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ABSTRACT

Metabelian groups are those whose structure differ the
least from Abelian groups. We explain the classification
of finite metabelian groups and give some examples of

physics problems where they play an important role.

This paper is written for physicists, with some pedagogical
purpose. So we have first to define and explain some simple basic
notions. If X, Y are subgroups of a group G , we denote by [X,Y]
the G-subgroup generated by the commutators [x,y] = xyx— y_1 , X € X,

y € Y . Then we define a sequence of subgroups of G : (< reads "sub-

group')

6= 0@ 5 M5 @, LDy
o S0 [G(O),G(O):’ G [G(O),G(n—l)] -
Note that G(l) 4G = G(O) (< reads "invariant subgroup") and
G/G(l) is Abelian. We say that G is nilpotent of class k :

(k)

6 is Noewc® o1 | 0D 4y (2)

k

Note that "G is Nlc“ simply means G 1is Abelian. The nilpotent
groups share many properties with the Abelian groups and the N2G are
the least different from them. They are usually called metabelian
groups in the literature although this term is sometimes used for a
larger class of groups. Here we will use "NZG" as an adjective equi-

valent to metabelian or sometimes as a noun.

Every finite Abelian group is the direct product of cyclic groups



A= xj Z (3)

Among all such possible decompositionsthere is a most refined one
(up to an automorphism of A) that we will give below (see (5'). Let
us denote by |G| the order of the finite group G (i.e. lc| 1is

the number of its elements). The decomposition of |G| into prime

factors reads ( P is the set of prime numbers)
r
6| = npP (4)
peEP

where only a finite number of rp is different from zero; if only one
of them, rp , is different from zero, G 1is called a p-group. In any
group G with order given by (4), Sylow showed last century that there
exists subgroups of order prP for each p € P , and for a given p,
all these Sylow subgroups are conjugated. [See e.g. [1], Vol.II, 8547 .

So for finite Abelian groups, for each p , there is a unique Sylow

]

subgroup Gp . Since for p#q, G_ NG {1} in any group, it is

P q
easy to see that for finite Abelian groups

r
G =XG , \Gpl =p? (5)
pEP
Finally, there is for each Abelian Gp of (5) a most refined decompo-
sition :
G = “ Z (5°
P szl prk )
Note that each Gp in (5) is invariant by any automorphism of G ,

A subgroup with such a property is said to be characteristic and one

usually uses H <G , for H 1is a characteristic subgroup of G .

The property (5) extends to finite nilpotent groups (FNG) ; we
sketch here the proof. When H < G , the normalizer of H in G ,
NG(H) is the set of x € G , xqul c H : It is the largest subgroup
of G which contains H as invariant subgroup. If H 1is a strict
subgroup, H < G , of the nilpotent group G , then H < NG(H) . Indeed
> 0 1is the smallest r such that G(r) cH
e a6 - ¢
that x 4 H , xwal = H . So for instance CP R NG(GP) < NG(NG(Cp))'

(r-1)

; hence there is an x € G such




However, here also Gp <ﬂﬁh(cp) s0 Gp«ﬂ NG(NG(Gp)) ; the contradic-
tion is avoided if NG(Gp) =G, i.e. Gp‘q G . Every Sylow subgroup
of a nilpotent group is an invariant subgroup. If p and q are
distinct primes G NG = 1 and x€ G,y €6 = [x,y] =

= xy:»(“]'y”1 € G N g = ? so [6_,6] =1 ? It is ghen not difficult
to verify thatpequaZion (5) holdg ig that case and that every Gp is

Nk'G , k' <k when G is NkG .

Hence every nilpotent group is a direct product of its Sylow sub-

(*)

groups.

