framework of induced representations as the irreducible representations of a

group play in the framework of representations.

In order to demonstrate the difference between induced representations
and band representations of point groups let us consider the construction of
all irreducible-induced representations of the point group Td . The maximal
subgroups of this group are T , Dyy and C3v . In Table 6 we list all the induced

representations of Td from its maximal subgroups. The notations of the irreducible

representations of point groups are taken from Ref. 15. In the column on the very
right of Table 6 the irreducible-induced representations of Tj are listed.

It is seen that the latter (8 in number) are all induced from one-dimensional
representations of the maximal subgroups of Td (this is in accordance with

Theorem 2 which is given below). It is also instructive to consider the irreducible-

band representations of Td . They are induced from maximal isotropy groups of
Td , which are C3V and C2v . In Table 7 we list the band representation of
Td . All of them are irreducible-band representations, e.g. they cannot be

reduced into band representations. There is therefore a difference between

induced representations from maximal subgroups and band representations which

are induced from maximal isotropy subgroups. While for the latter only irreducible
band representations are obtained, in the former case we have also reducible-
induced representations when inducing from maximal subgroups. It turns out that
the feature of having only irreducible-band representations when inducing from
maximal isotropy groups holds with very few exceptions for all crystallographic
point groups in 3 dimensions. This feature is of much importance for space groups

because for the latter all maximal finite order subgroups are isotropy groups

(See Section IT A).

In what follows we give a classification of all irreducible-induced
representations of point groups. Among them we shall also obtain the irreducible
representations. From Theorem 1, we know the results for Abelian point groups.
We shall prove that we can extend it to all 2 or 3 dimensional point groups,

but some of the obtained representations might be equivalent.
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Theorem 2. The irreducible-induced representations of 2 or 3 dimensional point
groups are induced representations from one dimensional representations of

maximal subgroups. We know it for Abelian groups. Outside the five cubic groups,
the non-Abelian point groups have irreducible representations of dimension 1 or 2.
(We shall refer to it as property Ia ). Moreover, each such point group P has
an Abelian maximal subgroup A of index 2. Indeed P S-Dnh with n = 3 4 or 6

Define A_ =P N C (since D /cnh = 22 s P/AP = Zz) . Let

P nh nh
() o . . P (@ _ ) (o
Yp be a two-dimensional irreducible representation of P . ResA Yp o TV, Yy
) - (al) P (az) ()
and by Frobenius reciprocity IndA YA = IndA Yo = YP . So every

2-dimensional representation of P is induced from a one-dimensional representation

(p)

of A . Let M be a maximal subgroup of P and Yy a 2-dimensional irreducible
M-representation. From property Ia and Lemma 1, Indﬁ Yép) is a direct sum
of igi 2-dimensional irreducible representations of P and therefore it is

M|
the induction from A to P of the direct sum of ]P|/]M[ one-dimensional

representations of A .

IT. We now use the following properties of the Cubic groups.

IIa the dimension of their irreducible representations is < 3

IIb their order is 3 X 2k (k = 2,3,4).

Let C be a cubic group; all subgroups S of index 3 are Sylow groups [10] of ¢

and therefore all conjugate. Hence all 3-dimensional irreducible representations

of C are induced from l-dimensional representations. If yéa) is a 3-dimensional
irreducible representation of H < C , by IIa and Lemma 1, Indg yéa) is a

direct sum of 3-dimensional irreducible representations of C and it is

therefore an induced representation from a direct sum of representations of H

IIC Only the groups 0, and 0 ~ Td have maximal subgroups with two-dimensional
irreducible representations. For the other, induction from a 2-dimensional

representation of a subgroups leads (from Lemma 1) to a direct sum of 3-dimensional
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representations. As we have just seen, this is a reducible-induced representation
equivalent to an induction from the Sylow group S of a direct sum of one-dimen-

sional representations.

IId The 2-dimensional representations of the cubic groups have a kernel D2

or D2h . Induction from an index 2 cubic subgroup can lead only (Lemma 1) to a
direct sum of representations of dim 2 or 3 . The latter are excluded because
their kernel is too small (trivial or generated by the space inversion). A

direct sum of 2-dimensional representations are reducible into monomial represen-—
tations in Th or T (the only index 2 subgroup) for Oh or Td . On the other
hand, the 2-dimensional representations of the index 3 subgroups of these groups
have as kernel {I} or {I,-I} . So the 6-dimensional induced representation

in a cubic group cannot be the direct sum of three 2-dimensional irreducible

representations of the cubic group. They have to be the direct sum of 2 or

3-dimensional representations. Then the argument after IIb applies.

We are left to study the induction from the 2-dimensional representations
of index 4 maximal subgroups of cubic groups: D3d for Oh s D3:~ C3V for

0~ Td . We simply verify the reducibility.

0f course, "Theorem 2'" applies only to a finite number of groups and
g

representations. It can, however, be simply verified for all the others.

The problem left is that of equivalence of irreducible-induced represen-
tations. The proof of Theorem 2 gives a class of equivalence : The 2-dimensional
irreducible representations are induced from 2 non-equivalent one-dimensional
representations of an Abelian subgroup. So these representations induce the same
irreducible~induced (it is irreducible in the usual meaning) representation.

This is also true for 3-dimensional irreducible representations induced from

an Abelian group. (Those of Th from DZh) . It was essential in the proof
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of Theorem 2 to use the fact that multidimensional irreducible representations

of a given dimension are induced from a unique subgroup (the index 2 maximal
Abelian subgroups AP ; The Sylow group S or Th or T for Cubic groups).

