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Abstract.

Band representations in solids are investigated in the general framework
of induced representations by using the concepts of orbits (stars) and strata
(Wyckoff positions) in their construction and classification. The connection
between band representations and irreducible representations of space groups
is established by reducing the former in the basis of quasi-Bloch functions
which are eigenfunctions of translations but are not, in general, eigenfunctions
of the Hamiltonian. While irreducible representations of space groups are
finite-dimensional and are induced from infinite-order little groups Gk for
vectors k in the Brillouin zone, band representations are infinite-dimensional
and are induced from finite-order little groups G, for vectors r in the
Wigner-Seitz cell. This connection between irreducible representations and band
representations of space groups sheds new light on the duality properties of
the Brillouin zone and the Wigner-Seitz cell. As an introduction to band
representations the induced representations of point groups are investigated
in some detail. A connection is found between band representations of space
groups and induced representations of point groups which is applied to the
investigation of the equivalency of band representations. Based on this connection
and on the properties of the crystallographic point groups a necessary condition
is established for the inequivalency of band representations induced from
maximal isotropy groups. For using this condition there is need for the induced
representations of point groups and a full list of them is given in the paper.
One is especially interested in irreducible-band representations which form
the elementary building bricks for band representations. From the point of view
of the physics, irreducible-band representations correspond to energy bands
with minimal numbers of branches. A method is developed for finding all the
inequivalent irreducible-band representations of space groups by using the

induction from maximal isotropy groups. As a rule the latter leads to inequivalent



irreducible-band representations. There are, however, few exceptions to this

rule. A full list of such exceptions is tabulated in the paper. With this list

at hand one can construct all the different irreducible-band representations

of any space group. A discussion is also given for irreducible-band representations
of 2—dimensional space groups. For them we list the continuity chords of all

their irreducible-band representations.



I. Introduction.

A symmetry group G occurs in physics through its action on manifolds
M, (which can be, in particular, space-time, phase-space, Hilbert space of
states or discrete sets). This defines naturally linear representations of the
group G on the spaces of scalar, vector or tensor valued functions on the
manifolds M. . Such representations are induced representations or direct sums
or integrals of them. This emphasizes the wide occurrence of induced represen-—
tations in physics. Moreover, for many physical groups, e.g. Poincaré group,
Weyl-Heisenberg group, Euclidean group, space groups, point groups, most of their
irreducible unitary representations can be obtained by means of the induction
method from representations of their subgroups [1]. Consequently, induced represen-
tations have acquired an important r8le in representation theory in physics.
Their wide use is partly explained by the fact that the induction method enables
one to find representations of the full group from the knowledge of the repre-
sentations of its subgroups. In this framework, the induced representations
of a group G have the simple mathematical meaning of being generated from some
elementary building bricks which are the irreducible representations of a family
of subgroups of G . In physics one is usually concerned with irreducible repre-
sentations of a symmetry group because they are directly connected with a set
of states that belong to a single energy level [2]. Since induced representations
are, as a rule, reducible they cannot, in general, be assigned to a single
energy level of a system. There is, however, some analogy between the structure
of physical systems and the structure of induced representations, This is connected
with the fact that some physical systems consist of elementary building bricks
with local symmetry H which is a subgroup of the symmetry G of the full
system. Good examples of such systems are molecules or solids which consist of
atoms or sets of atoms having as their local symmetry some subgroup of the full

group G . The structure of such physical systems resembles the structure of



induced representations in that both are built from some elementary building
tricks. With this analogy in mind one should expect that induced representations
could be assigned some direct physical meaning. This is actually the case, and
as was first shown by des Cloizeaux [3], the induction process for space groups
can be used in constructing a set of orbitals for spanning the space of all

the eigenfunctions of an entire energy band of a solid. As was later shown by
one of the authors [4,5] the representations built on these sets of orbitals
have the physical meaning of corresponding to energy bands in a solid and as
such they were called band representations. This shows that unlike irreducible
representations that correspond to single energy levels, induced representations
should, in general, correspond to sets of energy levels. In solids such a set

of levels forms an energy band. Band representations present therefore a
striking example of a correspondence between an induced representation and a

set of energy levels that all belong to a well defined energy band.

Motivated by the correspondence between induced representations and
energy bands in solids we investigate in this paper the structure and classifi-
catioﬁ of induced representations of point groups and space groups. It is well
known that irreducible representations of a space group can be obtained by
induction from the little groups Gk which are isotropy groups of the vectors
kK in the Brillouin zone [6,7]. For an infinite crystal Gk is a subgroup of
infinite order: it contains an infinite number of elements and is of finite index.
In this paper our particular interest will be in a special class of induced
representations which are induced from finite order little groups of the points
in the space of the crystal. In the case of space groups these are the band
representations. Being induced representations one can apply to them the concepts
of orbits and strata [8,9] and treat them in the general framework of the

induction theory [1,10].



In applications of group theory to physical problems one is usually
interested in the reduction of representations into their irreducible components
[6,11]. In the case of band representa;ions a reduction of different nature
arises which is related to their decomposition into band representations [4,5].
More generally, one can consider the reduction of a given induced representation
into a direct sum of induced representations. For band representations the concept
of an irreducible-band representation was introduced for the case where it does
not reduce into a direct sum of other band representations [4]. Having in mind
that band representations are reducible, some confusion might be avoided by
using the hyphenated form irreducible-band representation. While irreducible
representations of space groups are finite-dimensional and are induced from
infinite~order subgroups (isotropy groups of k-vectors in the Brillouin zone),
irreducible~band representations are of infinite dimension and are induced from
finite-order isotropy groups in the Wigner-Seitz cell, This connection between
the two kinds of induced representations of space groups leads to a group-

theoretical foundation for the structure and classification of energy bands in

solids.

