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WHAT IS POLARIZATION? HOW TO COMPARE ITS MEASUREMENT WITH BEAM AND
TARGET AND WITH COLLIDING BEAMS?

Louis MICHEL
IHES, 91440 Bures-sur-Yvette, (France)

Polarization is what has to be measured in order to completely
specify the state of a particle whose energy and momentum are known.
In quantum mechanics it has to be the expectation value of an operator
commuting with E and the energy and momentum operators. What is
this operator? It was found probably by Pauli at least forty years
ago and was known by oral tradition before to appear in print (Lubanski
Physica 2 (1942) 310 quotes Pauli unpublished). Let us look for it.

Euclidian invariance of Physics imposes momentum and angular mo-
mentum conservation. The commutation relations between the correspon-
ding operators and are

[Pi,Pj] =0, [Ji,Jj] = ieiijk , [Pi,Pj] = 1eijkpk . (D

For a particle, J can be decomposed into orbital and spin angular
momentum:

F=7+3 where T =3 X P (2)

Since the Pis commute, one can measure completly the momentum. The
operators commuting with P, are obviously the functions of J2 and

. = B, (true equality} although J and P do not commute).
This last operator is a pseudo scalar; it is the helicity. Since
T3=BT =0 (3)

the helicity operator depends only on spin 3. P = 3.8 and it is a
good candidate for the polarization operator. The only trouble is
that in special relativity, helicity cannot be defined for ome par-
ticle with non vanishing mass. (As we shall see, one needs two par-
ticles states to extend the helicity concept in special relativity
to all particles).

In special relativity energy and momentum are the time component

P° and space components iP1 of a four vector pA . Similarly gk
is the space past JK = M) = _ Mif (ijk = circular permutation of
1,2,3) of a shew symmetric tensor MY = MY The PA and MY

are the generators of the Poincaré group and any function of them is
a kinematical observable of special relativity. The PA  commute

[P}, pH]) = 0 (4)

but the P and MYV and the MV among themwelves do not commute.
Moreover the separation of the total angular momentum MM into an
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orbital and a spin part is not easy because a particle at rest for
an observer is in motion for an equivalent observer and may have an
orbital angular momentum for the later but not for the former. How-
ever one must not confuse spin and polarization ; they are two dif-
ferent concepts which coTncide only in the rest system of a non zero
mass particle. The relativistic spin operator, part of the skew sym-
metric tensor MY does not commute with the PA's . The polariz-
ation operator W does.

Let ™M the dual tensor of M

~ 1 Vo
= = M 5
Mlu 2 E:wa (3)

The polarization operator is the axial vector

W =Mp i.e. W =M pH . 6

— I e ' le )\ )\u ()
It does commute with the PX s

[PMwH] = o . (7

!
Moreover, the only operators which commute with all PX s and MYV
are EZ = PA\P_  and Kz = WHw . On the Hilbert space of a single
particle statés (i.e. for an frreducible unitary representation of
the Poincaré group) these operators are multiple of the identity :

32 = m’1 , W = —mzj(j+1)1 . (8)

where m and j are the mass and spin of the particle.
From the antisymmetry of M , PMP=0 , i.,e.
PW=0 . (9)

Note that the wu do not commute among each other in general. Indeed

(0}
W,W]=i PPy . 10
[ U’ \)] QWQU (10)
Note also that P and W chosen here have same dimension ; this
was done to deal with both m = 0 and m # O cases.

1. Case m =0 .

2
Then P =0 = E? , PW =0 . Two orthogonal light vectors

are colinear so
We=)r (11)

when the pseudo scalar ) 1is the helicity of fhe mass zero particle.
It is quantized ) = - L for neutrinos, )\ = &+ for anti-neutrinos,
‘X[ = 1 for photons. We remark that in that cise the components of
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W commute among each other as equations (11) and (10) or (4) show.

2, Case m # O

In that case, a complete set of commuting observables is composed
of :

the four components of P , one component of W, Ez (12)

Consider a particle of energy momentum p with

2 2
B =m
(of course we have cbgsen the unit system in which A = c¢ = 1). Let
2(0) = p/m and E(l a set of four orthogonal 4-vectors
0B =0,1,2,3, /@ P < 08 : (13)
We call such a set a tetrad of p . Consider the operators.
gl _ _ ‘rlg‘.”_-.fl(a) - %w}n(a)x ) (14)

Equations (9) requires S(O)= 0 . Egom (10), (13), (14) one finds
that the three other operators s(i satisfy

(1) <(3) . (k)
[s*77,s77] leiij . (15)
In the rest frame of the particle, the expectation values of these
different operators are

1

<P>= (m3), <M > = (0,%) with w5 = < s(®

>=<3S=cutds
(16)

However one must not confuse these different operators. While
k '3
% Wk,S( ),Mlj=Jk are, for a particle at rest, the generators of the

rotation group, their covariant meaning are quite ?igferent : wk

are the components of the polarization operator, S k are the gene-
rator of the little group of p , i.e.the subgroup of the Lorentz
group which leave p invariant, MY the generators of the Lorentz
group, and therefore the operators for the relativistic angular mo-
mentum components.