This explains why there are very few equivalent irreducible-induced representation
induced from different maximal subgroups and where to look for exceptions

In (non Abelian) non-cubic groups which have non conjugate Abelian subgroups

of index 2; those groups are D4h s Datv Cava D2d . For Abelian groups we have

proven the inequivalence of all induced representations from unireps of maximal

subgroups.

In conclusion of this Section we summarize the inequivalent irreducible-
induced representations of crystallographic point groups in 3 dimensions
by giving their statistics side by side with the numbers of the corresponding

irreducible representations. This information is presented in Table 8.
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IV. Band Representations of Space Groups.

The space group G acts on a y(7) in the following way
@lOVE = v (E@lo™D (52)

When the W(;) are square integrable functions, Rel. (52) defines a linear
action of G on the Hilbert space LZ(R3) . A band representation is obtained

by acting with G on a square integrable function v(r) [4]. Like an orbit for
the action of G on the space R3 (Rel. (1)) one can also define an orbit

G(y) for the action of G on W(;) (Rel.(52)). This orbit, G(y) , spans a
G-invariant subspace of L2(R3) . It carries the band representation G(y)

Such a representation is called an induced representation of G . More explicitly,
a band representation is defined as an induced representation of G 1in the
following way : it is an induced representation of G from a representation of

a finite isotropy subgroup H of G . Thus in Table 4, T, is a finite subgroup
of O7 and it is a little group of the symmetry center ;a = (000) . In the

h

language of bases, the induction process for a band representation of a space

. . (w,p) ,~ . .
group is described as follows. Let wj (r) , j=1,2,...,p be the basis

. . 3 > I3
functions for a representation y(p) of Gw (Since r appears now in the

. ->
wave function, we denote by w the symmetry center)

N p
Y(w)¢§w’o)(r) .

(p) (wep) />

j'=1

>
where y(W) are the elements of Gw with respect to the symmetry center w .

By using Rel. (14) one can rewrite Rel. (53) with respect to the common origin O.

IEIIND
D§9;<y>w§V’Q)<?—§ m (54)

™~ g

<Ym13(vm>>¢§w’p)<?> -

it

j'=1

A band representation is the induced representation Indg (y(ﬁ)) . The basis

W

of this induced representation 1is
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(w, ,0) (w,,p)
1277 >y - (w,p) > 2270 > > (w,p0) ,~
wj (r) = wj (r) , wj (r) = (aziv(az))wj (£)yenn,
(55)
(w SQ) N N .
wj @) = (ale(am))ij’p)(r)

plus all those functions that are obtained by applying to (55) all the translations
of T . In Rel. (55) (aslg(as)) are the representative elements in the

decomposition of G with respect to Gq =G, T in Rel. (13).

The concept of a closed stratum aquires much importance in the framework
of irreducible-band representations [16]. Thus, it will be shown in Section VI
that band representations induced from irreducible representations of maximal
isotropy groups (which are little groups of closed strata) are as a rule
irreducible-band representations. There are relatively few exceptions
of this rule. It might, however, happen that some irreducible-band representations
induced in such a way will turn out to be equivalent. This question is discussed
in detail in Section VI. If one looks for irreducible-band representations only
then it is sufficient to consider induction from isotropy groups for closed
strata. This follows from Lemma 2 of Section IIB. Qualitatively, the reason
for this is that any little group Gw' of an open stratum is, by definition,
a subgroup of a little group Gw of a closed stratum. This means that an open
stratum does not add any irreducible-band representations that cannot be obtained
from a closed stratum. In looking for irreducible-band representations it is
therefore sufficient to consider only closed strata. Thus, for the diamond
structure space group O; one has to consider only the four closed strata in

Table 4 when constructing its irreducible-band representations.

From the point of view of the band structure of a solid irreducible-band
representations correspond to energy bands of minimal possible degeneracy.

In this sense the irreducible-band representations form the building bricks for



any band representations and correspondingly for any composite energy bands. The
reduction of a band representation into irreducible-band representations is
therefore of much importance in the physical structure of composite energy bands.
From here we have also the importance of closed strata since the symmetry centers
of the latter are the only relevant centers [4] in the construction of the

irreducible-band representations.
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V. Reduction of Band Representations.

Any band representation is infinite-dimensional and therefore reducible.
It can be reduced into finite-dimensional representations of G (in general,
still reducible ones) by forming the following Bloch sums, or the quasi-Bloch
functions [3,12] , from the basis function in (55). (We replace w by q since

we use star—vectors in a single Wigner-Seitz cell. See Rel. (12)).