(2) (1)

For N,G groups, 1 =G = [G,G'""] so G(l)_g C(G) , the center
of G . Since G/G(l) is Abelian, we have to study what is called

the central extension problem for Abelian groups: given two Abelian

groups A,B find all groups G such that
A<C(@G) ,B=¢C/A , (6)

We denote by ¢ the group homomorphism :

G $ B, Image ¢ =B , Kernel ¢ = A (6")

It is convenient to adopt here for a while the additive notation for
Abelian groups. Then for a given integer n , a + na is a group-homo-
morphism A % A . Its image is denoted by mnA and its kernel by A
(nA is the largest subgroup H of A satisfying nH = 0); it isn

customary to use the notation A/nA = A,

If G is a central extension (6,6') , its elements can be labeled
by pairs (a,b) , a€ A, b€ B where (a,0) = a € A and, when
b# 0, (0,b) is an arbitrary element of the coset of A which is
sent by ¢ on b . The map B 5 b defined by o(b) = (0,b) is
called a section over B . It satisfies, 950 = IB the identity map
on B . The section ¢ can be a group homomorphism only for a direct

product. In general the group law of G reads :

(al,bl)(az,bz) = (al+az4m(bl,b2),b]+b2) (7)

(*) Verify that evey element of G can be written as a product

x = nxp s xp € Gp and that the decomposition of 1 is unique.



where, with our conventions
vb € B w(0,b) = w(b,0) =0 (7"
and, due to the associativity of the group law

Gm(bl,bz,bB) = w(bl,bz) - w(bz,b3) + w(b1+b2,b3) - m(bl,b2+b3) =0
(8)

Every function B x B % A which satisfies (8) is called a 2-cocycle,
and defines an extension. By adding their value in A , the 2-cocycle
form a group, denoted ZZ(B,A) . If in the same extension G , we had
made another choice o'(b) = (0,b)' of section over B , the two
choices define a function B L1 A defined by o'(b) = y(b)o(b) or
(0,b)" = (Y(b),b)

The corresponding cocycle ' would differ from w by

w'(bl,bz) - w(bl,bz) = Qp(bl,bz) (9)
with

m(bl,bz) = w(bl) - w(b1+b2) + w<b2) (CAD)

A 2-cocycle which satisfies (9') is called a 2-coboundary. The 2-co-
boundaries form a subgroup BZ(B,A) c ZZ(B,A) . Since a given extension
(6) is defined by a cocycle modulo the coboundaries, the set of solu-

tions of the central extension problem form a group

HZ(B,A) = ZZ(B,A) /BZ(B,A) (10)

which is called the second(*) (central) cohomology of B by A . The
direct product corresponds to O € HZ(B?A) . Two groups G,G' which
correspond to different elements of HZ(B,A) are called inequivalent
extensions of B by A ; there is no isomorphism G i G' which would

reduce to the identity on the subgroup A and/or whose induced iso-

' n .

(*) All other cohomology groups H (B,A) c¢xist; we do not need them
here. However we want to tell the reader wo would not know it that,
. 1 .
for the central case, H (B,A) = Hom(B,A) the group of homomorphisms

B » A .




morphism B = G(A) 3 G'(A) = B would be the identity on B . However
G and G' might be isomorphic! This is the case when they are on the

. . 2
same orbit of the natural action of Aut B x Aut A on H (B,A) .

Let Zz(B,A) the subgroup of symmetrical cocycles :
w(bl,bz) = w(bz,bl) . Since the coboundary is symmetrical, one can

define
HE(B,A) = 22 (8,8) /8 (8,A) (11)

From the group law (7) we see that extensions which correspond to ele-

ments of Hz(B,A) are Abelian. So the FN2G correspond to the ele-

ments of HZ(B,A) which are not in the subgroup Hg(R,A) . We can
also say that for the cocycles of the FNZG's satisfying the central
extension problem (6), the function A(bl,bz) defined by

w(bl,bz) - w(bz,bl) = A(bl,bz) (12)

C . ' (%)
does not vanish identically. Note that, from (7') and (12)

A{0,b) = A(b,0) = A(b,b) = 0 , A(bl,bz) = —A(bz,bl) (12a,b,c)

Moreover equation (9') implies that the A(bl,bz) are independent
from the arbitrary choice of coset representatives so they are canoni-~

cal in the extension G .
Indeed

-1 -1
ABby) = 100,50, (0,501 = (0,5, (0,b,)(0,b) 7 (0,b.)

(13)
where
0,07 = (e, ™H 7Y (13")
and we use
w(b,b ) = w(b1,b) (13")

easily obtained from (7') and (8).

