
:

The symbol |, can also be defined by

(*) They are polynomials on the space P of polynomials in ¢ !
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(u,v)(¢) = tr TuTv with (Tu)ij = i%— Safézg u (19)
so u= (u,T ) (19")
Note that as trace of the square of a symmetric matrix,

¢#0~uvu>0. (20)

More precisely, using also (19'), the Schwarz inequality yields [6] :

e uu6) () > u@)? 1)

The product ,, on Pt. defines a 0O(n) covariant commutative but not associa-
tive algebra. In the IVth colloquium of this series I explained how to construct
algebras of this type from a third degree invariant and I gave some of their
properties [16] (see also [11] for more details) (*). Here are some typical

relations satisfied by s,u,v € P :

s\,un—:i—la(s,u)s+—§—u , s.,s-=-r%-8—s (22)
8 1 2
N\ < (s,u,v) = (s,u,v) = In (s,u) (s,v) + 3 (u,v) (22")

u=yv

u— s—
= / ‘r-r.l. _2_ - / 9__1__ "
s\“!‘ 3n (u,v)s + 3 uyv o, u\‘l!- n (s,v)u+2uvv ) (22")

We must also point out that the irreducibility of O(n)u implies

it

£ —

1

L .
n

(u, 0% (23)

——

(*)

These algebras have often been used in physics, e.g. Gell-Mann d-algebra

“S@ for SU(3) (see more references in [5] works with Radicati) and in mathematics
Ly the

"monster" or "friendly giant" can be defined as the automorphism of such an

e

alpebra built from a smaller sporadic finite simple group.

ot i A —-WM L S A . f I o il n
= g ) pe Tl s L 2N A
% J g ¥ A e e T T
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If we had listed the degree 5 invariants in u alone we would have given
five linearly independent ones; similarly there are ten degree 4 linearly inde~
pendent vector fields; so only half of them are gradients. The situation is
quite different for the vector fields of degree 3 or less. They are all gradients
[12]. However, this is no longer true when we multiply them with coefficients
containing s : the O0(n) covariant fields of degree less than 3 in u (up

to linear independence) which are not gradients are :
2
(s,wu, (s,u)"u, (s,u) u u, (24)

Nevertheless, as remarked in [17], the g-vector field computed up to two-loop

expansion in [6] is a gradient :

=4
g(u) = 35 ¢ (W (25)
€ 1 € 300 5 2
<1>(u) = - -i- (u,u) + 5 (1 + 5) (u Vu,u) - 'g ll}Z(l + Zé-r-‘- (1 + -l;- E) (u,u) .
(25')
To the same order, the corresponding critical exponents are(*)
1 5 3
n = >in [(1 + -Ze) (u,u) - " (u\,u,u)], (26)
i_,_ 1 £ 2 (1- '
S =25 (1+ 2)(s,u) *'35; (1-¢) (u,u), (26'")

In this approximation the stable fixed points in Pg are the minima of the
restriction of ¢(u) on this subspace. Assuming an ¢ expansion for the fixed

points :
*
ut = eut I ew (27)

the first term eU is an extremum of the polynomial

(*) Equations (25'), (26) correct some misprints in [12].
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¢(1)(u*) = %-(-c(u,u)+(u\,u,u)) , (28)

and it is a solution of the equation

; (1)
| (1), % do * ~ o~ 2~
‘ B (U)‘T(u)=0ﬁuvu=—3-u_ (29)
g At this first order on ¢ ,
2,(1)
d"¢ x, _ 4B ok _ -
du2 (u™) iu (u™) E(3DE I) (30)

‘ where the linear operator Du , is defined by

= . 31
Vv € P4, Duv uyv (31)

If for a u* solution of (28)
H@WY) = @) = £ ‘“*"pn (32)
4

1s invertible, the higher terms in the expansion (27) can be computed unambi-
Vo guously; they are of the form EL = H(G)—lp(:i) » where p 1is a polynomial

in the ﬁi's » 1< k. @ is a short for 51) .

g:ﬂ As in many other physical problems, equation (29) shows that we are
b led to study the idempotent of a \ algebra [5] [16] . In any 2-dimensional

subalgebra, this leads to a degree-3 polynomial equation on the real field :

‘'t yields either one or 3 idempotents. For 2 dimensional subalgebra containing

the 0(n) invariant vector s » I do not know of examples with one idempotent;

howeVer, for n= 4, s becomes a double solution of the equation (and even

@ triple solution in one case [13]). Then H(u*) is not invertible.

