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0. INTRODUCTION.

Most of the basic concepts used for classification in crystallography were
introduced in the XIXth century without being "formally" defined. Later, when
definitions were given they did not always coincide, or they relied on special
features of geometry in 2 or 3 dimension. Already in 1900, in his famous list of
mathematical problems, Hilbert had asked if the number of crystallographic group
types were finite in any dimension n . In 1910, Bieberbach [8a] answered affir-
matively for the number of isomorphic classes of crystallographic groups, and
two years later, he could extend the affirmative answer for the crystallographic

types Yefered by the crystallographers.

To define all other concepts for any dimension n 1is felt as a scientific
N .
need, although it is not so simple ). This was done in two recent books :

[1] H. Brown, R. Biilow , J. Neubiiser, H. Wondratschek, H. Zassenhaus, Crystallo-

graphic groups of four dimensional space, John Wiley & sons, New-York, 1978.

[2] R.L.E. Schwarzenberger, N-dimensional crystallography, Pitman Publ. London,
1980.

as well as in the new edition of the first volume of the International Crystal-

lographic Tables (specially ch. 8) [3]. We find that some definitions are not

completely explicit and partly unnatural. Most of these concepts appear

naturally in the study of group actions$ this will be clear in the set of defini-
tions we give here. Some four points are probably original, but most of this
paper is expository and self-contained. Section 1 is devoted to group actions.
Section 2 to crystallographic concepts. Section 3 answers the question :

Given a crystallographic group, what is its crystal system and its Bravais system ?

*) L
In reference [4] two of the authors had each proposed earlier a definition of

a crystallographic system, the third author had shown that they failed for
n=7.



We conclude by giving other applications of group actions in crystallography.

1. GROUP ACTIONS.

An action of a group G on a mathematical structure M whose automorphism
group is Aut M , is defined by a group homomorphism G £ Aut M. The action
is effective if Ker f , the kernmel of f , is trivial. This action defines also
naturally an action of G on the subsets or the substructures of M . In a given
G action on M , the orbit G.m 1is the subset of M whose elements are the G
transforms of m € M . The elements of G which leave m fixed form a subgroup

Gm which is called the isotropy group of m , or, equivalently, the stabilizer

of m . For instance, G acts on itself by inner automorphism ; the orbit G.x

of x € G 1is the conjugation class of x , i.e. the set of elements of the form
gxg_1 . The isotropy group GX is called the centralizer of x . In the corres-
ponding action of G on its subgroups the orbit of H < G (< reads "subgroup of")
is the class of G-subgroups conjugated to H , it is denoted by [H]G ; the stabi-
lizer of H for this G-action is called the normalizer of H in G and it is
denoted by NG(H) : it is the largest subgroup of G which contains H as inva-

riant subgroup.

If two elements m,m' are on the same orbit, 3g , m' = gm then
s g

Gg - gGmg—1 . The isotropy groups of the orbit G,m form a conjugation class

[Gm]G of subgroups. It is convenient to denote by M® the set of elements inva-
G
riant by g € G . Similarly, it - N M8 . Then M ™ n G.m = NG(Gm).m , l.e.,
gCtH
the subset of elements of the orbit G.m which have Gm as isotropy group is the

orbit of m by the normalizer in G of Gm

There is not a complete agreement in the mathematical literature for defining



the equivalence of actions. However, the most common definition is : Given two
isomorphic structures M,M' (which may be the same one) two actions
0

G —£—> Aut M,G -iLh&ut M' are equivalent if there is an isomorphism M ——M'

such that
-1
VG € G f'(g) = of(g)e

One then writes :(G,f,M) ~ (G,f',M') .

For instance, when the M's are vector spaces, Aut M = GL(M), the general linea:
group on M) f and f' define two linear representations of G and (1) is the

usual definition of their equivalence.