(*) Beware that (12¢) for b1 = b? is  2)x(b,b) = 0 and this does

not imply X(b,b) = 0 |



Define $(b2,b ) = (b »b, ) and verify that 6w = O implies
§» = 0 . So, as a dlfference of cocycles, X(bl,bz) is a cocycle.
Let A(B,A) be the subgroup of Z (B A) generated by the \'s . Note

that if A 40, Z (B,A) N A(B,A) may not be trivial. However

w(b ,b ) 2 Aby, ) is a group homomorphlsm Z 9 A with Ker o = Z2
So we have the 1nduced homomorphism H (B A) - A(B,A) of Kernel
HS(B,A)

H (B, NS H (B, A)/H (B,A) = A(B,A) (14)

By a repeated use of the cocycle equation (8) one proves that the A's

on group homomorphisms from B to A for each of these arguments :
1 ' = 1
A(B),b,#b3) = A(by,b,) A (by b3 A (b #b],by) = A(by,by) ¥ (b1, (19)
As a particular case we note that
A(nlbl,nzbz) = nlnzx(bl,bz) (16)
This combinedwith (12b) yields
A(nlb,nzb) = 0 17)
This proves that when B 1is a cyclic group
2 2 :
H (Zn,A) HS(Zn,A) (17")

or equivalently :
Lemma 1. The central extensions of a cyclic group B = Zn by an
Abelian group A are Abelian.

The extension problem will yield FN;G groups only when B is not

cyclic. We also remark that (17) for n,,l and for 1,n2 yields

1’
Hl_bl b O = nzbz = (n19n2) (bljbz) = O (18)
where (nl,nj,. .) is the greatest common divisor of the intepers

inuide the brackets,




Given the decomposition (3) for A , the cocycle w can be decom—

posed as a sum of its components w, 1in each Ai . This corresponds to
i

2 J J 2
HO(B,X)_ 12, ) = X;_H (8,2 ) (19)

j=1"n.

T j
The non Abelian central extension of B by Zn are special FNZG
that we call CK FNZG , for finite class 2 nilpotent group with cyclic
kernel. We remark that the image of a FNZG irreducible complex linear

representation whose dimension is greater than one, is CK FNZG .

If one chooses J extensions Gj 1<j<J of B by Zn , with
cocycles ws s the corresponding extension G of B by A, I with

cocycle w = I.w. can be obtained by taking first the direct product
J

X, .G.
j=17]

making all bi's equal. Then G 1is called the diagonal subdirect

whose elements are (al,bl)(azbz) ces (aJ,bJ) , and after

product of the Gj's .

We have still to study the structure of the CKFNZG's . We know
from Lemma 1 that B cannot be a cyclic group. So we consider a non

trivial decomposition (3) for B . We prove in Appendix

2,k K
HO(X 22 ,A) = (X _,A ) x (X A)
Xe=1 n, Xe=1 n, 3 k<K (nk,nz) (20)
We need to study only the case where A is Abelian. Since the cohomo-
logy vanishes when |B| and |A| are relatively prime, we consider
only the case of p-groups. Then

2,.J

J
H°(X. .Zn.,zZ no) = (Xj=lzp[no’nj]) x (Xl§k<ﬂﬁJZP[n ,nk,ng]) (21)

i=1"p 3i’7p o
where [no,nl,...,nj] has the value of the smallest integer inside
the square brackets. Using the proof of the appendix, we can write the
genetic code of the groups corresponding to an element of the cohomo-

logy group in (21) : We obtain

n -[n_,n.]
n o i n, o o’i
-n..p i m,p

[¢]
WP . 1] p
] &= L = - [*3
bo [bo’bi] [bi,bj]b0 , b. b

n ~[no,n.,nj]

(22)



with
[n_,n.,n.]
_ - Lo . 0’i’]
n., = o, nij nji ;y 1<31, 0XK nij <p s
]
[ ,n,] (22")

0 <m, <p , n, <n

i i+l

The group is Abelian if all nij vanish. Two groups with non identical
sets of ni's are non isomorphic. When they have some mn. in common,
the groups with different sets of mi's and nij's are non equivalent

extensions but they can be isomorphic as we already remarked.

To summarize we have obtained a classification of FNZG'S . They
are a direct product of their Sylow groups Gp . Each Gp is the
diagonal subproduct of p—CKFNZG's , which are non commutative central
extensions of Abelian p-groups by a cyclic p-group. And each p—CKFNZG

has a genetic code given by the equations (22).