The outline of the paper is as follows : Section II deals with group
actions and the connected subject of induced representations. A discussion is
given of symmetry centers, orbits (stars), strata (Wyckoff positions) and their
invariance groups (little groups, isotropy groups) are described. In particular,
the concept of a closed stratum turns out to be of much importance in the
derivation of irreducible-band representations. In this section a detailed
discussion is also given of the related subject of induced representations. Formulas
are derived for the characters of induced representations and much attention
is payed to the very important Frobenius reciprocity theorem. In Section ITI
we discuss induced representations of point groups. This section serves a

twofold purpose : being of finite order, point groups can be easily utilized for



defining different concepts of induced representations; also the results of

this section are explicitly applied to the classification of band representations
of space groups which is the main subject of this paper. In Section IV a
description is given of the induction process of band representations and the
concepts of equivalency of band representations and of irreducible-band repre-
sentations are discussed. Section V deals with the connection between irreducible
representations and band representations of space groups. This connection is
obtained by reducing the band representations in the basis of quasi-Bloch
functions which are eigenfunctions of the translations but unlike the Bloch
functions are not, in general, eigenfunctions of the Hamiltonian [3,12]. In this
basis the band representations reduce into finite-dimensional components

(K— components) whose characters are easily found in a closed form. The latter
give the continuity chord of the band [5] which is the contents of a band
representation in terms of irreducible representations of the space group. The
k-component character of all the irreducible band representations are calculated
for the diamond structure space group O; . In Section VI we consider the problem
of equivalent irreducible-band representations. Thus, we prove that band
representations induced from irreducible representations of maximal isotropy
groups are, in general, irreducible-band representations. The number of
exceptions is relatively small and a listing of them is presented. A full list
of irreducible-band representations which are equivalent is also given in this
section. This together with the previous list gives us the information of all

the inequivalent irreducible-band representations of space groups in 3 dimensions.

Section VII is a short description of space groups in 2 dimensions and
of their inequivalent irreducible-band representations. Section VIII is a
Summary. In tne Appendix the Mackey double coset method is compared with the

reduction of band representations by means of quasi-Bloch functions.



IT. Group Actions and Induced Representations.

A. Group Actions.

For the sake of completeness, let us recall the concepts which are basic
in the study of group action. An action of G on M 1is defined by a function

cxM38wm satisfying

¢e(l,m) =m w(glgz,m) = w(gl,w(gz,m)) (1)

If G and M are manifolds, ¢ 1is a smooth map. We will often use
the short notation g.m for @(g,m) whenever there is no ambiguity about the
way the group acts. When M 1is a vector space, a linear representation on M

is a particular example of group action.

The orbit of m 1is the set of transforms of m by the group action.

We denote that orbit @(G,m) or simply G.m . The isotropy group (also called

stabilizer or little group) Gm of m 1is the set of elements of G which
leave m invariant; one can show that it is a (closed) subgroup of G , i.e.
Gm < G . One easily establishes that Gg = gGmg—l . So the set of isotropy

groups of a G-orbit G.m forms a conjugacy class of G-subgroups. That class

is denoted by [Gm] . We say that the orbit G.m 1is of type [Gm]

An action of G on M partitions M into orbits. We denote by M|G
the set of orbits (M'G is called the orbit space). The (disjoint) union of
orbits of the same type is called a stratum. In other words, two points m and
m' are in the same stratum iff their isotropy groups are conjugate. We denote

by M||G the set of strata. Clearly there is a natural injective map

Mg >—Z > Ke (2)



into the set of conjugacy classes of G subgroups. For many groups G : all
finite groups, compact groups, space groups, Poincaré group , given two non
conjugate subgroups A,B if A < B'" € [B] where [B] is the class of groups
conjugate to B , then one cannot have B'" < A' € [A] . So there is a natural
partial order, by inclusion up to a conjugation, on the set KG of conjugation
classes of subgroups of G . Equation (2) shows that we can order the strata

under a G-action.

Most group actions met in physics have only a finite number of strata.
Their classification is generally easy and always important. For instance, in
the Lorentz group action in Minkowski space, there are three strata outside the
origin (an orbit and a stratum by itself), those of space like, time like and
light like vectors. The strata of the action of a crystallographic space group

on the Euclidean space [ are tabulated in the international Tables of X-Ray

Crystallography [13] for dim E = 2 and 3 » under the name of Wyckoff positions

and the corresponding conjugacy classes of isotropy groups are also given.

Since orbits are classified into types, we can define them per se
without referring to the spaces Mi . Given a subgroup H < G and an element
a € G, a left coset aH 1is the set of elements {ah, h € H} . ¢ 1is a disjoint
union of left H-cosets and the set of cosets - the coset space - is denoted

by [G:H] . It is an orbit of G for the action
g-(aH) = (ga)H (3)

According to our definition that orbit is of type [H] . As is well known, if

H« G (H is an invariant subgroup of G) , [G:H] 1is a group (the quotient

group G|H ).