A prototype of G-orbit with isotropy groups [H]G is the action by left
translation xH jL+ng of G on the set [G:H] of left cosets of H . It does
transform any coset into other one. Consider another orbit G.m and let H = Gm s
the isotropy group of m . Then it is easy to show that the map G.m —9+ [G:H]
defined by 6(f(g)m) = gi is a bijection commuting with the group action, so it
defines the equivalence of the orbits. The type of this orbit is generally denoted

[G:H] where H 1is any subgroup of [H]G .

A group action G ~£+Aut M partitions M into orbits. We denote by GlM
the set of orbits, which is called the orbit space. The union of orbits of the
same type is called stratum ; an equivalent definition of S(m) , the stratum of
m : It is the set of all x € M whose isotropy group Gx belongs to the conjugat
class [Gm]G . We will denote by SG,f(M) the set of strata. In most physical
applications this set is finite, so the classification into strata is very impor-
tant. There is a canonical injection :

S¢ ¢ O —& {[<c]) (2)



into the set of conjugation classes of the < G (read "sugbroups of G) . For

an arbitrary group G , in general, there is no natural partial ordering on the
set  {[<G]} . But for the finite subgroups of an arbitrary group, or for the
closed subgroups of a compact Lie group, there is a natural partial ordering by
inclusion of subgroups up to a conjugation. In the smooth action of a compact

Lie group on a manifold M , when there is a finite number of strata (this is the
case if M is compact, or a vector space carrying a linear action) there is a
unique minimal element of Im¢ = ¢(SG’1(m)) and the corresponding stratum is open

dense : We call it the generic stratum (see e.g. the review [5] and the references

it contains or [6] for physical applications).

f
Let us give a general application. Let Q —=Aut A an action of the group
f
A ; then one can define the semi direct product A % Q . In the applications we
consider, A will be Abelian ; we will denote its elements by Greek letters and

those of Q by Latin letters ; moreover f(a)a is simply denoted a.o ; the

semi—direct product law is
@,a) (B,b) = (a+a.B,ab) (3)

When the action f 1is trivial (i.e. a.B = B for all a's , all B's) , one has the
direct product A x Q . We denote by Un the n dimensional vector space on

R , the field of real numbers, whose additive topological group is denoted by

R . So the additive group of Vn is R" (the direct product of n copies of R)

and by definition
GL(n,R) = Aut V_ = Aut R" . (4)

The action of R" on Ur has only one orbit [Un:O] , called the affine space

An . It's automorphism group is



Aff(n) = R" x GL(n,R) . (5)

As we shall see, physicists want also to consider GL+(n,R) the subgroup of

general linear transformations of positive determinant and the corresponding

n

Aff (n) = R* x GL, (n,R) . (5")

We denote by Hn the n—-dimensional real Hilbert space i.e., Vr equipped
with a definite positive quadratic form. The corresponding affine space En is
called an Euclidean space and by definition of the orthogonal O0(n) and Eucli-

dean E(n) groups

0(n)

Aut Hn , E(n) = Aut En (6)

E(n) = R" » 0(n) (6")

O(n) is a n(n-1)/2 dimensional compact Lie group and its maximal connected

subgroup 0+(n) is also denoted SO(n).

To end this section, we give another, weaker, equivalence ~ of group

action, when M and M' are two mathematical objects with the same structure

Ce . f ! . .
Definition. (G —>Aut M) ~ (G' -£—*Aut M), J isomorphism M 2, M’

y ]
8(Im f) € [Imf ]Aut M

In words two actions Gf and G'f' (the groups can be different) on M
are weakly equivalent if f(G) and f'(G') are conjugated subgroups of Aut M .
We have emphasized elsewhere [7] that weaker equivalence of actions is often

useful in physics and we shall show here that it is essential for crystallography.



We give here a fundamental example. Let & € Aut G and consider the two

actions (G,£,M) , (G,f',M) where f' =f o o and f (and f') are injective
homomorphisms.
f
G »r—— Aut M
GI
G

Diagram 1.

