WHAT IS A CRYSTAL ?
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ABSTRACT

An historical survey of our knowledge of crystal structure
and of the mathematical problem of paving space with one
or a few types of stones show that a crystal has not
necessarily a translation lattice. The recently discovered
crystals of alloys A& with 147 Mn have an icosahedral
symmetry (incompatible with translation lattice). Their
electron micrographs show a structure similar to a Penrose
tiling. It seems that long range order characterizing
crystals can be obtained from projection of a thin slab of
genuine crystal in higher dimension so that crystal
physical properties can be described by quasi-periodic
functions (as generalizing periodic ones) or may be

almost periodic functions.

1. HISTORY BEFORE 1985.

Steno (1669), Haliy (1783) began to answer this question. In the
XIXth century, not only the detailed structure of some mineral compounds
(as Na C{ diamond) was established, but the 7 crystallographic
systems (Weiss, 1816), the 32 crystallographic point groups (Hessel,
1830), the 14 types of lattices (Bravais, 1850) and the 230 crystal
symmetry classes (Schonflies, Fedorov, 1892-93) were classified. Since
1912 (Von Laue) X-ray diffraction yields an experimental verification
of the previous theoretical speculations : crystals are triply periodic
alignments of atoms, ions, molecules. Now we have the refined tools
of the diffraction of X-ray, electron or neutron de Broglie waves, for
determining crystal structure. And the last fifteen years (see
A. Janner's lecture) physicists have discovered that crystals (when one

forgets their symmetry defects and their finite size...) can be "modu-
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lated", "incommensurate'. Finally, last November the experimental obser-
vation of a completely new type of crystal was announced by Schechtman,
Blech, Gratias, Cahn 1).

To illustrate my lecture it would be more agreeable for you if
I showed some beautiful samples of crystals; but as an abstract theore-
tician whose computer can draw only in two dimensions, I show in Fig.
1, 2,3 some idealization of crystals : each point of the figure symbo-
lizes a fixed set of atoms - or a molecule - called the motive of the

crystal.
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(We give the international symbol for tte corresponding 2-dimensional

€rystallographic groups).

Extrapolating from the finite size of the structure, the symmetry
Broup is a crystallographic (space-) grcup G , i.e. a closed discrete
8ubgroup of the Euclidean group E(n) (here n is 2, but mathematical-
ly n can be any natural number) containing a translation lattice

n
~Z" . The point group

P = G¢/z" < 0(n) (1)

acts on the lattice, so it is a subgroup of GL(n,Z) = Aut z" . There-
fore this group is finite P < O(n) N GL(n,Z) and, since it has a
faithful representation by integer matrices, it can contain only ele-

Mments of order k such that the value of the Euler function ¢ (k)



Number of integers < k and prime with k = ¢(k) < n (2)

(The function ¢ was defined by Euler : ¢(k) is also the number of
generators of the cyclic group Zk) . For n =2 or 3 this means
simply that the rotation angle 2m/k must satisfy: 2 cos(2m/k) is
integer, i.e. k = 1,2,3,4,6.

As soon as we give a general rule, it is good to give a counter-
example : This is the case of Fig.4 :the points of Fig.4 are the vertices

of Fig.5 (which is more picturesque).
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Fig.4 Fig.5 Fig.6

These drawings have a symmetry group Z5 whose elements are the
rotations by 27mn/5 around a fixed center*. Hence they have no trans-—
lation lattice of symmetry. They are made of five genuine crystals
sticked together along natural lines of patching. Such composite
crystals exist in nature mainly as "twins" (the general word is macle);

quintuplets are rare but seems to have been observed.