Before showing some physical examples, we make a last remark. If
X& G, Ya G then it is easy to show X.Y = Y. X< G (X.Y is the
set {xy, x € X, y € Y} . It is slightly more tricky ([2] § 7.4) to
prove that if moreover X and Y are nilpotent, X.Y is nilpotent.
Hence by making the product elements by elements of all nilpotent in-
variant subgroups of G , onme obtains the largest invariant nilpotent
G-subgroup. It is G itself if G 1is nilpotent. When it is not the

case, it is a proper subgroup called the Fitting subgroup of G [2,§7.4].

An elegant way to study the irreducible representations of the 230
crystallographic space groups requires the building of families of
CKFNZG groups and some extensions of ZZ’ZB’DB by such groups. We
have published yet only a part of this work [3] . A crystallographic
space group G has an invariant subgroup T = Z3 which forms a lat-
tice of translations; the corresponding quotient ¢/T = P 1is called
a crystallographic point group. There are 32 of them, defined up to a
conjugation into the orthogonal group 0(3) of rotations and reflec-
tions. They fall into 18 isomorphic classes : 9 are Abelian, 2 are
CKFNQG . the other 7 are non nilpotent (they are supersolvable) and
their Fitting group is Abelian. We give all relevant information in

Table 1.

-




_10__

Table 1.

Structure of crystallographic point groups. P.G. = point group,
I.C. = isomorphic class. MAISG = Maximal Abelian invariant subgroups,
CQ = Corresponding quotient. Sn permutation group of n object,

An , its subgroup of even permutations.

Abelian Non Abelian
10 PG c Pe MAISG, their IC cQ
1 c, D, c,.D,
2
z, C,,C,,C;  CKFN.G D, {C, CpoCypy 1242 z,
Zq Cq D)4 543D75Cy
z c.s CKFN.G Z. xD, D 3
4 4525, 2 LD, Dy CupoDoy 2y XZy0Zy 2,
Z)*Zy CgsS¢iCqy S4=D3 DyCy, Gy Z4 2y
2
Z, Dy3Coy2Con Cov2Dg Ce
3
Zy Don Dg ¢ Dag S6 (%923 Z,
Zy*2, Gy, C3n C3h
2
Z,*25 Cgp Z_xD. D Cen Z2%7%3 Z,
2 6 6n
A T D 22 Z
4 2 I 3
Z.xA T b, z3 z
2% Ty on 4 3
S 0,T p, 72 D
4 Ty 2 %4 3
Z, x8 0 D Z3 D
275, 9, 2 4 3

Non Abelian nilpotent point groups have several maximal Abelian
invariant subgroups. Non nilpotent point groups have a unique maximal

Abelian invariant subgroup : it is their Fitting group.

The set of equivalence classes of irreducible representations of
a group G 1is often denoted by E and it is called the dual of G .
For an Abelian group A , the dual A is a group : its multiplication
law ie the tensor product of the (one dimensional) representations.

T, the dual of the translation 7‘~'23 has the topology of a three
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dimensional torus; it can be identified with the Brillouin zone and
A
its elements k € T are the wave vectors. The T representation cor-

responding to k is

K(t) = e XL (23)

kt ikt

ker k = (t€T , e F =1} ,Imk=1{e , t€T} (24)

It could have been easy to extend our paper to finitely generated nil-
potent groups. For simplicity we consider here only the k € ? with
rational coordinates O < kl,kz,k3 <1 . Then Im k is a finite,

and therefore cyclic group Zn . The actions of G and P on T
define their action on T k (T act trivially, so G acts through
the quotient P : G/T). We denote by G, and P, = Gk/T the isotropy
groups (= little groups) of k . The irreducible representatioms of G
are built from those of Gk by induction [4,5]. Let FGk an irrep of
Gk ; the different representations corresponding to the k of a same
G-orbit G(k) yield the same irreducible representation Fg’(k) of G .
Tts dimension is

a, (k)

dim FG

PP . = (i T .