Given two actions ¢ and @' of G on M and M' there is a
natural action of G on the set of functions F(M,M') defined on M and

valued on M' . It is defined by
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FIM,M') 3 £ = g-f |, @'(g,f(m)) = (gf) (p(g,m)) (4)
or, in shorter notation,
(g-f)(m) = g-[£(g™ em)] (5)

(beware that the dot represents three different actions depending on the mathe-
matical object placed at its right). Whenever g-f = f , the functions f 1is
said to be equivariant. When an equivariant isomorphism f exists between M

and M' , the two actions ¢ and @' are said to be equivalent. One has
-1
f(m) = g-[f(g ~-m)] (6)

This is the usual equivalence of linear representations when M and M' are

vector spaces.

From that definition of equivalence, it is easy to prove that the
actions of G on two orbits are equivalent if, and only if, the two orbifts are

of the same type.

In the present work, we are interested in the action of a crystallographi

. -
space group G on the Euclidean space E (also referred to as the r-space
or the position space). Except when we have to give explicit Tables, there is

no reason to specify the dimension n of FE .

The orbits of G in E are usually called the crystallographic orbits.

In 3 dimensionsthe types of crystallographic orbits are tabulated in Ref. [14].
Usually we do not consider directly the orbit space. Rather we consider the
orbit space of the translation subgroup T of G . It is E|T , an n-dimensional

torus which can be referred to as the Wigner-Seitz torus since it is nothing

else than a Wigner-Seitz cell in which parallel boundaries are identified. (The
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fundamental domains of the translation groups were studied by Dirichlet, Fedorov,

Voronoy and Delone).

It is quite clear that G also acts on the WS torus, but the invariant
subgroup T acts trivially on it. It is the quotient group P = G/T (the point
group) which acts effectively on the WS torus. This means that only the unit

element 1 of P acts trivially.

Let us denote by m the group homomorphism G L sp= G/T and by ¢

the mapping E-Lsys = E/T . Let G, be the isotropy group of TEE

T
It is clear that, if 3 = o(¥) s
m(G) = P
r q
and, since G _NT =1, P is isomorphic to G
7 q T

We must emphasize that P, cannot be confused with G, mnot only

q r
because 3 €WS and T € E are different or because P, is a subgroup of P
q
(a quotient group) and G, a subgroup of G , but also mainly because a given

r

P, can be the image of two (or more)non conjugate isomorphic subgroups G

q r

and G, . If one considers the action of G (instead of P ) on WS , the orbits
1

r
and strata are the same but the isotropy subgroup P, 1is replaced by the group
. q
G, =m 1(P_)) = T-P_ which is a symmorphic space group.
q q q

To summarize, we have therefore the following vocabulary : Gr (for
simplicity we shall omit the vector signs on ¥ and H ) is the isotropy group
of the vector T in the Euclidean space E ; Pq is the isotropy group of the
vector 3 in the Wigner-Seitz cell; finally, Gq = T-Pq is a symmorphic space

group. It is clear that Gr is a subgroup of G , while Pq is a subgroup

of P . The above vocabulary will be used throughout the paper.
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We have shown that in the action of a space group G on the -
physical space, the isotropy groups G, are finite, so they belong to the

r
subset Kg c KG of conjugation classes of finite G subgroups.

Let us remark that any finite subgroup F of G cannot contain a
pure translation; we can then prove that the maximal conjugation classes of Kg
are conjugation classes of isotropy subgroups. Indeed let Fm be such a maximal
finite subgroup of G and X an arbitrary point of £ . The barycenter b
of the orbit Fm; is invariant by F_ so Fm.ﬁ Gg which is finite. The

maximality of F_ implies F_ = G
m m g

In general, an intersection of little groups is not a little group,
but this is the case for finite groups [9] and the proof can be easily extended

to space groups.

The dimension of the stratum of G, , isomorphic to P _ 1is the
T q
multiplicity of the trivial representation in the vector representation of the

point group Pq . The Table 1 gives this dimension for the 32 point groups.

As we already said the strata are called the Wyckoff positions in the
International Tables for X-Ray Crystallography [13] and the number of free
parameters of a position is the dimension of the stratum. As before let us
denote by [Gr] the class of groups conjugate to Gr in G . Every space group
has only one 3-dimensional stratum, that of [{1}] (the trivial group) : it is
open dense [8]. The strata corresponding to maximal conjugation classes of finite
G-subgroups are topologically closed [8]. They correspond to symmetry points,
rotation axes or reflection planes [3,4]. We give in Table 2 a statistics of

the dimension of the closed strata of space groups in 3 dimensions.

There are 183 space groups whose closed strata have the same dimension

(or is unique). Among them, 13 have only one stratum, the whole space; hence
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their only symmorphic subgroups are in T . These 13 space groups are tabulated
in Table 3. This Table contains also the 5 space groups with closed strata of
dimension 2. There are 2 space groups with closed strata of dimension O and 2 ,
6 of dimension 1 and 2 and 38 of dimension O and 1 (See Table 2). There is only
one group ( # 57 with the international symbol Pbem) which contains closed

strata of all possible dimensions 0,1 and 2 (See Table 3).

