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My first duty is to answer your question : "How to derive
equation (1), the starting equation of the fundamental Froissart and Stora
paper. "Depolarisation d'un faisceau de protons polarisés dans un synchrotron"
(Nucl. Inst. and methods 7 (1960) p. 297—305). This equation reads (their

notationsl)) for the precession of the polarization § 1in the magnetic field ]

ds _ e - = -2
rrie X[B+L2—(B”+YBA_] (1)

It can also be written in the form :

d§=_e_-+ g 2 -2\ .
at oy o x (& By + (1 + v &), ] (1"

Froissart and Stora give the following reference for this equation
1) Case et Mendlowitz, Phys Rev. 97 (1955) 33; Case, Phys. Rev. 406
(1957) 175
L. Michel communication privée
V. Bargmann, L. Michel et V.L. Telegdi, Phys. Rev. lett. 2 (1959 435.

(quoted hereafter BMT)

Equation (1 ) shows that the polarization precession is obtained

as the sum of three rotations

=

Fe - x0 with Q=0 +0 +0, . (2)

1) _ﬁ; and 73'_‘_ are the components of B parallel and perpendicular to the

velocity V¥ of the particle




Qt_ 1s the Larmor precession : in the rest frame of the particle, with time 7

(= proper time) 5L = %Vﬁ (f=c=1) . In the laboratory t = yT with
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Q,+ Q, 1is the Thomas precession. In the BMT paper (1, and (1, are deduced

from the covariant equation respectively in case (A) and (B)
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does not affect the longitudinal polarization and rotate the transverse

polarization while

fE
N
2o
W

]
K
N

E
==}
A’

(2"9

—F
Q, =

‘transforms longitudinal polarization into transverse at a rate propor-

tional to (g-2)

Professor Ernest Courant will give you a direct derivation of
equation (1)(which was first written by Thomas in 1926, see Appendix 1 for

some points of history) and, as you will see, we all agree !

I will derive (1) again from first principles, but this will be
more incidental in my talk. I wish to use my allotted time for some teaching :

distinguish spin and polarization, and for pleading for covariance.

We all agree that a spin % particle at rest has an intrinsic angular
momentum % < g’> gl , where < 3 > 1s the expectation value of the three
Pauli matrices. For spin j particles, the three generators of the rotation
group, % cx,é oy,% oz have to be replaced by the 2j+1 by 2j+1 correspon-

ding matrices. The particle magnetic moment 1is



L eh
u-gzmc<3> (3)

(this define the gyromagnetic ratio g ); in a magnetic field, the particle

stays at rest and the spin precesses according to the equation

-
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To find the relativistic generalization of (4) one can always
A
transform the electromagnetic field FE s B in the rest frame of the particle,
(This was actually done by Thomas in 1926). The method I prefer is to write
(1)

a covariant equation : it is a simpler.

Let x(t,X) be the four coordinates of the particle (2)
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where u 1is the four velocity and p = (E,p) 1is the energy momentum.

2_ 2 2 (6)

P=m ~uw=1

(1) You have the right to disagree if you prefer the form (E—§.513+6m)¢ =0
of the Dirac equation (y“)au+ m)y = 0 and if you never consider momentum 'E
and energy E as components a four vector P , but you prefer to obtain the

- -5
new velocity v' from the old one v = B/E, by the Lorentz transformation of

Y
velocity w , according to the law :

- - 1> a > o > -1
v' = (w +—;&v - Tﬁ%fv,w)w)(l+v{3)
with y = (1-w?)~1/2

(2) Massless particles are not localizable except however for spin 0 , and

four-component spin # where a position operator can be defined.
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The electric field E and the magnetic field B/ form a skew

-
symmetric tensor >’ F(-E, -B)

The motion of the particle is given by the lorentz equation

(7
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(Remark that u.u = ‘u

2lo
=
e

O since F 1is antisymmetric; so (6) is compatible

with (7)).
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YT , flelds E(t,x), B(t,x), equation (7)

L}

In a frame with time ¢t

is equivalent to

d ,_e-=> d-= g > o5 o i
g Y=g Ev, i my (v XB+ E - (E-v)v) (8)
- dv’ e 7
For example, a particle at rest, v = Q » has an acceleration T ;; .
For a pure magnetic field (E = 0) » equation (8) becomes
- - - - —
'{;iEV:'r;eZ(”VXB:VXQL (9)

(see 2' and 2)