There are many more natural crystals without translation lattice
23 , because the preserved translational symmetry is 22 , Z or
trivial. This happens for instance when we superpose to the crystal

periodic modulations, as in fig.6. The coordinates of the points are

* For lack of space, similar drawings with rotational symmetry of order
7 and higher were projected at the lecture but are not drawn here.




i=1,2 X. = ci(ni+ai s1n(2wni/Ai)) » 1n; €2 (3)

(in Fig.6 ¢ =c,,a =.7,a,=.5, Ay = 19,378....,4, = 11,154).
Of course if all A, are rational numbers : Ai = pi/qi , there is still
a translation lattice with periods q; times larger. Many such crystals
exist in Nature (e.g. CO3Na2) : the A, are usually continuous funct-
ions of the temperature different from the temperature-dependent dila-
tion of the lattice. So the A; are essentially irrational numbers

and modulated crystals have no translational lattice. There also exist
more complicated structures with two, or sometimes three, different
crystals imbricated together, with different temperature dilation coef-
ficients. So there are in nature crystals without lattice of transla-

2)

tional symmetry. The beautiful lecture of A. Janner , last Monday,

was devoted to this subject.

In three dimensions there exist only 7 conjugation classes of
finite irreducible subgroups of 0(3) . Five of them are point groups
in the cubic crystallographic system; the largest one, Oh = m3m of
order 48, is the symmetry group of the cube or of its dual, the octo-
hedron (also called crossed polytope in higher dimensions). The two
others are Yh Z m5m , of order 120, the symmetry goup of the regular
icosahedron and dodecahedron (dual of each other), and its rotation
Subgroup Y = Yh n S0(3) ; it is simple and isomorphic to the group 145
of even permutations of 5 objects. Yh occurs in Nature as the group of
Symmetry of virus shapes, of molecules (e.g. carboranes) and small
clusters of atoms (e.g. a few hundred argon atoms); such small clusters
also seem to exist in some amorphous materials. This local icosahedral
Symmetry is entirely compatible with the absence of long range order in
these materials and it will show up in a Fourier transform correspond-
ing to a diffraction at most as average, e.g. as for crystals in

8mall powder. On the contrary a long range correlation between the

. - * .
atomic positions seems to me a required property of crystals.

\__

* . . .
) To be pPrecise, because of the thermal agitation, one should speak
°f mean positions of the atoms.



The second section will be a mathematical digression on :

2. PAVINGS.

Given a set S of points in the n-dimensional affine space A ,
the Dirichlet domain Ag of s € S is the closure of the set of the
points x € A which are nearer to s than to any other point of § .
It is convex. If S 1is the orbit of a translation lattice L' , the
Dirichlet domains are called parallelohedras ; they are all congruents,
have a symmetry center with a point group P which is that of the
lattice. Motivated by crystallography Fedorov (1885) studied the combi-

natorial type of parallelohedra for dimension n = 2 (4 or 6 sides)

and n =3 (5 types with 6,8,10,12,14 faces). They were also studied
at the same period by Minkowski, motivated by number theory. He proved
(1887) that the maximum number of faces of parallelohedra in n dimen-
sions is 2(2"-1) . Parallelohedra were also studied by Voronoil at the
beginning of the century and later on by Delone (who determined 3)
their 51 types for n = 4). In crystallography they are called by
physicists Wigner-Seitz cells and, for the dual lattice, Brillouin
zone. They form a paving of space; this is a particular case of a nor-
mal (i.e. neighbour polyhedra share an entire face) regular (i.e. with
a translation lattice of symmetry) of space with copies of one paving

stone.

Such a normal regular paving with one prototype of stone (one
says in the jargon one prototile) can be obtained as Dirichlet domains
of one orbit of a crystallographic group G . An upper limit to the
number of faces of the prototile has been given by Delone as 2(2n—1)]Pi
where |P| is the order of the point group. This number can be as
large as 672 for n = 3 but the highest number known for an actual

4)

paving is 38 (P. Engel in 1979). Such an enormous difference shows
that there are still things to be proven in 3 dimensions (and this
might interest an isolated scientist in Korea or elsewhere !). There
are also normal regular pavings with one prototile, forming two orbits
of a crystallographic group. The first example known is that of

5)

Heesch in 1935; its prototile is given in Fig.7.