Let us illustrate all these properties by presenting the partial
ordered set of Wyckoff positions of the diamond group (#227) Fd3m = O; . Reference
[13] gives a list of nine strata denoted by the letters a,b,...,i . The only
closed Wyckoff positions are a,b,c and d with the corresponding maximal
isotropy groups [Ga] R [Gb] s [GC] and [Gd] (See Table 4). On the other
hand, 1 1is the (3-dimensional) generic open stratum corresponding to the
trivial little group 1. None of the groups in Table 4 is contained in a larger
stability subgroup. Thus, f contains all the points of the type (x,0,0)
except (0,0,0) which belongs to a and (%,%;%) which belongs to b
(the letter a is used here with two meanings : in the symmetry site it denotes
the lattice constant and as a separate letter it denotes the type of the symmetry
site). Therefore f has less symmetry than a or b . The following diagram

illustrates the above results (See [13]).

\ —~
(::\ <:€:) Lc ) B Q) dimension 0
N S ’\\\ PN  ‘/1", ‘ (closed strata)

./ N~ <
(/fj? (E:\y/// <;\\ dimension 1

0

) / dimension 2

i dimension 3
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A number of examples of zero-dimensional strata are given in Table 3
for the hexagonal closed packed structures (P63/mmc) and 4 cubic groups
the simple cubic (Pm3m) , the face-centered (Fm3m) , the diamond-structure
(Fd3m) and the body centered-cubic (Im3m) . Three of these space groups are
symmorphic, while two (the hexagonal closed packed and the diamond structure) are
non-symmorphic. We would like to point out that the simple cubic and the face-
centered cubic groups have two different closed strata with the full cubic
symmetry m3m . This is not the case with the body-centered cubic group which

has only one closed stratum with the symmetry m3m .

In conclusion of this subsection we make a number of remarks about
. > . .
notations. Space group elements are denoted by (a[t) where o 1s a poilnt group
> . ->
element and t a translation. (a]t) of the space group G acts on the

vectors r in the Euclidean space € in the following way
(@|0)T =or + ¢ (7)

A little group Gr (or isotropy group) of T contains all those elements

-5
(va(y)) of G (where 3Ky) is the particular translation of <y ) for which

> > > >
GlveDT =yT +vG) =7 (8)
>
r is called a symmetry center. For a gemeral point Tt Gr contains the unit

element only. Any space group G can be decomposed into cosets with respect

to a chosen origin O (T 1is the group of pure translations)

©
|

=T+ G| VDT +ee ety [V DT (9)

1,2,...,s8 are called the representative elements,

[}

where (yifv(yi)) , 1
and we shall keep them fixed with well defined partial translations ?(yi)
In general, (ygg(y)) in (8) is not one of the representative elements in (9)

and it can differ from the latter by a Bravais lattice vector. The fact that the
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> . . .
vector r has a non-trivial little group means that the space group G has
. . > ..
point group elements with r as the origin. In other words, the elements

y{r), ygr),...,yér) of Gr are pure point group elements when written with

-5
respect to r as an origin

ytﬁr);=? m=1,2,...,f (10)

b

. ‘—> - . .
The representative element (ym[v(ym)) which we have fixed in advance
. . . -.}
(See (9)) with respect to the origin O will, in general, leave r unchanged

only up to a vector of the Bravais lattice

(11)

L0 VG )
+ R m m

> - -
(ymlv(Ym)r =r .

>
LG VG
where Rr is by definition a Bravais lattice vector which depends

: > . >
both on the radius vector r and the representative element (lev(ym)) .

As mentioned before the symmetry centers in the Wigner-Seitz cell are

.
denoted by 3 . Correspondingly, the vectors of the orbit of q 1in the unit cell

are
=4y = Gy l¥ed, e = (o [V F (12)

>
where the elements (amfv(am)) appear in the decomposition of the space group

G with respect to the group Gq
R (| (1
- et
G . + (o, v(uz))Gq + a |V am))Gq 3)

The vectors E in (12) form what is called a star in the unit cell of the
Bravais lattice. Correspondingly, also the stratum of a a—vector with the little
group G is limited to a unit cell of the Bravais lattice. With this limitation
a stratum coincides with the Wyckoff positions of the International Tables [13].

Wyckoff positions in a unit cell of the Bravais lattice, play an important rdle
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in band representations of space groups. This is very much the same as the rdle

of strata in the Brillouin zone of the reciprocal lattice for irreducible
representations of space groups [7,11]. It was already pointed out (See (10))

that the little group Gr when written with respect to the symmetry center 1
has only pure point group elements. The following relation exists between elements

y(r) with respect to r and (y|v(y)) with respect to the fixed origin O

(See (9))

(14)

b

Ve = G RO IO

Ref. (l4) gives the transition for elements of Gr from the r-origin to the
.+
. . . >(y [v(y)) .
common O-origin. The reason the Bravais lattice vector Rr appears in
Rel. (14) is because the representative elements (y(z(y)) are fixed once and
. > . . .
forever by (9). Different centers r will correspondingly lead to different

as will be seen

—}
for a given element (le(Y)) . The vectors EEYIV(Y))

2y [V(y)
r

later, play an important rdle in band representations of space groups.