(qsap) N

(q_,p)
¢S ; T-R) , (56)

wjk (r) = % exp(iﬁ.ﬁh)w
n

where s = 1,2,...,m labels the vectors in the star, and j = 1,2,...,p labels
the functions in the representation Y(p) . It is easy to check that the quasi-
Bloch functions(56) form bases for finite-dimensional representations of G .
What is, however, more interesting is that the p X m quasi-Bloch functions in
(56) for a fixed k form a basis for a representation of Gk , in general, a
reducible one. Indeed, let (6[3(8)) be an element of Gk . For any element of

G one can write [11]

®1VE) e [¥)) = [V )G [VE)) (57)

where the elements (uslz(as)) appear in the decomposition (13) and (y[g(y))
is an element of G, uptoa Bravais lattice vector. By using Rels. (54), (56)

and (57) and the fact that B§‘= Kk up to a vector of the reciprocal lattice,

we find

(qmao) ( > Y (q ’D)
M 7y - a7 Y&V(Y)) o (p) 'n >
Wik (r) = exp( 1k-an§q )z Dj.j(y)wj,k (r)  (58)

(8|v(8)
j'=1

Rel. (58) defines a pm x pm matrix connecting Bloch-like functions for the
> (q ,0)
vector k . This means that the pm functions wjk . (Rel. (56)) form a

basis for a pm-dimensional representation of Ck . It is convenient to look at



...39_

the matrix in Rel. (58) as consisting of block matrices of dimension p . Thus
the only non-vanishing block-matrix in the m-th column is in the n-th row and

>
it equals exp(—iﬁ-an§§Y{v(Y))) D(p)(y) , where Yy 1is determined by Rel. (57).
The representation of G, as defined by Rel. (58) will be denoted by D(q*’p)(k)

and called the k-component of the band representation (q*,p) . The result we

have is that by forming linear combinations (Rel. (56)) of the basis functions

(q.,0)
wj ° (r ) for the band representation (q*,p) , the latter reduces into finite-
dimensional representations of Gk . The difference between the quasi-Bloch

(ag,0) R
ik (r) 1in Rel. (56) and the Bloch functions wnk(r) is that the

latter are also eigenfunctions of the Hamiltonian. Correspondingly, wnk<;)

functions VY

form bases for irreducible representations of Gk , while for the quasi-Bloch

functions the representations of Gk are, in general, reducible ones.

*
It is easy to find the character xéq P) of the k-component

* > *
D(q ’p)(k) in (58). The reason for this is that to the character xéq ,0)

* >
only those block matrices contribute which are on the diagonal of D(q ’Q)(k)

. (q*,0) ;1> > .
Thus, for finding the character ¥ (Blv(B)) of the element (SIV(B)) in

Rel. (58) we have to check for which (ar13(ar)) Rel. (57) becomes
(B1V(B) (o [V )) = (o Ve )GV (59)

When Rel. (59) holds the representation (58) can be rewritten

(q_,p) | P (q_,0) |
GBlveNY.. T () = exp(-ik-B BV 5 pled oy, Ty (60)
Jk q, g I Jk
J
*
From here the following formula can be obtained for the character xéq ) of

*
the k-component for a band representation D(q o) (See Formula (32))

Xéq*’p)[(ﬁ(g(ﬁ))} . exp(—ig'ﬁés(V(B))) x(p)(a;16 o) (61)

n n
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where the summation is over all those n for which a;lBan is a point group

element of Gw . This is a very simple formula for calculating the character
(q*,0) - . o (0)

X . The only thing we have to know in addition to the character ¥ (v)

>
(o) of G, are the phases exp(—ii.ﬁ(BiV(B)))

of the irreducible representation vy
The latter are easily found and, for example, in Ref. (5) they are listed for

all the closed strata of O7 . We use this example and formula (61) for calculating

h
* *
the characters Xéq ©) of the k-components Déq P of all the irreducible-
*
band representations D(q »0) of the space group Og . The results of this

calculation are listed in Table 9.

D(q*,o) D(q*,o)

K give

The k-components of the band representations

*
a partial reduction of the latter. Having the character xéq :0) of the

*
(a7,0) it is easy to carry out their complete reduction and

*
to find the irreducible representations of G that are contained in D(q ) .

k-components of D

In fact, the irreducible representations of G are themselves induced represen-—

tations IndG (y ) , where Y“ is an irreducible representation of the little

k
>
space group G, for the point k in the Brillouin zone. Thus, the irreducible

representations of G are labelled by the G-orbit in the Brillouin zone (or

- . . .
the k-star) and an irreducible representation of G, . The contents of the

k
(a%,0)

irreducible representations of G, in the k-component of D can be found

k

according to the elementary formula in the algebra of characters. Given a band

%
representation D(q :0) , we first use formula (61) for finding the character

*
X(q »0)
k

*
nsq ’p)(k) , the irreducible representation Yu of G, with the character

k
X(k’“)

, we can then find how many times,

*
of its k-component. Having Xéq ,0)

*
is contained in the band representation D(q °) . This is given by the

elementary formula from the algebra of characters [2] :

(k

* * N ko
nﬁq ap)(k) . 5 (q ’D)(B}V(B)) X ) (BiV(B)) (62)

N X
lg, | (B[v(B)) «
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Gk
where lgkl is the order of T and the summation is over the representative

elements in the decomposition of Gk with respect to the translation group T

G =T+ (B [V T + Lo+ (egk!v(egk>>T (63)

4

*
Formula (62) gives the full reduction of the band representation D(q )

into
the irreducible representations of G - This is the relevant information in

*
D(q 0) from the point of view of the symmetry of the energy band as a whole

)

entity. By knowing how the band representation D(q*,p reduces into irreducible
representations of Gk we know the symmetries of the Bloch functions for the
particular band at different points in the Brillouin. These symmetries of all
Bloch functions of an energy band form what is called the continuity chord of

the band representation [5] . Thus, by means of formula (62) one can calculate

the continuity chord of any band representation.

Since band representations are infinite-dimensional, no simple conventional
criterion can be used for telling whether or not two band representations are
equivalent. A possible way of doing this is by using the characters of their
k-components. Thus, the characters of the k-components of two equivalent band
representations are equal, and vice-versa, if they are equal, the band represen-

(q*,0)

tations are equivalent. The character of the k-component, Xy , specifies

therefore fully the band representation.