When this is the case, there is a "bifurcation". This is the case for
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instance for all fixed points for n = 4 . This special value of n has been
thoroughly studied in [13]. To resolve the bifurcation one expands in the
neighbourhood of the u® solution of (28). If a quadratic equation is sufficient
for resolving the bifurcation, one has exactly the same type of problem to

solve. For instance for n = 4 the stable fixed points are near &% =er% ’

i.e

u* = s@% +a) , e>0=a-~+0. (33)

Then

e 28 (a) = (2—11_;(8,3)- Z%)s v e(- S}E(s,a)s- %a . %ava)*'O(e:), (34)

In all cases the functions u*(s) is defined by an ¢ expansion, and the
lowest significant order in ¢ is a solution of a quadratic equation in the

v—algebra.

Here we will deal only with the simplest case (28) but, as shown in a5
L12], the same results can be generalized (for instance for the bifurcation iEé
at n=4) . If u* = ¢U is a solution of (29), from (20) we deduce that .
u* = ¢ > 0 for ¢ # 0 so it is a physically acceptable solution (see (11").

With such a solution the polynomial ¢(1)(u*) in (28) has the value

3
o1 W = - % @, , (35)

so the stable points have the greatest length. More generally, for the idem—
potents, all algebraic invariants [17] become related. Indeed, with (29)

equation (22') reads [8]:

~ ~ 2 ~4 4.9
Tvi=sTar &Y (0 (, (5,0, (36) 4
3 n n n :
f
. .. . o ~(4) ~(4)
This function is plotted (parabola) in Fig. 1. The conditions (u su” ") >0

yields [6]:




j -

— . i
. ‘ Y
Figure 1
1 ~ 1, ~ n+2
0 < o (s,u) < ‘E(S,S) = 2 i8 . 37)

With equation (36) this shows that for n < 4 the isotropic fixed point

* ~ 6
s €8 = g w8 § (38)

is the longest one and therefore it is the only stable fixed point (This result
was found in [6]). For n > 4 s €8 is stable only for the one dimensional

Subspace Pg(n) » i.e. for the O0(n) invariant problem.

The algebraic relation (36) between the invariants of an idempotent

.

leads to the simpler expression for the lowest e-order of the initial exponents :

2
3 1 € ~
n = A G,K) Y = 2 - Ty (s,u). (39)
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Since the stable ones are the longest among the fixed points, equation (39)
proves the "intriguing conjecture" at the end of [6] that the stable fixed point
has the largest critical exponment n : see [12] and in [3] it is shown that at
two loop order all fixed points have the same critical exponents. Equation (36)
yields a quadratic relation between n and v at a fixed point u*, given

in [6]

12n(u*) = (Z—v(u*)_l)(e-2+v(u*)_1), (40)

Finally, the best result known on the stable fixed point is the

Theorem : If it exists the fixed point is unique.

The proof in the lowest order of ¢ was given in [11] (see also (12]);
since it is essentially due to the idempotent property it extends to two loop
approximation (the extension is dome in [13]). It would be very interesting

to know if this is valid independently from this approximation as suggested in

[18].

We give here the sketch of the proof per absurdum. Assume that‘there
exist in PZ two stable distinct fixed points €U , ev ; from (35) we know
that (U,u) = (V,¥) and on the line Au+(1-A)T  the degree 3 polynomial
w(l) has two extrema with the same value, so it is constant. This implies the

vanishing of the Hessian expectation values:
U=V, H(eW) @V) = 0 = TV, H(eV) G-)H, (41)

L . . . - -
However, u-v 1is not an eigenvector with zero eigenvalues : indeed from (30),

(32) and (29) (this extends to (33), (34)),

e THED (B9 = WAIWLT = ¢ IR G = o, (42)

Taking the scalar product with u and v and using again (29) (or (33), (34)

AT Ay s o T
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for the next order) this implies u = v which is absurd. However, H(eu) can
have a zero expectation value for a non eigenvector only if it has negative eigen-

~~
values: this contradicts the assumption that eu is a minimum,

Incidentally this proof shows that the other fixed points are on the

boundary of the attracting basin of the fixed point (see [12] for more details).