For a particle of spin j , mass m # O , the polarization
state is given by the expectation value of the irreducible symme-
trized power of W up todegree 2j. , i.e.

wh = %}« WA, WY »——1—2- < WY Yt % M s et (17)
2m ‘

are the dipole, quadrupole, etc... polarization tensors
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WAV g completly symmetrical in its indices,
(18)
p)\WM'N“' -0, w)\uv... =0
In appendix, several applications of this covariant polarization
formalism are outlined. Here we consider only the case of m # 0 ,
spin 1 particles. Such particles have only a dipole polarization.

Their state is completly described by its energy momentum p and its
polarization w . They satisfy

.1 2 2
spiny : p =m P-w

0 ag? = (degree of polarization)2 (19)

2
It is convenient to use the normalization w == <W > so the pola-
rization degree is 1 for a completly polarize@ state and O for
the unpolarized state.

In a given system, fixed by a time axis (the lab system, the
center of mass system, etc...) one can choose the tetrad.

29 - L =(y,y%) where y=E/m= 14" 7
2 =g = w1 = 02 1P =02 . 20
Then we can define g pseudo scalars gi
¢, = -g.g_(i) =W = zi ! (1) (21)
i=

and C is the longitudinal polarization, This of course is not a
covarlant concept. For instance in the m— decay the |~ is totally
polarized ; this polarization is pure longitudinal in the 1 rest
frame but not for a m decay in flight (see appendix). Of course f
is the helicity axis. Since P.W =0 , in term of operators we can
define the helicity ) as

B = 2) |WoP°| (22)

this definition depends on the choice of a time axis (for m # 0) .
However we are not interested by isolated particles, we use them
for making collisions; given two particles with energy momenta

', p" we can define the corresponding for vectors 4', {" by

U
' o= " " 1 " '
L shx(g chy-p") ¢! th(ﬁ chx-p') (23)
where P_' e .P..’ /m' ) p" = .E"/m" , 2 = (E"’:E")z
2_ 12 ”2 "2 .
chx = pip" = TR ey = (Bl 2

with A(x,y,z) = x2 + y2 + z2 - 2xy - 2yz -2zx . (23")
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By definition £',4" are the longitudinal polarization = helicity
quantization vectors of the particles in the rest system of p =p'+p".
In a collision a+b Jga“Lb are the s-channel helicity vectors.

If, in this collision particle a goes to particle ¢, we can
define the t-channel helicity vectors. They are the longitudinal po-
larization vectors in the rest frame of p,tp, . This is usually cal-
led the Breit frame (p ~~p ) .

Similarly one can define the wu-channel helicity vectors.

-

ath —> c+d when ¢ 1is the final particle of a . The vector
n orthogonal to the three plane

a 4 e Pa PpBsoPg o chosen according the
Basei convention
(det n,p ;szcr) >0, is common to
L the four tetrads p,4sn . We draw
b on the picture the space part of
these four vectors in the s-channel
s Helicity reference frames use the
Z/,\\ t vectors of the tetrad as quan-~
tization axis. Transversity refe-
rence frames use ,% as quanti-
Figure 1. zation axis ( ) for each te-
trad, .in each channel.)

Example : A two body elastic collision in the center of mass

m
@ <
o
Yo

j -

To pass from the tetrad of one channel to that of another channel
for a given particle, one has to do a rotation #n the ,s 2-plane about
the crossing angle ; this angle goes to zero in the forward direction

limit.
If a+b —> c+d is time reversal invariant, then

Aij = cij (24)

i.e. inital and final state correlation parameters cofncide.

The "Ann Arbor conventions' advocate s-channel tetrad in the
c.m.system with the nice feature that the tetrads of the initial (or
the final) particles are transformed into each other by a rotation R
of 1 around n . But for the study of the same rveaction in the la-
boratory system (§b=0) the advocated choice of tetrad might be na-
tural for an experimental setting but it makes relation (24) no longer
valid except for A, =C . Indeed, if the advocated tetrad of the
initial particles are obtain in the lab. system from those of the c.m
system by the boost A putting the b particle at rest, an additional
rotation around n must be made for the tetrad of the final particles.
However the initial state correlation parameters A,, measured in the
c.m. and lab., frame could be directly compared if itwere not for the
very akward choice of sign of L, ('for historical season") the two ini-
tial tetrads are not transformed into each other by ARA,“1 , the con-
jugated of the rotation of
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Appendix . Other examples of application of the covariant polarization
formalism.