B. Induced representations.

We recall the definitions and the main properties of induced represen-
tations in the simple case of finite groups [10]. For this let us consider first
an orbit [G:H] with HmO = m_  and the set of real or complex valued functions
defined on it. They form a vector space Eéo) of dimension IG!/IH[ where
IGI and fo are the orders of the groups G and H respectively. The corres-—

ponding action of G on c¢ € Eéo) is defined by

(g-c)(m) = C(g—l‘m) (15)
So, if n = |G|/|H| different functions are taken as a basis of Eéo) s
(for instance, the functions o defined by cm(m') = 6mm,) , the matrices of

the G-representation are n * n permutation matrices. This representation
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is denoted by Indg(lﬂ) or by Indg(yéo)) where lH or yéo) denote the
trivial representation of H . Obviously, the representations Indg,(lﬂ,) where
H' = gHg_1 are equivalent since they are obtained from one-another by a change
of basis in Eéo) . When the orbit is [G:1] the corresponding induced represen-—
tation Indg(lc) is the regular representation of G , and its vector space

can be identified with the space of functions on the group.

As an example of constructing induced representations, consider the
action of G on a manifold M . On the Hilbert space HM of square integrable

functions on M , the corresponding action of G is
Ve € G, Vx €M, Vfe H (g-f)(x) = f(g“lx) (16)

Let ¢ € HM with isotropy group Gw =H, i.e.

h€He oh %) = 0(x) Vx €M (17)

If we denote by p the surjective map G B [G:H] which maps every group element
on its coset p(g) = g-H , a section s is a map [G:H] 5 ¢ such that

p.s = I[G:H] the identity on the orbit [G:H] . 1In other words, a section is
obtained by choosing one representative Sm for each coset. We use the short
notation s, for s(m) , m€ [G:H] and wm(x) for the function (SmW)(x)

The functions of the orbit G.y generate a vector space Eéo) and the wm

form a basis of this vector space. Let f € Eéo)

f =73 c(m)¢m m € [G:H] (18)
m

and

(8- () = 1 ey (g %) =

]
™

m

cm)y(s g ) (19)

H
3 ™
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And let h(g,m) € H be defined by

ges_ = sg.mh(g,m) (20)

Then (19) can be written with the use of (17) as follows

_ -1 _ _ -1,
(g-£)(x) = i c@m)p(s ' x) = éc(m)wg.m(X) = i clg "my_(x)

This shows that the coordinates of the function f € Eéo) are transformed under
g exactly as in Equation (15) and that the G-linear representation on Eéo)

is the induced representation Indg(y(o))

A more general kind of induced representation is obtained from the
. (a) | (@) .
representation of H on the vector space VH ¢t h=D (h) ; the character
of this representation is xéa)(h) = Tr D(a)(h) . We consider now the Hilbert

space Héa) of functions defined on M and valued in Véa) , with the G-action

again defined by (16) but with vector functions f

g f(x) = £(g %) (21)

Instead of the scalar function ¢ with little group H defined in (17) we have

to choose an H-equivariant 3y € H&u) » which means a 1 satisfying
-1 (o)
vh e B u(h %) =D % (h)yx) (22)

the vector space of functions spanned by the orbit G.y (with

We call Eéa)

the action in (21)). If the representation Déa) is irreducible, the

D(a)(h)ﬁ(x) E(h—lx) span the vector space Véu) and

i

dim Eéa) = lgi dim V(a) (23)
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The linear representation of G on Eéa) is denoted by Indg(yéa)) . One can
choose a basis {wi(x)} of functions in Véa) (wi(x) are the components of the
vector yY(x)) and define as before
b () = (s ) (24)
i,m iy

From (22) we obtain, for these basis vector functions

-1
w-,m(h x) = ? wi’m(X)Dij(h) (25)
If
f(x) = Z Ci(m)wi,m(X) R (26)
i,m
then
_ -1 -1 -1
(g-£)(x) = z ci(m)wi m(g X) = ¢ ci(m)wi(sH g x) (27)
i,m ’ i,m !

and from (20), (24) and (25) (definition (20) is used)

I
1]

(g-£)(x) z w.(s;}mx) Dji(h(g,m))ci(m)

1,3,m

I
]

Loy, (%) Dji(h(g,m))ci(m)

i,j,m 158
= 5 Y. (%) D..(h(g,g Tem))e. (g Fom) (28)
i ] ,m ji ’ i8

Comparing to Rel. (26) this shows that the vector valued function

[G:H] § Véa) of components ci(m) in the basis wi . is transformed by g
b

into

(g.c);(m) = 2 Dij<h<g,g'1m»sj(g"1m) (29)
]
-1

where (20) becomes : h(g,g-lm) = Sg o 85, - This gives explicitly the matrix
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(o) _ (a) . (o) _ (a) .
A(g) on EH —g?‘%n with Vm = smVH It is made of blocks Amn R
i<m ,n<Ns= %9%3 each block is a d x d matrix with d = dim Véa) and
H
‘-1 S
D(Sm gsn) if s “gs €H
A =
m (&) (30)
0 if s_lgs ¢ H
m ©"n
Note that
dim al(r (™) = din( () x (tndex  in o) (31)
. .. . . A .
This explicit expression yields the character Xé ) of the induced representation
_ G (o)
A = IndH YH Indeed
A 1 -
Tr AGg) = xg (8) = —— 1 () (s7lgs) (32)
|H| s€G
s gs€H

Let NG(H) be the normalizer of H in G . NG(H) acts on H , the
dual of H (ﬁ is the set of equivalence classes of unitary irreducible repre-
. (%) _ ) -1

sentations of H ). Thus, for n € NG(H) we have (nx ’)(h) = X (nhn 7) .
It follows that
A 2
Py = s Uy, newn (33)
L' € orbit NG(H)R
Hence, irreducible representations of H which do not belong to the same orbit

of NG(H) induce inequivalent representations of G .