(a*,0)

Xy identifies the band repre-

Having in mind that the character
sentation, one should also be able to use it in the reduction process of a
reducible band representation into irreducible-band representations. Thus, given
a band representation, D , and its k—component character X » one can immediately
check whether D 1is a reducible band representation by comparing X1 with
the list of the characters (@%,0) of all the irreducible-band representations

Ak

*
of the given space group. If X equals to one of the Xéq o) , then it belongs
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to an irreducible-band representation. Otherwise D is a reducible-band represen-
tation. For finding which of the Xéq*,p) are contained in Xy (when the latter
belongs to a reducible-band representation) one can simply use the elementary
formula for characters in the reduction of representations (like Formula (62)).

Next section deals in detail with the use of formula (61) for finding all

inequivalent irreducible-band representations.

We have shown that a band representation is an induced representation
from a finite order subgroup of the space group. As such it is an infinite-
dimensional representation with a basis consisting of an infinite set of localized
orbitals. We have also shown that by going to a basis of extended quasi-Bloch
functions (Rel. (56)) the infinite-dimensional band representation reduces into
a direct integral over Kk of finite-dimensional representations of the space
group. This feature of going from infinite-dimensional matrices to finite-dimensiona
ones (of small dimension, in general) by utilizing eigenfunctions of the trans-
lation group (Bloch-like functions) is encountered in many problems in solid
state physics. It is well known, that in solids one can alternately use either
localized orbitals (Wannier function), or extended functions (Bloch functions).
Let us show that a similar situation exists also for band representations and
that the latter can be defined by employing directly quasi-Bloch functions. Like
in the original definition, we start with an irreducible representation Y(p)
of the isotropy group Gr of the Wyckoff position T . (Since T appears
in the wave function we shall use instead the notations Gw and ﬁ') . This
representation and its basis function w§w,p)(g) , J=1,2,...,p are given by

Rels. (53) and (54). By using the decomposition (Gq = T.P )

G = ¢, + (a2;3<u2))cq oot (am13<am>)cq (64)

(w_,p0)
one can define the functions wj ° (¥) for j=1,...,p
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and s = 1,...,m (See Rel. (55)). For those localized orbitals we define the
(ag,0)

quasi-Bloch functions wjk . (r) (See Rel. (56)). We have here mp such

functions. As was shown in Section V, these quasi-Bloch functions form a basis

for a representation of Gy (See Rel. (58)). Clearly, this representation (of

dimension mp) 1s, in general, a reducible representation of Gk . Having a

representation of G, one can employ the usual induction method for inducing a

k
representation of the full space group. By going through this process for each

E in the Brillouin zone we obtain a direct integral (over K ) of finite-dimensional
representation of G . They together form the band representation of G for the
fixed couple of indices (q,p) . In other words, by fixing (q,%) we define the

set of mp Bloch functions (Rel. (56)). They form a basis of a representation

of Gk . From this representation of Gk we induce a representation of G .

This process has to be repeated for the continuum of k-vectors in the Brillouin
zone. It reminds one very much of the application of translational symmetry in

the solution of problems in solid state physics [18] . Instead of having to deal
with an infinite-dimensional matrix for the Hamiltonian one obtains an infinite

- 3 . . . . 3 - 3
number of finite-dimensional matrices corresponding to different k-vectors in

the Brillouin zone.

The two following remarks are of interest. First, the two approaches
to band representations (localized functions and extended functions) can be
S . . . . -
unified when using the kq-representation [4,5]. Given a wave function VY(r)

. - . . . > .
in the r-representation, its kg-representation C(k,q) 1is

C@,d) = 0 M2 5 exp R )y (R ) (65)
n

> > . . . .
where k and ¢q are the quasi-momentum and the quasi-coordinate correspondingly,

and  1is the volume of a unit cell of the reciprocal lattice. The action of

a space group element (ui§(a)) on C(K,a) is as follows [4]
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> -1 -1
@]V(@) cE, = cl K, @[vEnN™ (66)
wo.0) W .0)
If we define the C. (k,q) functions for the localized orbitals wj (r)
(we,p)
(Rel. (55)) then the following is clear : on one hand, the basis Cj (k,q)

leads to the original definition of a band representation via the induction from
5
the finite order group Gw ; on the other hand, for elements (Blv(B)) of Gk
(wese) o
the functions Cj (k,q) transform exactly like Bloch functions for a given
K (this follows from Rel. (66); one should also pay attention to the fact that
. - &> > i L > >

under a pure translation (E]Rm) any C(k,q) goes into exp(—lk-Rm) c(k,q)) .

We see therefore, that the kq-functions unify the two alternative approaches

to band representations.

The other remark relates to the construction of irreducible representations
of Gk . In the quasi-Bloch functions approach to the band representations we

have shown that the set of mp functions (Rel. (56)) form a basis of a

representation of G In general, this representation is reducible. However,

K
there are many cases where we obtain irreducible representations of Gk . This
is of particular interest when one deals with non-symmorphic space groups.