The decompositions of M into orbits and strata are the same for the two actions.
But when these weakly equivalent actions are not strongly equivalent m ; the
orbits and strata have not the same name - Indeed, in the action of Aut G on
G, Aut G acts on set 1{[<Gl} of conjugated classes of G subgroups ; if two
distinct classes [HI] and [H'] are on the same orbit of Aut G ,

G G
[c:ul # [G:H'] and [G:Hl~I[G:u']l .

Exercise. In diagram 1, (G,f,M) ~ (G,foq,M) . When does = hold ?

Answer. When o € Im ¢ where ¢ 1is the canonical homomorphism

v,
Ny ey (Im) Aut G .

Finally, we recall that if H is the unique element of [H]G , H 1is an
invariant subgroup of G and one writes H<J] G . Similarly, if H 1is invariant

by Aut G, H 1is called a characteristic subgroup of G and one writes H<]G .

2. DEFINITIONS OF THE CONCEPTS IN N-DIMENSIONAL CRYSTALLOGRAPHY.

What is a crystal ? With the existence of modulated crystals, incommensurate

crystals, quasi-crystals, the answer to this question is not so easy. But, we



consider here only ''classical" crystals. The art of approximations is essential
in physics. An interesting approximation for studying an actual classical crystal
is to neglect its symmetry defects and its surface effects by assuming that it

is perfect and extends indefinitely in space. In that case, any function descri-
bing a physical property of the crystal is 3-periodic, i.e., it is invariant by a

translation lattice T .

Definition. A n-dimensional translation lattice is a closed subgroup of R"”

(the translation group of En) isomorphic to zZ" . It is generated by a basis
{ti} ,» 1 <i<n of Hn . With n > 3 , n-periodic functions are used for the
description of non classical crystals ; this has recently increased the interest

of mn-dimensional crystallographic.

There is a complete agreement on the concept of n-dimensional crystallogra-

phic group ; here is one of the possible equivalent definitions :

Definition. A crystallographic group G 1is a discrete closed subgroup of E(n)

. . n . . . .
whose intersection T = GﬂR with the translations of E(n) is a translation

lattice.

In a crystal the interatomic distances depend on the temperature 6 , so its
symmetry group G is a function of © . However its symmetry is not considered
as different as long as 6 does not reach a critical temperature (where a phase
transition occurs) ; under such a variation of temperature the crystal changes
only by dilations. This corresponds to conjugations of G by g(8) a continuous

function of 6 wvalued in Aff+(n) . Hence a physical crystallographic class

(P.C.C.) is the set of crystallographic subgroups of E(n) iwhich, as subgroups

of Aff(n) , are conjugated by elements of Aff+(n) . If G 1is a crystallographic



group, its crystallographic class is

P.C.C(G) = [G] {< E(n)} (8)

Aff+(n) n

Similarly, its mathematical crystallographic class is

M.C.C(G) = [G] {< E(n)} (8")

Aff(n) N

A M.C.C can split into two P.C.C. which are "enantiomorphic" ; e.g., for n=3

there are 230 P.C.C and among them 11 enantiomorphic pairs, so there are 219 M.C.C.

Crystallographic groups, C.G., in n-dimensions have interesting and important
properties. Their translation subgroup T 1is characteristic. Any invariant subgroup
isa C.G. in n' < n dimensions . Bierberbach proved [8b] that isomorphic C.G.'s
are conjugated in Aff(n) . Finally, [9,10] every abstract automorphism of a
crystallographic group G can be induced by an affine transformation, i.e., the
natural homomorphism NAff(n)(G)-JL+Aut G 1is surjective. The automorphism group

of T is isomorphic to
GL(n,Z) = Aut Z" (9)

the group of matrices with integer elements and with determinant *1 (indeed if
i € GL(n,Z), det u and det u—1 must be integers) . Given a crystallographic

group G < E(n) (one often says a space-group , e.g. [3]) , the quotient
P = G/T

is called the point-group of G . It is in O(n)n Aut T , so it is finite (as
the intersection of a compact group and a discrete group) and the action on T

is defined by the injective homomorphism
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O(n) > P ——gﬁ-Aut T = Aut 2" (10)

From the properties of the crystallographic groups that we have listed a possible

abstract definition is

Definition. A n-dimensional crystallographic group is an extension G of a

translation lattice 2" by a finite subgroup P < GL(n,Z) .