It should be pointed out that we have defined an induced representation
as a construction procedure from a given representation of a subgroup, and a
representation is said to be induced if such a construction exists. In that case,
as we will see, this procedure is, in general, not unique : a given representation

can be induced from representations of different subgroups or even from different

representations of a given subgroup.
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We recall that the Kernel of a G-representation is the invariant
subgroup K of G (for an invariant subgroup the notation is used K < G)
whose elements are represented by the identity matrix. Thus, for k € K ,

X(A)(k) = dim A . From (32) one obtains

@y . g(ker g (34)

Ker(Indg Y
g€G

where the right-hand side is the largest G-invariant subgroup contained in the

If HJG (i.e. H invariant subgroup of G ),

H-invariant subgroup Ker yéa)

the conjugation in G induces a group-homomorphism G - Aut H . This action
of G on H yields also an action of G on H , the dual of H i.e. the set
of equivalence classes of unitary irreducible representations. (In what follows

they will be called unireps of H). Indeed, g transforms h - D(h) into

h -~ D(ghg‘l) . Then from Rel. (32) one easily finds

O when g € H

i
, A ;
H<YG : xé )(g) =§ (35)

Ql

2 X}(I )(g)
(o)

1
o EG.YH
(o) . _ . (a) . - . B
where G-YH 1s the G-orbit of YH in H . In particular, when H =1 <G ,

we have the well known case of the regular representation

®e) = Jol 5, (36)

<

When G 1is Abelian, every subgroup is an invariant subgroup and G acts
trivially on it

/

Jo if g€ H

! A
G abelian , 5 = ndCy @’ x(b)(g) =

H (37)

|
&¥9T xéa)(g) if geH
| H
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Given a linear representation g »T'(g) of G, its restriction to H

(i.e. g € H) yields a linear representation of H whose character is denoted

by
(ry _ G _(I)
XH = ResH XG (38)
(r) (o) . .
Let XG and XH be the characters of linear representations of G and H

respectively. From equation (32) one can compute the scalar product of the

G-characters

() G_(a) 1
= ¥
G ,IndHX >

HO76 6l ] ate

s~lgs€H

G )Xéa)(s—lgS) =

<X X

1 1 () -1 -1, (o)
= — — I (sh "s D)x, 7“(h)
lul lel s © i

. - X T -1 - T -
(due to the change of variable s lgs = h) . Since Xé )(sh 1S 1) = Xé )(h 1)

we obtain the Frobenius reciprocity relation

)y <Resg Xér) SON (39)

) G (
Kg T Indgxy g 20 It

We denote KG the Hilbert space of unitary central functions £ on G i.e.

E(g8)) = E(gyg)) so Elgg,g, ) = £(g,) and E(g) = £(5°1) with the scalar

product <€,n>G = Ti—»gi(g—l)ﬂ(g) , 1t is well known that the characters of the
G
irreducible representations form an orthonormal basis of KG ; S0 when xéa)
r . . . .

and xé ) are characters of irreducible representations equation (39) reads

L . ry . G (o) . L.
The multiplicity of the unirep YG in IndH YH 1s equal to the multiplicity

() . G (I

of vy in Resyve

As an application we prove Lemma 1 which will be useful for us later.

G (a)

éa) is a unirep of H of dimension d, IndH Yy

is a direct

sum of G unireps of dimension > d .
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Indeed, if d' = dim Yép) (a G-unirep) is smaller than d , the

decomposition of Resﬁ Yép) into a direct sum of H unireps does not contain

G (p) _(w)

those of dimension > d' so <RestG Xy >H = 0 and the Frobenius reciprocity

proves the lemma (x is the character of the representation ¥)

Another way to interpret (39) is to state the

G
IndH
Frobenius reciprocity theorem : The linear operators KH —————%—KG and
Resg
KG _— KH are adjoint of each other :
Gyt _ .G G _ G\t
(IndH) = Res, IndH = (ResH) (40)

This relation will be very useful for computing the tables of induced represen-
tations (See Table 5). All equations established for finite groups can be

extended to compact groups if TAT-Z is replaced by the Haar integral and,

G' g
when they have a meaning, to discrete groups, e.g. the space groups.
G G
Obviously ResH ce ResG1 Resg = Resg . Taking the adjoint we have the chain
2 1

induction theorem

G.
. oG (a) _ - .G 1 Kk, (a)
H <G <+++<6, <6, <6 .IndHyH = Ind IndG ...IndH (YH ) (41)
When a group G has an Abelian invariant subgroup A JG (e.g. space group,
A 1is the translation subgroup), there is a systematic method for constructing
the unireps of G . We have already defined G , the dual of G, i.e. the set
of equivalent classes of unireps of G . For an Abelian group A is itself

-~

a group and A=A . For example Z = U(l) the group of complex phases, since
for any k, n > elkn (k mod 2m) 1is a unirep of Z (the additive group of
integers). Similarly, for the translation group T N:ZB of a space group

T ~ U(l)3 has the structure of a 3 dimensional torus of coordinates ki s

i=1,2,3 , 0 < ki <1 (i.e. k defined mod 1) in a basis where the trans-
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lations t € T have integer coordinates; the vector k(kl’kZ’k3) defines the

representation

t > exp(ik.t) = exp(i = kjnj) (42)
j

> . - - -
The torus of k is the Brillouin zone, but too often its group structure 1is

neglected.