Because then this construction can serve as a method for finding irreducible

representations of non-symmorphic Gk .
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VI. Irreducible-Band Representations of Space Groups in 3 Dimensions

In this section we consider the problem of finding all inequivalent
irreducible-band representations of space groups in 3 dimensions. As was shown
in the previous section the contents of a band representation, or its continuity

chord [5] , is fully defined by the character of its k-component (Formula 61).

i
In particular, this means that two band representations (q,p) and (q',0")
(In what follows we shall use q in the Wigner-Seitz cell instead of ? for

denoting representations and bases) are equivalent if their k-component

characters are equal
O (g15e8)) = 1P (slve)) (67)

for all elements (Blz(B)) (Bk = k up to a vector of the reciprocal lattice)
of the space group and all vectors k in the Brillouin zone. On the other hand,
if Rel. (67) does not hold (for this it is sufficient for it not to hold even

at ome point k in the Brillouin zone) then the two band representations (q,p)
and (q',p') are inequivalent. This fact will extensively be used in verifying
the inequivalency of band representations. It was already pointed out that for
finding the irreducible-band representations of a space group it is sufficient

to consider the induction from irreducible representations of maximal isotropy
groups only. However, two things might happen. First, some of the band represen-
tations induced in such a way might turn out to be reducible-band representations
[17]. Second, among the irreducible-band representations induced from irreducible
representations of maximal isotropy groups some might be equivalent. In order

to find all the inequivalent irreducible-band representations of a space group
the following procedure will be used : We construct all the band representations
for all the closed strata and we exclude the above-mentioned two kinds

1) the reducible-band representations and 2) the equivalent ones. [t turns out

that there are relatively few band representations that are induced from maximal
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isotropy groups and that belong to these two kinds of band representations. In
what follows we shall call them the exceptional ones. Since relatively few are
exceptional it is not hard to tabulate them. Knowing this list and knowing that
all irreducible-band representations are induced from irreducible representations
of maximal isotropy groups one can deduce the full list of all the inequivalent

irreducible-band representations.

To find the list of all exceptional band representations doesn't seem
to be a simple matter. In what follows we shall give some arguments and some

observations which when put together lead to the following criterion

Let (q,p) be a band representation induced from an irreducible

(p)

representation vy of a maximal isotropy subgroup Gr . A sufficient and

\
necessary condition for another band representation D(q ) (the latter can also

be a reducible-band representation) induced from a representation Yy' of a

non-conjugate maximal isotropy group Gr' to be equivalent to (qg,p) 1is for a
subgroup G, =G_NG_, (G_ N G_, 1is the intersection of G_ and G_,) to

r r r r r r r
exist such that both y(p) and y' are induced representations from a repre-

sentation y" of Gr" .

Before presenting arguments for proving the criterion let us make the
following two remarks. First, omne can prove that an intersection of two isotropy groups
Gr and Gr' is by itself an isotropy group. The second remark is about
crystallographic point groups in 3 dimensions. For them, as was already mentioned
in Section 3, all irreducible multidimensional representations are by themselves
induced representations from one-dimensional representations [19]. This means
that y(p) in the formulation of the criterion is either one-dimensional or,
when multidimensional, it is inducible from a one-dimensional representation.
Correspondingly, all irreducible-band representations can be induced from one-

dimensional representations of finite order subgroups. However, it should be

kept in mind that the latter are not necessarily isotropy groups when Y(Q) is

multidimensional. Thus, as will be verified below, for all the space groups of
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the cubic system the multidimensional irreducible representations of the cubic

point groups are induced from one-dimensional representations of non-isotropy

groups.

The proof of the sufficiency condition of the criterion is immediate
because if two band representations are induced from a single representation

y" of an isotropy subgroup Gr" then they are certainly equivalent.

For proving the necessary part of the criterion there does not seem to
exist a simple formal and compact way of doing it. The proof of this part of the
condition will consist of a number of pieces of which some are of quite

general nature, while others are less general and in a few cases the proof is

(p) and
(")

by exhaustion. The general strategy will be first to prove that when vy

v' are not induced from a single representation y'" then (q,p) and D
A}

are inequivalent. From here it will follow that when (q,p) and D(cl )

equivalent they are necessarily induced from y'" . This will complete the proof

of the necessary part of the criterion.
The proof contains the following parts

Part 1. The space group is assumed to have an Abelian point group P which is
the quotient group G/T (See Section II). In this case also all the isotropy
groups are Abelian. Since all a  commute with B , Formula (61) will assume

the following form

-> ~>'v
L0 @TE) = (@) 1 e kRO, (68)
n 9h
Here x(p)(S) is a character for a one-dimensional representation of the point

group of Gr (since Gr is assumed to be Abelian, all its irreducible represen-
tations are one-dimensional). Formula (68) shows that the character Xk of

the induced representation is zero for elements not belonging to G, and it 1is
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given by X(p)(B) multiplied by a sum of the phase factors when B 1is an element
of G, . It is therefore clear that when Pr' # P (Pr point group of Gr) s

the equality

x$82 (8138)) = {1 (8130 (69)

does not hold. But also when Pr' = Pr (isotropy groups which are non-conjugate

but have the same point groups), Equality (69) cannot hold because of the

different phase factors in the sum of Rel. (68) for EW # 3> . For seeing this
we assume that Gr and Gr' are isomorphic non-conjugate isotropy groups,
and  that Pr = Pr' . For simplicity we can assume that r' =0 . Then the
stars of r' and r in the Wigner-Seitz cell will be (See decomposition (13))

>y > ->

q o , v(az) . v(am) (70)

> - - > >

q , (azlv(az))q e, (am]v(am))q (71)
The sum in Rel. (68) will correspondingly become : for 3' = 0 (we denote it
by ZO)