Most crystallographers prefer to use some coordinate systems. Let us do it

§.. of H .
ij n

just once for them. Let {ei} be an orthonormal basis (ei,ej)
If {bj} is a set of generators of the lattice T there is a X € GL(n,R)
whose matrices (in the basis ei) is Xij and bj =X e, X.. . Similarly, any

i
other set of T-generators bé is given by bL =z ; ij , Y € GL(n,R) . Then
J

Aut T = X(GL(n,2)) X | .

We recall that only injective orthogonal (in the {ei} basis) action (10)

of the point group on the translation lattice are taken into account in crystallo-
graphy. They are classed according to weak equivalence, i.e., according to (7),
the different action of a point group P correspond to the different conjugation

classes [P] . Jordan [11] proved that for all n , the number of conjuga-

Aut T

tion classes of finite subgroups of GL(n,Z) is finite. In crystallography these

classes are called "arithmetic classes'" (A.G.) ; there are 73 of them for n=3

and 13 for n=2 . Note for instance that the Coexter groups A2,B2,G2 (i.e., in
crystallographic notation Ckv =kmm for k = 3,4,6 respectively) have each
two strongly inequivalent actions(i.e. representations by integral matrices) but,
32 and G2 (who have Z2 as outer automorphism group) have only one conjugation
class in GL(2,Z) (their normalizer in 0(2) is isomorphic to their automorphism

group, i.e., CBV’ C12'v respectively, but these groups have no 2-dimensional

integral representations).
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It is well-known that any finite subgroup P < GL(n,R) 1is conjugated to a
subgroup P of 0O(n) . One can prove the stronger result : If finite subgroups
of 0(n) are conjugated in GL(n,R) they are conjugated in O(n) . Equivalently,
if two finite O(n) subgroups P1,P2 are not conjugated in O(n) , they are
not conjugated in GL(n,R) and a fortiori in GL(n,Z) 1if they both have integral
representations. So,in crystallography, point groups are classed by their conjuga-
tion class in 0O(n) , one says the geometric class (G.G.) and not by their

isomorphic class (I.C.P.G.). For n=3 , there are 32 C.C.'s and 18 I.C.P.G's.

Given a point group P and its action f : P —>Aut T, on T , i.e. its arith-
metic class (= conjugation class in GL(n,Z) how many crystallographic groups
are there in this arithmetic class ? One of them is the semi-direct product

T x P . It is called a symmorphic group in crystallography. The others do not
contain P as subgroups ; indeed some of the elements, e.g. p € P is accompa-
nied by a non primitive translation t(p) (i.e. t(p) € T) . So in equation (3)
applied to E(n) , (t(p),1) , (0,p) (t(p),p) are elements of E(n) but only
the last one is also an element of the crystallographic subgroup G < E(n) .

The non primitive translations depends of the choice of origin. One can also

give the group law in the form

{a,a} {B,b} = (a+aB+w(a,b),a,b} (11)

with w(a,b) = t(a) =t(ab) + at(b) (1)

The two variable function defined on P , valued in T 1independent from the
choice of origin. However, it has still some arbitrariness, depending on the
choice of the group elements {0,a} € G for all a € P . All possible w(a,b)

differ by functionsvalued in T of the type.

@w(a,b) = @(a) - @(ab) + ap(b) = (s9) (a,b) (12)
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Such function is in B%(G,T) the group of 2 coboundaries while the w's for
. . . f .
all crystallographic groups of the arithmetic class p —>Aut T are in

2
Zf(G,T) the group of 2 cocycles. Indeed they satisfy
(8w (a,b,c) = Q(a,b) - w(ab,c) + w(ab,c) - aw(b,c) =0 (12"

Thecohomology group H%(G,T) = Z%(G,T)/Bi(G,T) is the group of extensions of P

by T belonging to the arithmetic class (P,f,Aut T) . The zero represents

f . . . . .
T % P. However two inequivalent extensions may be isomorphic and correspond to

the same crystallographic (space-) group. Indeed the normalizer NAut(P) acts
on P and on T so it acts naturally on the functor H?(P,T) : the C.C. (crys-
tallographic classes)of the given arithmetic class P-1L+Aut T are described

by the orbits of N (P) om H%(P,T) .