Several obvious corollaries can be deduced from this theorem, e.g., the
isotropy group of the stable fixed point (if it exists) of Vg is not smaller than
the stabilizer S(Pg) - The neatest corollaries were deduced by J.C. Toledano
[19] after common discussions and examination of the complete results of [13].

For a given n :

I. The isotropy groups Gi of the stable fixed points of the different sub-

.. - .
spaces P? satisfies Gi NO(n)(Gi) (consequence of (12')).
II. If no Gi contains S(Pf) » this subspace has no stable fixed point.

We can now ask relevant questions on the stable fixed points, based

pPurely on group theory considerations.

Question 1. For a given n » what are the strict subgroups Gi of 0(n) such
that Gi = N(Gi) » candidates as symmetry groups of stable fixed points ? Of
G

tourse we must also have dim P41 > 1.

In the appendix it is proven that a finite G < 0(n) must be completely
irreducible (i.e. irreducible also in the complex). In [11] I gave a set of
Uo(n) (i.e. the number of divisors of n) of such groups that I denoted qu R
Where the integers p,q satisfy pq = n . The group rpq is the wreath product
D(P)@Sq where Sq is the permutation group of q objects, i.e. I‘pq is the

semi-direct product
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q . 1
r =0 4 S dim ' = = n(p-1 4
pq - 0P q im I =3 nlp-1), (43)

where Sq acts by permutation of the q factors of O(p)q . Note that

rnl = 0(n) ; so from now on we assume

p divides n , 1< p <n, (44)

For p =1, rln is the symmetry group of the hypercube. It is a group gene-

rated by reflexions and is denoted Bn by Coxeter (e.g. [20])

n n
Flp ~ By~ YN 9s anI = 2", n! (45)

The groups qu have the properties :

p < n = pq, qu is irreducible on the complex ,

r
dim P ,‘j‘* =2, (46)

If we split the indices i of ¢ as a pair «,8 , the polynomial

q P 2 2
x = L (X ¢°) (47)
Pd go] =1 ©B
is invariant by qu . When p # 4 # n, the 2 dimensional sub algebra
r
Pq
P 4 has 3 distinct idempotents
~_ 6 ~ 6 ~ 6 B :
® T8 ° * ¥pq T 78 *pq * Ypq T n(pr8)-16(p-D) [(4=p)s+(n A)XPq]- it
(48)
When n > 4 I have shown [11], that ?
9'.‘V:.
<4y is stable >4, X is stable. 49 %
P . )’pq s P v *bq (49) :‘
(For p=1, X1, "¢ this result was proven by Aharony [8]). Incidentally iu
this proves (with extension to two loop order) that for n>4, qu is its 34
own normalizer in O(n) !
i
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To these qu’s one can add another group for all n > 4 . Indeed the
invariants of the Coxeter groups (i.e. the groups generated by reflections are
all known [20]. The group An ~ Sn+1 has a third degree invariant, so it is
excluded by Landau theory, but zz(I,-I) x An of 2(n+l1)! elements is acceptable
and for n > 3 its space of quartic invariants is 2-dimensional. Moreover,
(*)

. Hence Z, x An is a good candidate as

it is its own normalizer in 0(n) 9

symmetry group of a stable fixed point in n dimensions. The other Coxeter

(%%)
groups are not .

For n < 4 , we have seen that ¢s is the only stable fixed point.

For n = 4, there are 17 irreducible isotropy groups (and 22 irreducible
centralizers of P subspaces) [13] , which correct some errors of [22]. Only
0(4) and three subgroups are equal to their normalizers : these are

2 .
Fyy = 0(2)7 % S, T4 = B, » z, x A, . They are indeed the symmetry groups of
the only 4 stable fixed points for subspaces of maximal dimension equal respec-

tively to 1,4,2,2 .