= (dim T'a )(G'Gk) (dim Ta )(P.Pk) (25)
k k

when (G:bk) and (P:Pk) are respectively the index of G, in G ,

of P, in P , i.e. (P:p ) = lp|/1p, | -

It is easy to see that the Herring group [6]
P(k) = G/ker k (26)

is a central extemsion of P, by Im k < C(P(k)) . The irreducible
representations of Gk correspond to the allowed omes of P(k) i.e.
those irreps whose kernel does not contain elements of Im k different

from one. We have constructed all P(k)'s . The finite ones correspond

to
Imk = Z . (27)
n
k
When Pk is Abelian or nilpotent, the corresponding (k) s CKFNZG
or VNKU . The other finite P(k)'s are extensions of 7.2,23,1),3 by

the preceding ones.
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The simplest and in a certain sense "elementary" metabelian matrix
groups appear in a natural way in a quite different physical context,
namely in diagonalization of dynamical matrix D(n) of a system of n
molecules vibrating harmonically on a circle without restriction to the
closest neighbour approximation (details in [7]). For any n > 3 , the
corresponding metabelian matrix group K(n) is generated by the fol-

lowing two matrices

0 1
A(n) =(In-1 O) , B(n) = (B(n)ij) R (28)

where

r r 1
B(n)l‘s - Enérs ’ En = 821T1r/n’ r,s = O,l,...,n-—l s (29)

and Im denotes the m xm unit matrix. The group KX(n) generated

by A(n) and B(n) 1is a metabelian group

z_(A) x Z_(B(n)) = K(n)/Z, (c'T) | (30)

where

1

"

e '1 = [A(),B(n)] A)BMAM) B () ! (30")

(Zn(X) means the cyclic group of order n generated by the matrix X)

A complete classification (up to an isomorphism) of irreducible
metabelian groups which are maximal in GL(n,T) , the group of n x n
inversible matrices with complex elements, is given by Suprunenko [aj.
Generators of such maximal subgroups are presented as ordinary or ten-
sor products of A(n) , B(n), AIr matrices with n >3 , r > 2 . So
the maximal irreducible metabelian groups can be built from the K(n)
groups. In that sense, these K(n) groups can be considered as "ele-

mentary" metabelian groups.

Finally, we would like to note that a particular family of metabe~-
lian groups C(m;k) appears if one takes the defining relations of
the so-called generalized Clifford algebras Cék), [91-0111 , as the

genetic code for C(myk)
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k

k . .
C(m3k) = <w,c1,...,cm!w =c, = [w,ci] = w[ci,cj] =E; 1<i<i<m,

(31)

where W,Cyye-.,C  are generators of C(m;k) and E denotes the
unit element of C(m;k) ; A,B denotes ABA“IB“1 . From (28) and
(27) it follows that K(n) = c(2;n) .

(x)

All irreducible representations of Cm have been determined expli-

citly by Morris, [1d, by giving the matrix generators in the form of
products of matrices A(n) and B(n) . Generalized Clifford groups
C(m;k) appear in other physical applications, mainly through the gene-
ralized Clifford algebra; these are relevant in supersymmetry physics

[12].

Each author is grateful to the other author's institution for hos-

pitality.

Appendix.

We give here the proof of equation (20). We consider a central
extension G of Zn by A , an arbitrary Abelian group : Zn = G/A ,
A < C(G) . Let z be a generator of Zn . Using as in (7) the additive
notation, we has
n-1

0,2)" = (p(2),0) with p(z) = 5 w(x",2) = 1 w(x,z)
k=0 xEZn

With another choice of section (Y(z),z) , we obtain
(w(z),z)n = (ny(z)+p(2),0) . So p(z) 1is defined up to an element of

the group nA ; hence it defines an element of A/nA = Ah i.e.
HZ(Z A) = A (A1)
o mn’ n

Let z; be the generator of Z B We can choose the elements (O,Zi}
such that for i < j :(O,zi)(O,z;) = (O,zi+zj) . Then
(O,zj)(ﬂ,z])=[(O,zj),(O,zi)] (O’Zi)(o’zj) and we have seen that the
commutator (Zj’zi) = [(O,zj)(o,zi)] is independent from any conven-

tion in the choice of representatives. So the set of
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A(zi,zi) = -A(zj,zi) s 1 < j complete the definition of

k
O x Z_ ,A) . From (A1) and (18) we obtain (20).
i=] i
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