For a general Abelian group A we denote by k an element of A .
If A <G, as we have seen G acts on A . Let k € A and G, its isotropy
(o)

of G and form the induced representation

group. One can choose a unirep Y
Gk k
a . . . . .
Indg Yé ) . One proves that this G-representation is irreducible and moreover
k "k

that for space groups and all physical symmetry groups mentioned in the Introduc—
tion (e.g. point groups) one so obtains irreducible representations of G .

For any K of the Brillouin zone of the space group G , Gk is itself a space
group, usually called the "little space group'"; it contains the translation
subgroup T of G , since T acts trivially on its dual and Pk = Gk/T is
called the "little point group'" of k . The unireps of Gk can all be computed

by induction, if necessary, and so on. Since T contains only one-dimensional uni-

reps of T and since T has a finite index in G which by itself has a finite

k
. G . . G (o) . .. ..
index = in G, so dim(Ind. (y )) is finite and one shows that it is a
K % Gk
divisor of ’P, (so, in three dimensions, it is a divisor of 48). Hence, equation

(39), Frobenius reciprocity, applies to space groups.

We recall here a theorem of Mackey [10] on induced representations which
also can be extended to space groups. Let H and K be two subgroups of G ;
the set of elements HxK 1is called the double coset of x . Note that x € HxK ;

1 1

hxk , h€H ,k €K , x=nh yk_ SO X € HyK ;

1]

if y € HxK i.e. vy

i

finally y = hxk , z h'yk' > z = k'hxkk' , so to be in the same double coset

is an equivalence relation and G is a disjoint union
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G = U HsK (43)
SE[H:G:K]

where [H:G:K] 1is the set of double cosets. We denote Ks = sKs N H

Then Mackey has proven

Resg IndK Yéa) = @ Indg ResK_1 yéa) (44)
s€[H:G:K] s s K.s
Remark that KS < H and S_IKSS =KnN S_lHS < K . As an application let us
compute the multiplicity of the irreducible representation of yép) in the above
representation defined in (44)
G (o) (D) _ H K (o) (p)
<ResH Ind YK ] H = 7 <IndK Res -1 Y iy >K =
S S s Ks S
s
1 —
= 3 <Rest Y(u)!Res W =L g x(u)(s gS)x(p)(g) (45)
-1 K K H K K
s s Kss s s IKS] g€KS

We can apply these relations to the crystallographic group G , with H = Gk and
>
K=G_ =P . For instance when k =0 , H = Gk =G so s=1, K = Pq ; moreover
S

the translations are represented trivially so yg = yg . Equation (45) reads for

this case
G (u) ( )y P (a), (a 1
<Res, Y = <Res; v, )lYP )>P = 2 ( )(g)x(p)(g) (46)
q q qa q q gEPq

A necessary condition of the equivalence of the band representations Ind% ;p)
, G (" .. P (p) P (p") q
and IndG, Ypr 1s IndP p Indp, Yp

X q q qg q q

Obviously the operator Indg commutes with & , i.e. direct sums and

tensor products of representations

IndG( (a) 2 és)): Indg Yéa) @,Indg és) (47)
G (a) (g) _ L dG (o) @\IndG (B) (48)

Indy vy " oy = Indy vy " H 'H
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As we pointed out in the Introduction, for many groups in physics, every
irreducible representation is an induced representation so every representation
is a direct sum of induced representatioms, A physically more relevant decomposi-
tion of an induced representation is into a direct sum of induced representations
from the same subgroup. As the relation of chain induction (41) shows a given
induced representation can be considered as induced from different representations
of different (i.e. non-conjugate) subgroups. It may also happen that some of these
subgroups do not form an increasing chain of subgroups (or more precisely, in

the partially ordered set K of conjugacy classes of subgroups). We are led

to the concept of irreducible-induced G-representations. (The hyphen is essential

and avoids confusion with a representation which is both irreducible and induced).
By definition, such a representation is not equivalent to an induced representation

of G from a reducible representation of a subgroup.

Lemma 2. Irreducible-induced representations are induced representations from

irreducible representations of maximal subgroups.

This is obvious; if H < M < G, M maximal (strict) subgroup of G

and yéa) is an irreducible representation of H . By (41)

G (a)

u g to be irreducible-induced

G (a) _ G M (a)
Ind = IndM (IndH Yy ) and for Ind

HYH
M (a)

u Yy be irreducible.

it is required that 1Ind

This lemma 2 gives a necessary condition for irreducible-induced
representations which is far from sufficient. As we shall see, an induced repre-
sentation from an irreducible representation of a maximal subgroup may be

equivalent to an induced representation from a reducible representation of another

maximal subgroup.

It is easy to give a strong sufficient condition. We recall that when
H < G, the number of H cosets is called the index of H in G . For finite

groups the index of H in G 1is |G|/|H| .
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Lemma 3. If H < G with prime index p then for any one-dimensional representation
yéu) of H , Indg yéa) is an irreducible-induced representation.

Note that H 1is a maximal subgroup : indeed if there were M s
H <M <G the index of H in M and the index of M in G would both divide

p . Similarly, as given in Eq. (31) the dimension of an induced representation

G (o)
H 'H

is the product (Index of H ) x (dim of H-representation), so Ind can
be equivalent only to an induced representation from a one-dimensional one of a

subgroup of index p . For a finite Abelian group, we have a complete classifi-

cation.