I =% exp(-ik-Ro, ) (72)

o = rexp(-ik-Ro .

n n
->

and for ¢

L exp(-ik-E° ) (73)

9n
-> -> -> . . . . .

where q, = (an{v(an))q . It is convenient to rewrite the sum in (73) in the
following way

b exp(—ii‘ﬁB ) = exp(—iz-ﬁe) z exp(-i§~[§8 —ﬁB]) (74)

n 9n 9 n R

One can see that
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>R >R >B >R >R
R — — —
R =R (o) + a R R (75)

where we have explicitly used the fact that B and a  commute (p is abelian).
With the aid of Expression (75), Rel. (74) becomes
> -1
7 exp(—ik-RB ) = exp(—iz-ﬁg) exp(—i[an1k~E]-§B)Z (76)

n qn 4 ©

From here the following useful result is obtained : For all those k-vectors

for which

- >
a k-k = K (77)

.
where K 1is a vector of the reciprocal lattice and for all ol in the star

>
of q (See Rel. (71)), Rel. (74) becomes

b exp(—iz-ﬁg ) = exp(—iK-Ei) ZO (78)

n n

. . - e .
Since there is always a £ for which Rs # 0 (otherwise Gr' would be equal
>
to G ) , one can see that if the k-vectors satisfying Rel. (77) form a basis
. -
in k-space we have
>

7 exp(-ik-R_ ) # Z, (79)

n n
which means that in such ¢ases the band representations induced from Gr and
G, are inequivalent. It turns out that for most Gr in Abelian groups the
- -
k-vectors for which Formula (78) holds form a basis in k-space. In the few
cases when Formula (78) doesn't lead to the inequality (79) we have checked
directly that this inequality still holds. It follows that for space groups with
Abelian P band representations induced from maximal Gr and Gr' (even when
p_ = Pr') are inequivalent. This completes the proof of Part 1. Among the

230 space groups 103 of them have Abelian P
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Part 2. y(p> is a one-dimensional representation of a maximal isotropy group
Gr . This part is a generalization of Part 1 and actually contains the latter.
Part 2 we are going to prove by using explicitly the induction tables (Table 5)
of point groups. The latter contain all the induced representations of point
groups induced from maximal subgroups. Table 5 is constructed in such a way that
one can find from it the information for induction from maximal isotropy groups
of space groups with non-Abelian point groups P . It is for this reason that we
have also added the induction tables for the Abelian groups D2h , D2 and sz .
The idea of using these tables is as follows : for k = o in the Brillouin zone

(q_,p)
the quasi-Bloch functions y. - in Rel. (56) form a basis for an induced

jo
representation of the point group Gk=0 induced from the representation y(p)

of the point group G, - This statement is easy to check because, in general,

. . . + . .
1t 1s true for any point k for which Gr 1s a subgroup of Gk . Clearly, when

k=0, Gr is always a subgroup of Gk=o and it follows that the character
formula (61) for K=o will give the character of the induced representation
of Gk=o from the representation Y<O) of Gr (See also Formula (32))
(q,0) 52> _ (), -1
X (Blv(8)) =L x""’(a_"Ba_) (80)

n

. . . . -1 .
where again the summation is on all those n for which a, Ban 1s an element

of Gr . From Rel. (67) the following theorem follows

Theorem 3. A necessary condition for two band representations induced from Y(p)
1 ]
and Y(p ) to be equivalent is for Y(p) and y(p ) to induce the same

representation of P . From this theorem we conclude that if for the band repre-
sentations (q,p) and D(q') (as defined in the criterion ) the characters
(80) are not equal this means that they are inequivalent band representations.
To prove Part 2 one can therefore proceed as follows. One first checks in the
Y(o)

induction tables (Table 5) whether and y' of the point groups Pr and

Pr' of the isotropy groups Gr and Gr' correspondingly induce equivalent
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representations of the point group P for the space group under discussion. If

1
they are non-equivalent then the band representations (q,p) and D(q ) are

also non-equivalent and the proof of part 2 for these cases is finished. When
Y(O) and y' 1induce equivalent representations, it turns out that for an
overwhelming majority of space groups this happens when Pr is a subgroup of

Pr' . However, in this case it is easy to check that the equality of the characters
doesn't hold for k # o (Rel. (67)). Indeed, since Gr is not a subgroup of

Gr' some of the point group elements of the former will have to appear with
different translations from those of the latter (for some point group elements

of G, which coincide with those of G, ). This being the case we will have
different phase factors exp(—ig-E(EQV(B))) in Rel.(61) for the induction from
the groups Gr and Gr' (for somen B belonging to the intersections Gr n Gr')
and correspondingly Rel. (67) will not hold for k # o . This means that when

Pr is a subgroup of Pr' the band representations D(q,p) and D(q') should
be expected to be inequivalent. We have checked that this is actually the case

As was already pointed out there are a few cases where Pr is not a subgroup

of Pr' and still y(p) , and y' 1induce equivalent representations of P .

All these latter cases were checked one-by-one by using Rel. (67) and we have

proven that under conditions of Part 2 the band representations D(q,p) and

D(q‘) are inequivalent.