91

Fig.7

Given a prototile one can ask two questions : Is it possible to
make with it a normal regular paving of the plane ? , is it possible to
make with it a normal aperiodic one (i.e. without translation lattice
symmetry) ? With regular hexagon the answers are : yes, no; with regu-
lar pentagons : no, no; with the rhombs of fig.5 : yes, yes. It is
still an open problem to find a prototile with answers : no, yes. These
questions were suggested by Wang (1961). He obtained in 1966 an aperio-
dic tiling with 20246 prototiles, number soon reduced by him to 107,
by Knuth to 91, by Robinson to 32, by Hamman to 16, by Robinson to 6,
by Penrose to 6 and finally in 1974 to 2 (see e.g.6); a detailed history
will appear in 7)). Fig.8 gives such an example of Penrose tiling :
he called the two pieces : kite and dart. With matching condition (or
what is equivalent to the deformation of the matching sides as in a jig-
8aw puzzle) one can make a regular map with the kites and darts. Fig.9

8)

represents the vertices of the tiling. De Bruign showed the equiva-
lence of this tiling to a tiling with two kinds of rhombs (whose angles
are respectively 6 and 46 for one and 26 and 36 for the other,
where 6 =n/5 | Forgetting the matching conditions one can obtain a

8eneralized aperiodic tiling as illustrated in Fig.10.
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Penrose patterns with
kites and darts
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Vertices of the Generalized Penrose
Penrose pattern of patterns made with
Fig.8 rhombs

If the vertices of a lattice have same intensity (as in Fig.1,2)

the Fourier transform is the dual lattice. Fig.11,12,13 show the

Fourier transforms of Fig.6, 4 and 10.
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Fourier transform of
the modulated crystal
of Fig.6
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Fig.12 Fig.13

Fourier transform of Fourier tranform of
the twin crystals of Fig.9, the vertices
Fig.4 of the Penrose pattern

(I thank D. Gratias for making these Fourier transforms experimentally

from a laser beam passing through a diapositive of Fig.6,4,9 and

received in the focal plane of a lens).

The Fourier transforms of Fig.12 and 13 are alike but with some

differences; that of the twin has characteristic tails absent in that of

the Penrose pattern. These Fourier transforms are completely different
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from that of a 2-dimensional crystal whose motive has a five fold sym-

metry axis as in Fig.l4. Fig. 15 is the Fourier transform of Fig.15.
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"crystal" with a five Fourier transform of Electron microphotograph
fold symmetry motive Fig.15 (made by com— of an actual crystal
puter published in ref. 13

The generalization of Penrose tilings to 3 dimensions has been made by
A. Mac Kay 9) and by P. Kramer 10) (who gave a beautiful lecture on the
subject last Monday). They require only two prototiles. Their Fourier
transform was computed independently by Levine and Steinhart 11

(they do not give the one in a direction of a two fold axis) and by

Duneau and Katz 12).

3. THE EXPERIMENTAL DISCOVERY.
1) 13)

» completed by » was the first announcement of the

Reference
existence of crystals with icosahedral symmetry. Indeed, the published
electron diffraction patterns along directions forming the angles
Corresponding to those of the rotation axes of the group Y are very
convincing. They are definitely of the type of Fig.13; so it seems that
8 twin-like structure can be excluded. These crystals are formed by
very fast cooling of an alloy of A% with 10 to 20 Z Mn . Their thick-
‘Ness is of the order of the micron. They have been obtained now by
Several experimental groups (including one in China, led by Kuo) and

3)

industrial groups. The electron microphotograph reproduced in Fig.