The relativistic generalization of angular momentum J is a
- - .
skew symmetric tensor M( K, J) which is an operator in quantum mechanics,

sum of the orbital momentum and of the spin (= intrinsic) angular momentum M,

(3)  With the explicit use of components indices (see e.g, BMT); greek

letter 0,1,2,3, latin letters 1,2;3; oo = goo= 1, gii= -1 = 84y - Vector
Bl
a= (ao,al) » 8kew symmetric tensor T (Tt,Ts) with (’T;’t)i = 1ot s

(?s)i= Tjk » 1jk  circular permutation of 1,2,3. The polar tensor of T is

0.0 - P

D 28 >t D po - LM v

T =(1T" , -T), 1.e. T = € T . Then a.b = g b'=ab - a-b
= ( ’ MV 2 v po == guv ’
(T.u)M = ™ gvpap . With two vectors a,b we form a tensor (a ®_b)“v= aHbV

and an antisymmetric tensor aAb=a®b-b ® a



M=xAp+M (10)

The four components of P , energy momentum operator (p = <P >) and the

six of M form the ten generators of the Poincaré group and are the kinema-

tical observables,

As early as 1926 Frenkel wrote the classical equation satisfied by
<‘§ > for a particle in a constant electromagnetic field, but it is not easy
to extract from it the motion of < Ms > . There is another relativistic

generalization of the spin operator o » the polarization operator w o,

which is an axial vector
W = MD-E (11)
-
(in the rest frame M= (0, jo), W =(0,jo0))

The polarization W has two properties not shared by the angular
momentum M : it does not depend on the orbital momentum; the components of

P and those of W commute
[P WP 1=0 (12)

and this 1s not true for PX and MMV - To describe completely particle

states we need a complete set of commuting operators., The Px commute and

glve energy and momentum; by definition, particle polarization 1s what completes
the description. It is obtained from W which commutes with P (while M

does not). Kinematically the particle is characterized by the two invariants

of the Poincaré group

P, W (13)

]

whose eigenvalues label {ts unitary irreducible representations



P* = W2 = _§(j+1)m (131)

Furthermore P-W=0 (14)

m=0,W=)\P s 21 integer (15)
where the pseudo scalar )\ 1ig the helicity,
For m # 0 the components wp do not commute with each either
and a complete set of observables is obtained with the four Px and the

component ~W.n of W along the quantization axis (Ez= -1, n.p =0)

A complete description of a # 0 ,8pin j particle requires the
knowledge of 2j multipoles : dipole, quadrupole, etc.... which are the

expectation values of the completely symmetric tensors(l) ;i— WOWe®- --®Ww

(1 =k <2j) . The magnetic moment is carried by the dipole, k factors
W
= & .
EESF> (16)
which satisfies
e, £'u=0=s5s-p (17a)  (17b)

Equation (4), in the rest frame 1is linear in the spin and in the
electromagnetic field(Z). In the same linear approximation, the most general
invariant equation between 8, F , u 1is : (remember that F 1s antisymmetric

and u-s = 0, !2 =1)

(1) For more details, see L. Michel, N, Cim. Suppl. 14 (1959) 95.
(2) Hence new effects due to field gradients, polarisibility of the magnetic

moment (as a function of B ), etc.... are neglected,
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This is compatible with (17a) since '8 =0 ; the compatibility

with (17b) requires 0 = gé + é& = (a1+ a,- &)H- ‘8 . In the rest frame

-
u(1,0), 8 = (0,<'3 >), the comparison with (4) yields a = % g so the final

L5 ]

equation is (BMT)

o=

= 5= (8 F5 - (g-2) u(u.F-s)) (18)

Since parity and time reversal are violated by weak and CP violating inter-
actions, we can also consider particles carrying also an electric dipole

(this was also done in BMT), cf (3)

-
5 =8¢ 7 (19)
2m

The complete equation, to be compatible with (19), can be written in the form

Gs (20)

gl

é =

where the antisymmetric tensor G 1is

G=F+ %0 -((g-2)F + g'gD)- Q (20")
@=1-u®u (i W= gH_ MV (20™)

Remarks 1) TIf g=2,g'=v , 8 satisfies the same equation than u ,
1.e. (7).

i
2) For electrically neutral particle e = 0 , but ;ﬁ s %ﬁ should be

replaced by 1, &, the magnetic and electric dipole values,

The space part of 8 = (50,3) should not be confused with the
polarization denoted by & {in Froissart's and Stora's equation (1). Indeed,
the length of space part s of a constant length four vector §2= -1 wvaries.
At each time t 1t is convenient to introduce for the particle a "tetrad"