Theorem 1. The inequivalent irreducible-induced representations of a finite
Abelian group A are all the induced representations from one-dimensional
representations of maximal subgroups. By lemma 2, this is a necessary conditon.
From equation (37) we see that such an induced representation defines uniquely

the inducing subgroup and representation.
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ITI. Induced representations of point groups.

Let us start this section by describing some general properties of
irreducible representations of point groups. Mathematicians have proven that the
unireps of supersolvable groups are monomial, i.e. they are either one-dimensiona’
or induced from one-dimensional representations of subgroups [10]. For such
monomial representations there exists a basis in the carrier space such that all
matrices of the unireps have all elements vanishing except one in each line and
column which is equal to a phase. A group is supersolvable if it contains a
chain of k subgroups satisfying (again, <J reads invariant subgroups)

a) 1 = Gk b) GO =G for all i, k< i <1 ¢) Gi<3G d) Gi—l/Gi is cyclic (49

Note that when c) is replaced by the weaker condition c') Gi<3Gi_1 , G 1is
solvable. The point groups in 2 dimensions are supersolvable : there are 10
of them. Among the 32 point groups in 3 dimensions, only the five cubic groups
are not supersolvable; but they are solvable. Indeed the 32 geometric classes
are defined as conjugation classes of subgroups in 0(3) , but they define only

18 group-isomorphic classes; 9 of them are Abelian; five others are supersolvable.

~ ~ ~ ~ ~ ~ <3 N ~
¢ Py s Cuy ™Dy~ Dyq 5 Gy~ Dg ~Dyy~Dyy 14C 4D D/C ~2Z,

(50)

< J < ~ 7
D, , D 19C 9D <D D /D~ 2z,

The 5 cubic groups form 4 isomorphic classes T s Th, Td ~ 0 , Oh of solvable

groups

D2
AC,<ID, <IT10 - —= o~ ~
1 C2 D2 T70-0 c

“h, T
h 0

~ 7 e~ 7 (51)
2
) 2 D2 3

=lle]

but C2 is not an invariant subgroup of T ! However, all unireps of the cubic

point groups are monomial : indeed the 2 and 3 dimensional ones are both orthogonal

and with integer elements.
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We remark that the ten point groups in 2 dimensions are isomorphic to
point groups in 3 dimensions. In dimension > 3 many point groups are still
supersolvable or solvable, but not all. For example, the symmetry groups of the

icosahedron is a 4-dimensional point group and is not solvable.

As an introduction to band representations of space groups (Sections
IV-VI) we discuss in this section induced representations of crystallographic
point groups (in what follows they will be called point groups). The latter are
finite order groups and it is easy to demonstrate on them different concepts
connected with induced representations. In addition, as will be shown later,
there is a close relation between band representations of space groups and induced
representations of point groups. The subject will be considered both for abstract
point groups and for their action on the physical ;~space. When considered
abstractly, any representation of the subgroup H of G can be used in
constructing induced representations according to the formulas of the previous
section. However, a more restrictive type of induced representations is obtained
by considering the action of the point group G on the space T , and by dealing

. . _>
with functions ¢(r) .

For abstract point groups one starts with a representation yéu) of H
and by using Formula (32) onme finds the character of the induced representation
Indg(yéu)) . It is convenient to give the contents of the latter by listing the
irreducible representations of G it contains. For this purpose the Frobenius
reciprocity theorem (40) is of much use. By using this theorem
we have constructed Tables 5 of all induced representations of point groups
(See Ref. (15) for notations). Reference to these tables is given in Section VI
where they are extensively used in establishing the equivalency (or inequivalency)

of band representations.

. > . .
In the case of the action of the point group G on the space r it 1is

instructive to distinguish between two kinds of induced representations. One of



them refers to any subgroup H of G while the other one is when H 1is a
little group in ;?space. In analogy with space groups we shall call the latter
band representations of point groups. These induced representations should play
the same role for molecules [3] as band representations of space groups play for
solids. As a rule, not all subgroups of a given point group are little groups

in ?Lspace and, correspondingly, one can talk about induced representations,

in general, and about band representations, in particular.

In the framework of assigning induced representations to sets of energy
levels of a physical system it is of interest to deal with irreducible-induced
representations. The latter were already defined in Section IT as induced repre-
sentations which cannot be written as a direct sum of induced representations
from the same subgroup. The restriction to the same subgroup is essential and it
is added keeping in mind the possible application to band representations. Thus,
an irreducible-band representation (of a point group or space group) cannot
be written as a sum of band representations for a single isotropy group. As
already mentioned before, to avoid confusion the words irreducible and induced
(or irreducible and band) are connected by a hyphen because an irreducible-induced
representation might be reducible despite of the fact that it cannot be reduced
into induced representations. On the other hand, a reducible-induced representation
is always reducible. In a similar way one talks about irreducible-band represen-
tations. They are the ones that cannot be written as direct sums of band
representations. Being induced from an isotropy group of a symmetry center the
basis functions of a band representation should be expected to correspond to
some set of energy levels that belong to a well defined partvof the energy
spectrum. Correspondingly, an irreducible-band representation should correspond
to a minimal set of such energy levels. Thus, in a solid there is a correspondence
between an irreducible-band representation and a band of energy labels. In

general, irreducible-induced representations should play the same rdle in the