16 and a1 those obtained elsewhere possess several properties of a
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Penrose pattern : local five fold symmetry, local semi-groups of a
scale invariance set of five points forming the vertices of a regular
pentagon are surrounded by five vertices of a pentagone enlarged by
the golden ratio T = (1+/5)/2 and rotated by 7 . The Penrose patterns
have also the property of local isomorphism : take any part of it and
within a distance of the order of the diameter of this part, you arrive
at an identical copy of this part. Alignments of points appear in the
microphographs, and in Penrose patterns, along five directions at
angles multiple of 2w/5 . The distribution of points of these lines is
that of a one-dimensional pattern. Such a.pattern can be obtained as
explained in Fig.17. Draw two parellel straight lines forming an angle
f = tan-l(t) with one of the directions of a square lattice, and whose
distance is the diagonal of a square. Project on one of them the verti-
ces which are in the band formed by the two parallels. The projected
points form a suit of segments with two lengths L,S in the ratio

L/S = 1 . The ratio of the frequency Nb(L)/Nb(S) - T when one extends

L S T .

Fig. 17

Construction of a
one dimensional
Penrose pattern

indefinitely the pattern. Each pattern is completely fixed by the line
ordinate of the band modulo one. So the set of one dimensional pattern
is labelled by one continuous parameter 0 < X1 < 1 . Similarly the set
of Penrose tilings is described by X, and Xz ; fixing two of the five
one-dimensional patterns made by the parallel lines of alignments, fix

the others. Two among these two parameter families of Penrose tilings

have a global symmetry group Z5 .
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The equivalent description of the Penrose tiling by rhombs (see
Fig.10) suggests that this pattern can be obtained, as a generalization
of Fig.17, by a projection on two dimensions of a slab with well chosen
director cosines in a higher dimensional cubic lattice. This is also the

10)

case for 3-dimensional Penrose-like pavings, as was proven in and

12). From the Fig.l7 construction, it is easy to prove (and left to the
reader) that given a finite subset of the one-dimensional pattern of
L's and S's , one can predict the position of some other vertices
whose set goes to infinity (the density of such vertices decreasing
exponentially). This is a measure of the long range order. This was

extended to more than one dimension by Duneau and Katz (unpublished).

To study incommensurate and modulated crystal, Janner and Jensen
(see Janner's lecture) had already considered higher dimensional regu-
lar crystal structure. This method of projecting on 3-dimensional
Space a slab of crystal in higher dimension seems to give more general-
ly all the varieties of crystals that are observed up to now. Can it
lead to a new definition of crystal structure ? For instance, that the
functions describing the physical properties of crystals are quasi-
periodic functions, that is a restriction on a submanifold of their
definition domain En of a periodic function of n (> 3) variables.
That is what some of us believe. It can lead to a new and broader clas-

sification of crystal structures.

I will end this lecture by two remarks : there is a natural topo-
logy in the set K(E(n)) of closed subgroups of the Euclidean group
(and more generally on K(G) when G is locally compact 14)) and
this topological space is compact. So every sequence of closed subgroups
tonverges. It is possible (Gratias, private communication) to transform
@ cubic crystal by multiplying by F (the nth Fibonacci number) the
8ize of the generators of the translation lattice and enriching the
Wotive of the crystal so that when n -+ = the translation symmetry
disappears and the sequence of motives gets to the limit n + «
the icosahedral symmetry (the sequence is labelled by the Fibonacci

Mumbers); its first steps seem to correspond to known crystals. The
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symmetry groups of the sequence are isomorphic Oi = Pm3m space groups

with larger and larger translation unit cells and the limit is Yh !

15) predicted that, by modulating a crystal with more

D. Ruelle
than two irrational periods (e.g. by means of external fields) one can
obtain a stable state that he calls '"turbulent" by analogy with turbu-
lent statesin hydrodynamics : there are still diffraction peaks, but
they are fuzzy. I think that to describe this state, we need almost
periodic function of H. Bohr 16).

It was a great pleasure for me to give this lecture on my first
visit to Korea, at the first international scientific conference held

there. I congratulate the local committee for its perfect organization.

NOTE ADDED ON PROOFS

The conclusion of the first of my two remarks is wrong. The
limit of the symmetry group of the sequence of crystals is {1}; it is

not the symmetry group Yh of the limit of this sequence.
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