1) m-> yv decay. The polarization w of | is ogthogonal to and

depends only of Rﬂ. since B, = Eﬂfgu ; using BV =0 , one finds
+ 1 B B T _

for -, w=+ o520 (mn sin2y - mu), n = tgw , y = .648..

2) Density matrix of a Dirac particle with non vanishing mass.

5
Dirac equation (g-m)u = 0, p(p)= (1+%mﬁ)(é+m)

first introduced in L.MICHEL, A S WIGHTMAN Phys, Revy, 98 (1955) 1190
where it is also extended to zero mass particles.

The covariant relation between 2 X 2 density matrix formalism
and Dirac matrices has been established for instance in C. BOUCHIAT,
L. MICHEL Nucl. Phys. 5 (1958) 416. If T, are the three Pauli

matrices, ¢ , ¢' = +1

. ' =1 5 (k)
v Bemig(pe'w) = 108, +vE (r)

(k)
o

8 )(¢+ﬂO]aB

where form with p/m the tetrad defined in (13).

3) Covariant density matrix of a particle with arbitraryspin j = % ;
m# 0 . (L. MICHEL N. Cim. Supl. 14 (1959) 95

A Al w2
oI w, ey BB R, Wr2, W'
J Xl " }1X2 " )IXZ"ann m m
where the w are completly symmetrical tensors, orthogonal
)\1)\2...)\k

to p : and traceless ; they are the covariant form of the polarization
mul tipoles.

W =y s wxx X3...

Aorede Ay eeed
1 K

0, p>‘w

Me T A Apeeihy, = O

The WX are all even under parity since W is an axial vector.
10k

For instance a parity conserving two body decay of a spin j-particle

measures only the even multipoles of the polarization when the pola-

rization of the decay product is not observed. Indeed the observables

are of the form trp(p)A |, i.e. linear in p(p) and Lorentz invariant.

In the decay pop,+p there is only one four vector linearly indepen-

1 72 .
dent from p , e.g. "q = PPy - When k 1is odd



1s a pseudo scalar,

4) Polarization effects in Mpller scattering.

In the Born approximation, which is good for not too high momen-
tum transfer, A3=A =P¢=pd= o » no analyzing power or polarizing
power because it is a one photon exchange and all amplitudes are rela-
tively real (in helicity).

All other effects can be computed in a completely covariant manner: cf

C. BOUCHIAT, L., MICHEL. Compt Rend, Acad, Sci, Paris 243 (1956) 692 and Nucl,

Phys, 5 (1958) 416; we also computed the spin effects for Bhabha scattering, We
(1)

gave the results with arbitrary tetrads n for each particles, in terms of
the invariants #«,\,u traditionaly used since the thirties, Here is the value

of Aij for Mgller scattering in terms of the new fashionable s = 2m2(1+%)

t = 2m2(1—A) , u = 2m2(1ﬁ4) 5 stt+u = 4m2

Aij = Nij/D
N,., = - n(i) . n(j) 2(t2u2 - Amztu(mz—t—u))
ij a -
-2, (1) (i) 2 2
-m “(n a Bc)(E g -Ed) 4u” (t+m”)

- m_2<3(;)‘ Rd)(n(g) ’RC) Atz(u+m2)
(1) (i) (1) (3)
-[(n 2 R g . B+ (o py)(n g . py] 4tu
D = t2(2t2+2ut+u2~8m2t+8m4)+u2(2u2+2ut+t2~8m2u+8m4)+2ut [(u+t)2~4m4]

When we use the s-helicity tetrad defined in the text (see fig, 1; this

is the Ann Arbor convention in the center of mass) in the 1imit EZ >> 1

’ 2
we need only one parameter n = £y , = % (sin 8)° to express
§~4m - *
n(2-n)
A = -n ; A - n = A
L1 38 nn

(1-m)?

All other A, .
Lj

m
decreases as
s

(1«n)2

vanishes for all s

]
when ~ + ® | Since
m

Yot T, T A

and t except AL s - As{, which

L0 -0
) L4 jﬁ«&
ULL + 4L



o = 1
This yields L1 1-4T1+2n2 which increases from 1 to 8 when 6 goes

T4

from 0° to 90°, (This is used in F, Low's report), The cross section of

electrons with some helicity is always larger than that with opposite helicity,

%nn - Tgg = (ldn)2+n2 = 1
-nn F.ss (ldn)zanz 1-

2n+2n2 which increases from 1 to 5/4
o n

In the lab system, the A have same value except that the strange Ann Arbor

ij
convention requires that one changes the sign of ch’ and Ass .