Part 3. y(p) is a multidimensional irreducible representation of a maximal

subgroup Gr . This part is very interesting and two cases can appear. As was
already pointed out being a multidimensional irreducible representation y(p)
is by itself an induced representation for point groups in 3 dimensions [19].
Let Y(O) be inducible from Yy" of a subgroup Gr" of Gr . The two above-
mentioncd cases are when Gr" is either not an isotropy group or when it is

one. In case one it is possible to prove by using the arguments of pPart 2

(Part 1 is inapplicable because the space groups cannot have an Abelian point
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group) that the representations (q,p) and D(q') are inequivalent. However,

in all those cases when Gr" is an isotropy group, it turns out that it is

also an invariant subgroup of Gr . If one collects all the conditions that

Gr" has to satisfy : 1) it is an isotropy group, 2) an invariant subgroup of

a maximal isotropy group Gr and 3) from representation Yy" of Gr" a multi-

dimensional representation of Gr can be induced then one ends up with the

following list of groups for Gr"
€, (D) 5 Cy (Dy0) C4(D3) , Co(Dy) (81)

where in the parentheses the maximal subgroup Gr is listed. For Gr" belonging
to this list of groups it can be checked by using the International X-Ray Tables
[13] that Gr" is also a subgroup of another maximal isotropy group, say Gr' .
We have Gr" = Gr n Gr' ."Since in all possible cases when y(p) was not
inducible from a representation of an isotropy subgroup Gr" of Gr , the band
representations D(q,p) and D(q') were inequivalent, it follows that when

(p)

they are equivalent one necessarily has Gr" = Gr n Gr' and both vy and
y' are inducible from y" of Gr" . The latter is then an isotropy group by

itself. This completes the proof of our criterion.

Before outlining the consequences of the criterion let us consider
the possibility of the appearance of equivalent band representations when inducing
from different irreducible representations of a single maximal isotropy group
G_ . In this context the concept of polar (and non-polar) point groups is relevant.
A point group is polar if it leaves a non-zero vector invariant. Otherwise it

is non-polar. There are 22 non-polar point groups (See Table 1).

Lemma 4. When a non polar group G, is an isotropy group, then NC(Gr) = G,

i.e. it is equal to its normalizer.
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We remark that the points of the normalizer orbit NG(Gr)-; have all
i > > > > >
the same isotropy group G_ . Let r # r be one of them and r(A) =Ar'+(1-Vr ,
. 3 3 &> > > >
the set of points () €R) of the straight line r r'. Then Gror(k) =r() ,

so G_ is a polar group.

The remark which follows equation (33) can be extended to the present
case : Irreducible representations of G, which do not belong to the same orbit

of N(Gr) on Gr , induce inequivalent representations of G .

To find the exceptional equivalence of two band representations induced
. . (p) (") :
from two different unireps Yo and Yo of the same Gr , one has to consider
' r r

only the 10 polar Gr'S and a non trivial action of N(Gr) on G_ . This action
is always trivial 1if Gr =1 or Z2 that 1is for G1 =1, C2 , Cg . Since
the group Gr'CG(Gr) (where CG(Gr) is the centralizer of Gr in G ) acts
trivially on ér , the action of N(Gr) is effective through the quotient

NG(Gr) / (Gr-CG(Gr)) = Qr . From the group law of G (See Rel. (7))
(1,0)(B,v(8))(1,0) 7L = (8, (I-B)E+v(B)) (82)

-
we note that if a translation t 1is in NG(Gr) , it is € CG(Gr) s0

Q, ~ Q) = N (2 )/(2 C (P) (83)

(because one can divide the numerator and denominator of Qr by NG(Gr) nTtT).

We can easily compute an upper limit of Q;

Pr C3 C3v C6 C6v CZV C4 Cév
Np(Pr) < Dy D,y (84)
Q; < Z 1 Z 1 Z Z 1
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Since Q; < 22 , these exceptional equivalences occur at most for pairs of

]
representations yéO) s yép ) at the same site. A direct computation yields
. . + I - >
easily that if r = r' and G, =Gy = {(B,V(B)+?8)} then *'-f € N Ker(I-B)
BEP
r

that is T and r' are on the axis left invariant by Gr =C,, or
Cn , n=3,4,6 . Moreover the element of the normalizer NG(Gr) which acts non
trivially on &r must transform this axis into itself without fixed points

(if there is one fixed point, the axis does not belong to a closed stratum,

and all points cannot be fixed!) so they are either glide reflection through
plane containing the axis for Gr = Cn , n=3,4,6 or helicoidal rotation
(64,3(8)) (84 of order 4,3(8) parallel to this axis) for Gr = C2v .

Hence, to find this exceptional equivalence of irreducible band representations
induced by inequivalent unireps of G, for the same site r , we have to search

among the 44 space groups with closed strata of dimension 1 : They have to be

non-Abelian, non-symmorphic, have a maximal isotropy group eithef/n and

Cn , N = Eiégézvand a

corresponding glide reflection. These exceptional equivalences occur only in

a corresponding helicoidal rotation (anz(ﬁ)) , or

10 space groups for 15 such pairs. They are listed in Table 10. (See Rel. (81)).

From the above discussion it should be clear that the overwhelming
majority of band representations induced from irreducible representations of
maximal isotropy subgroups are inequivalent irreducible-band representations.