(a)
n of four vectors such that



2(o)= v E(a)_n(B)= gaB ’ det(n(a)“) -1 (21)
We introduce the 3 components :

gi = 7§-n(i) le. s=23 Qin(i) (22)

and §2= -1 requires

zh?=2., (23)

i
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The notation "(" 1is symbolic, except in the rest frame where
— Y —
€ = <o> , the polarization. So we call C ,the rest framepolarization (and
it is the s of Froissart and Stora). And following BMT (see also L. Michel,
axiomatic Field Theory 1965, Brandeis University Summer School., ed. Chrétien
Deser p. 355, Gordon and Breach 1966) we decompose the precession polariza-

tion into the sum of two notions, that of the tetrad, which follows the

A’
particle (Larmor precession), and that of C relatively to the tetrad. Indeed,

i
we assume that the four n(G) s satisfy equation (7)

‘(o) _ (o) (24)
n =

°1

glo
litxg

From (22) and (20-20') we obtain

- 5 ékn(k>+ gké(k)) _
k

=R

TcdE+ g ((e-2)F + g .9 n D)
§

(1

We take the scalar product of both members with n )/we use (21)

PR SIPRRN Y

and remark that Q- . We obtain

c'- -

gie

=

5 (%g 3(”-5-n(j)+ g.n(i)‘FD.g(j))gj (25)
i



From now on 1ijk 1s an permutation of 123 . We introduce the
notations

k _ 17 (1) (i) k 1 _ (1) D (j)

Wy = wp n Fn Wy = up n ".F (26)

Equation (25) can be symbolically written :

:-)—.e_-') -2 — '..». _..4 - —

<;,»mg><(i-~2 wT+gwE)—gx(Qr+QE) (27)

For g'= 0 this is exactly the term proportional to 352 in
equation (1). The first term in (1), proportional to B , 18 the Larmor pre-
cession (here the tetrad motion). Equation (27) represents the Thomas precession

QT = Q” + Q, (defined in equation 2).

PN —>
I leave as an exercise how to write (27) in term of B and E

in the lab frame. 1 give below the solution for the simple case g' =0

s
E =0 . I conclude with the following remark (see e.g. L. Michel, N. Cim,.

3

Supp. 14 (1959)95) which resumes the relation between spin and polarization,
Consider the Hilbert space H of the one-particle states for a particle of
mass m # 0 and spin j . Diagonalize the operator P and for each P 1ntro-

duce the tetrad (21), and define the operators (compare with (22))

(1)

s(pW- - Ly, (28)

8l
1=

For each value of p the S(p)(i)are the quantum mechanical opera-



- 10 -

i
tors(l) representing the observables ( ., From the commutations relation of

the E's (which are obtained from the commutation relations of the Poincaré

group generators P and M ) one obtains those of the S(i) , which are
[S(p)(i), s(p)(j)] = S(p)(k)‘ ijk, circular permutation of (29)
N B - 1,2,3)
and from (13'), 21), (28) one also obtain
: s 2% _ i) (30)

I do hope that everything is perfectly clear to all of us.

Solution of the exercise : Obtain (1) from (27) .

If a-= (ao,a) , b= (bo,b) , one finds

- - -
a.F.b = E(ab’- b2°)- B-a x b (31)
Let us choose the tetrad for which 3(1) and 5(2) correspond to transverse
polarization and 3(3) to longitudinal polarization. Indeed, since we consider

-
only the case g'=0 , E =0, in the tetrad motion given by (24) the longi-

tudinal polarization stays longitudinal. Explicitly

(1) To be mathematically rigorous, one says that M 1is the direct integral of

¢ 2 24 _[®
Hilbert space H =‘[ H(p)é(p™- m™)d p =‘/ H(p)du(p) where the integrand
o

p~ >0
H(p) (which is not a subspace of ¥ ) is the 2j+1 dimensional space of polari-

zation states for the value p of the energy momentum. Then every operator on
H has a spectral decomposition such as P =/P_I(p)du(p) where I(p) 1is the
identity on H(p) , and W = Zj,s(g)(i)g(i)dpp. 0f course (30) should have

i

been written X (S(g)(i))2= JG+D 1(p)
i
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2D 0z M)y L@ (2@ ()

» I = (O:n s 0 = (YV,YVA)
with
2 2 -
5=y ’-;1(1) =-;;(2) -1 ,~>n(1)_~n(2)= o - nlxﬁ-;
The components of E% are
ok = ﬂ(i).E.H(J)
T ookt =%
1 - 32 2 2 2(2) 3_=2-
with wT Y B.n s wT Y B:n s wT B:v
With the definitions
- - - Y R d - - A
B, = .ol Dy @@ B, = (B.-v)9
we obtain
— ot —

which is exactly the term propositional to 55 E%Z in (1)
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