Aut T

3. WHAT IS THE CRYSTALLOGRAPHIC SYSTEM AND THE BRAVAIS CLASS OF A CRYSTALLOGRA-

PHIC GROUP ?

We must now study the classification of the translation lattices. As we
have seen, each basis of Vn defines a T. Their set is T . The general linear
group transforms any basis of Vn into another basis of %1; T is one orbit of

GL(n,R) and, according to (9)
T =[6L(n,R) : GL(n,Z)] (13)

In the action of the subgroup 0(n) of GL(n,R) on T , the strata correspond

to the different crystal systems (C.S.). There are 7 of them in 3-dimensions.

Triclinic, Monoclinic, Orthorhomb , Tetragonal, Trigonal, Hexagonal, Cubic.
We will use the short bounds : Tri, Mon, Ort, Tet, Trg, Hex, Cub. To each 0(n)

stratum = crystal system, corresponds a O(n) conjugation class [PH]O(n) of
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isotropy groups PH called holohedry of the lattice T . The holohedries are

distinguished geometric classes. And the set of arithmetic class of the holodedries

form the Bravais classes (B.C.) of the lattices. There are 14 of them for n=3 .

To label them one simply add different letters for the different conjugation

£ [p . . . .
classes of [ H]GL(n,Z) which are included in the class [PH]GL(n,R) i.e., the
same crystallographic system. For n=3 , the 14 Bravais classes are :
Tri P, Mon P, Mon B, Ort P, Ort C, Ort F, Ort I, Tet P, Tet I,
(14)

Trg R, Hex P, Cub P, Cub F, Cub I

As conjugation classes of finite subgroups of GL(n,Z) , there is a natural orde-

ring on the set of arithmetic classes and on its subset of Bravais classes.

It is very important to remark that in a crystallographic class (M.C.C. or
P.C.C.) thetranslation lattices of all the space groups of this C.C may have
different holohedries and they belong to different Bravais classes. For instance,
the unique crystallographic class corresponding to the point group P = I (the
identity) contains all T's ! So the crystal system and the Bravais flock of a
space group G are determined by considering the whole set G of space groups
of the C.C of G (equations (8)). The orthogonal group O(n) acts on the lattices

in G . All lattices of the opendense generic stratum belong to the same crystal

system and Bravais class : which are naturally those of G .

Unhappily, this simple, natural definition of the crystallographic systems

(called the "French crystal systems" in [3]" is not that adopted by [1] , [2]
and the International Crystallographic Tables [3]. There is presently a competi-
tion for giving mathematically well defined but very unnatural definitions

of so called "crystallographic systems'. This seems to be based on the a priori
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requirement that the natural mapping from the set {A.C.} to {B.C} (arithme-
tic classes to Bravais classes) factorizes through {C.C} the set of geometric
class. This can be done (it is done in the International Crystallographic Tables !
but it is against mathematical nature and simply against Nature as in deeply felt

by some crystallographers (e.g. [12]).

In the table, we give in a nut-shell the definition of the different classi-

fication sets and the mapping which arise between them.

4. OTHER CRYSTALLOGRAPHIC APPLICATIONS OF GROUP ACTIONS.

In science groups were introduced (before the creation by Galois of the
word itself) through their actions. We hope to have shown that group actions

form the basic tools for crystallographic classification. We end this paper by
other applications.