When n is odd,n = 241 , the orthogonal representation of spin &
of 80(3) 1is completely irreducible. For n> 7, dim P20(3) >1 (e.g. [24]
which computes it as 2 for n = 7 , and for n = 9,...). Note that

C{80(3)) = z, x S0(3) = 0(3) . Since Aut SO(3) = SO(3), equation A(l) of

R —

(*) The normalizer transforms reflections into reflections, so it transforms

A into itself in the product A X Z, . Of all permutation groups Sn+1 » only
‘5 = 86 has an outer automorphisms, but those do not preserve reflections
(which are the transportions of two objects). To complete the proof, see Appen-

dix  and the fact that An is irreducible on the complex.

S GZ’FA'E6’E7’ES'H3’H4 have no quartic invariants # s . Dn is defined for
B2 4 . It is a subgroup of index 2 of B, . For n >4 it has the same quartic
invariants as B~ and therefore it is not an isotropy group. For n = 4 ,
dim?"c:; =

- 4 . However NO(u)(DA) F
fixed points.

s S° this 3 dimensional space has no stable
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the appendix shows that N(S0(3)) = 0(3) (for £ > 3 these O0(3) are even
maximal subgroups of 0(22+1) so they are also good candidates as isotropy

groups of stable fixed points).

With the table [24], it is possible to find all compact semi-simple
Lie groups K with an orthogonal representation of dimension p or w 'h an
essentially complex representation of dimension q . Then choose n =] or
n = 2q, or consider the wreath product K@DSk with n = pk or 2qk . One
has then to check if they have quartic invariants different from s . Finally
all finite irreducible groups with complex representation of dimension < 7

are classified : see [25], §8.5 and references there.

Question 2. Give families of irreducible subgroups H < 0(n) such that P?

has no stable fixed points.

Dzyaloshinskii [26] had a "strong conviction" that this was the case
g
if dim PZ > 3 . As we have seen,there is already a counter—example for n = 4 .

Infinite families of counter examples were given before in [27] and [11].

J.C. Toledano's criterionII (quoted above) is the more precise. It
shows that for half of the 22 irreducible centralizers for n = 4 , there are

no stable fixed points, e.g. the finite groups with quaternionic representations.

A systematic method to find some families of subspace answering question 2
would be to look for irreducible subgroup G < 0(n) with dim Pf = 1 , reduce
their representation on P and determine which of the invariant spaces have

irreducible centralizers.

Whatever the interest of the pure mathematical problems (easier to

solve for n prime!) one must not forget that we are particularly interested

by the three dimensional crystallographic space groups I . So we must use
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what is known about the images of their irreducible representations (see e.g.
[28]) . Their complex dimension divides 48. They are finite when induced from
a momentum wave vector with rational coordinates (taken modulo 1) . When at

least one coordinate is irrational, the closure of the real image is < r2n s

n divides 48.

The appendix and most of these questions 1 and 2 were not given in
the oral lecture, but written later (beginning, August 84). Concerning this
work, I cannot list all persons whose discussions I have benefited from. I express
my gratitude to all of them and more especially to J.C. Toledano who taught me

much of the related physics.
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Appendix. Structure of the normalizers of real irreducible subgroups of O(n) .

We denote by C(G) the center of a group G ; its group of inner
automorphisms is the quotient 1In Aut G = G/C(G) ; it is an invariant subgroup
of Aut G, the groups of automorphisms of G . We define Out G = Aut G/In Aut G,
When G 1is a compact Lie group, Out G 1is discrete [29]. Moreover let G
be a closed subgroup of 0(n) : it is compact, or, as a particular case finite.

There is a natural injective homomorphism 8

N(G)

T©.C Out G and Im 6 1is finite. (A1)

1 -

We denoted by Z, the center of 0(n) (it contains I and -I). We assume 22 <G .

2

If n odd, the irreducibility of G on the real implies its irreducibility

on the complex. Moreover C(G) = C(G) = z, and one can prove that if G 1is

the centralizer of a subspace PG , it is also an isotropy group of a polyno-
mial in PG .

1f even, the real irreducible G < 0(n) might be reducible on the complex;
n/2

if is odd, then C(G) ~ 0(2) : it is the diagonal subgroup of 0(2) %

n
n
2
is even, the complex irreducible representation might be reducible

on the quaternioms. Then C(G) ~ SU(2) diagonal subgroup of 0(4)“’4 .

(N1E-]

If G 1is finite and reducible in the complex, them N(G) # G as

used in the text.
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