The classification of m-color crystallographic groups is the classification
of the m-element orbits of a crystallographic space group G under weak equiva-
lence (see e.g. [13] for extensive tables for dimension in n=2). The study of
the action of a crystallographic space group G on the Euclidean space E(n) is
helped by the study of the simpler action of P = G/T on the orbit space E(n)]T
(topologically (S1)n , the n-dimensional torus) [14] . In both action the isotro-
py groups are isomorphic ; there is an open dense stratum corresponding to the

trivial isotropy group. The strata in the action of G on E(n) are called in [3]

Wyckoff positions. The maximal conjugation classes of isotropy group correspond to



closed strata : and there is a natural bijection between the different closed
strata in the action of G on E(n) and the different connected components of
closed strata in the action of P on E(n)|T . (The closed strata may have

L

dif ferent dimensions. For n=3 , there is one group 57 = D2h = Pbem with

closed strata of dimensions 0,1,2) .

The Euclidean E(n) group acts naturally on the orbit G.x , G crystallo—

gcaphic group, x € E(n) . The isotropy group r E(n)G < is a crystallogra-

x
phic group which contains G . When G 1is a strict subgroup of Fx the orbit
G.x 1is called non characteristic. For n=3 a complete classification of the orbits

of space groups and of their symmetry groups I 1is given in [15]. The action of

NAff(n)(G) on the G-strata is also studied there.

The unitary representations of G induced from the unitary irreducible repre-
sentation from Gx , the finite isotropy group of x € E(3) classify the electron
energy bands in crystals (see [14]). The irreducible unitary representationsof G
are also obtained by induction from those of the isotropy.group Gk with k € T*
(isomorphic to U(1)™ the dual group (or group of characters) of T and called
the Brillouin zone in the physicsxliterature (where the group structure of T#*
is not enough used !). Since T acts trivially on T* , T < G, and the Gi 's
are also crystallographic groups. In 3-dimensions to the zero dimensional strata
(called set of higher symmetry wave vectors in physics literature) of the 14
actions (one per Bravaisclass) of the seven holohedries, there correspond nearly
four thousand inequivalent irreducible representations of the G&s . It is remar-
kable that they have only 37 images ![15], but this is well understood by a geome-

trical approach of the study of crystallographic groups and their actions.
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TABLE CRYSTALLOGRAPHIC CLASSIFICATION IN n- DIMENSIONS

»—— injective map , -—>> surjective map , <— bijective map .

Notation < : closed subgroup ; {< G} set of closed subgroups of G .

H<G, k<G ,[H]K = subgroups of G conjugated to H by elements of K
Aff(n) = R" x GL(n,R) ; E(n) = R" » 0(n)

T = translation lattice is any z" < R™ < E(n) < Aff(n)

{1} = Tn’ the set of T's, is the orbit [GL(n,R) : GL(n,Z)]

Definitions. Crystallographic group G < E(n) , G n R” = T a translation lattice

Point group of =~ G : P = (G/T) < 0(n)
PCC : Physical crystallographic class of G :{< E(n)} n [G]Aff+(n)
MCC : Mathematical crystallographic class of G : {< E(n)}n [G]Aff(n)

AC : Arithmetic class of G :[P]GL(n,Z)

GC : Geometric class of G : [P] ) <+~ [P]

0(n GL(n,R)

ICPG : Isomorphic class of point group.

Holohedries PH = isotropy groups in the action of 0(n) on Tn

C.S. : Crystallographic Systems = Strata in the action of O0(n) on Tn

{C.S} = {Hol.} the set of conjugation classes [PH]O(n)+~* [PH]GL(n,R)
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B.C. : Bravais class = Arithmetic class of a holohedry.

C.S. and BC classify the lattices € T . They can also be attributed to G as
those of the T's 1in the generic stratum in the action of O(n) on the T

subgroups of the crystallographic groups of [G]Aff(n) n {<EMm)} =c.c.(G)

Commutative diagram of resulting maps.

point groups > {ICPG}

{GC}

space groups
(PcC} 2> (McC} —Lomr {AC} Fk\\\ii\\\\r
\ (Hol}

_ {BC} ~ [I
{Bc} \\\\\\*9{63}

translation lattices

Remark. There are no map from {GC} to {BC} or {CS}
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