However, as was already pointed out exceptions to this rule exist. Thus, form the

(q")

criterion it follows that two band representations (q,p) and D induced
from y(p) (irreducible representation) and ' of maximal isotropy groups
Gr and G; correspondingly are equivalent if and only if Y(O) and y' are
by themselves induced from a representation y'" of Gr" = Gr n Gr' . With this

in mind it is simple to find the equivalent band representations corresponding

- - . . . .
to r' #r . In looking for them one has to consider only multidimensional

. (p . . . .
representations vy ) because one-dimensional one cannot be induced representations.
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Also we have to consider only the cases when Gr has an isotropy subgroup

(p)

Gr" out of which v can be induced. With these restrictions it is easy to

|
find the full list of all equivalent band representations D(q ) to the band

s
representations (q,p) induced from irreducible representations Y\p) of

maximal isotropy groups. It might turn out that some of the band representations

1
D(q ) will be inducible from reducible representations y' of Gr' . In the

D(q'))
(q")

latter case (q,p) (and also is a reducible band representation.

which is induced from irreducible represen-—

(P))

If (q,p) 1is equivalent to D
tations only (y' has then a superscript and is denoted Y then (q,p)

is an irreducible-band representation. If we add to this the information we
derived about equivalent band representations steming from representations of

a single maximal isotropy group, then we arrive at the full list of equivalent
band representations given in Table 10. We call them exceptional band represen-

tations. With this list at hand one can deduce a full list of the inequivalent

irreducible-band representations of all space groups.

Tn conclusion of this section let us list the statistics of the exceptional
band representations (Table 10). As was already mentioned above there are 15 pairs
of equivalent band representations at the same site in the following 10 space

groups
101,103,105,108,130,137,138,158,159,161 (85)

At different sites there are 35 pairs of equivalent irreducible-induced repre-

sentations in the following 25 space groups

89,97,111,115,119,121,125,126,129,134
137,141,149,150,155,162,163,177,182, (86)

208,210,212,213,214,223

J

and finally, there are 37 reducible-band representations induced from irreducible
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representations of maximal isotropy groups in the following 24 space groups

124,131,132,139,140,163,165,167,188,190
192,193,207,208,210,211,215,222,223,224 ) (87)

226,228,229,230.
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VII. Irreducible Band-Representations of Space Groups in 2 Dimensions.

Space groups in 2 dimensions are much simpler than the ones in 3 dimen-
sions and for the former it is quite straightforward to calculate the k-component
characters of all the irreducible-band representations (See Formula (61)).

Having these characters one easily finds (by using Formula (62)) the continuity
chords of the irreducible-band representations. This material is summarized

in Table 11. One of the very interesting results is that all band representations
of 2-dimensional space groups induced from irreducible representations of maximal
isotropy groups are irreducible-band representations. The only case where we

have equivalent band representations is for the non-symmetric square space group
phgm : the irreducible-band representation (b*,B) and (b*,A) which are
induced from the irreducible representations 3 and 4 of the isotropy group sz
for the symmetry center g = (% ,0) turn out to be equivalent. All the other

irreducible-band representations of 2D space groups are inequivalent. There are

altogether 131 inequivalent irreducible-band representations for 2-dimensional

space groups.

We include the results for the space groups in 2-Dimensions both for

didactic reasons and because of their potential use in surface physics [20].
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VII. Summary.

The structure and classification of band representations of space groups
is investigated in this paper. It is shown that band representations are induced
representations from finite order isotropy groups in the physical space of the
crystal. This fact creates an elegant framework for dealing with band represen-
tations by employing the concepts of strata and their little groups. In this
framework band representations are specified by a pair of indices (g,p) where
Z is the Wyckoff position (or symmetry center in the Wigner-Seitz cell) and »p

(p)

denotes an irreducible representation Yy of the isotropy group Gr . This

is to be compared with irreducible representations of space groups which are

also specified by a pair of indeces (z,m) where Kk is a symmetry point in

the inverse space (the Brillouin zone) with its isotropy group Gk and m denotes
an irreducible representation Fm of Gk . The irreducible representations

of space groups are also induced representations and are finite-dimensional.

Band representations, on the other hand, are infinite-dimensional and are therefore
reducible. The infinite-dimensionality of band representations is in agreement

with the physical fact that energy bands in solids contain an infinite number

of energy levels. The band representations are equivalent if they contain the

same irreducible representations of the space group or the same continuity chords.
The elementary building blocks of band representations are the irreducible-band
representations. The latter, by definition, cannot be written as a direct sum

of band representations induced from representations of a given isotropy group.
From the point of view of physics, irreducible-band representations correspond

to isolated energy bands. In general, they play an important role in the classi-
fication of band representations. A simple Theorem is proven in the paper showing
that all irreducible-band representations of a space group are obtained by

induction from the irreducible representations of its maximal isotropy subgroups.

The latter are symmetry groups of closed strata and they are listed in the
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International Tables for X-Ray Crystallography. Closed strata acquire therefore

the very special significance that only they have to be considered when constructing
irreducible-band representations of space groups. It turns out that the over-
whelming majority of band representations induced from irreducible representations
of maximal isotropy groups (corresponding to close strata) are inequivalent
irreducible-band representations. There are very few exceptions to this rule.

Thus, for space groups in two dimensions the only exception is that in the square
group ph4gm the band representations (b,3) and (b,4) (b is the Wyckoff
position [13] and the numbers 3 and 4 label the irreducible representations of

the isotropy group G, =C, , See Ref.[15]) are equivalent. In two dimensions the
induction from irreducible representations of maximal isotropy groups leads exclusively
to irreducible-band representations. For space groups in 3 dimensions it is proven
in the paper that equivalent band representations can be obtained when inducing

from different irreducible representations of maximal isotropy groups listed

in Rel. (81l). There are actually very few such equivalent band representations

(See Table 10). Concerning the equivalency of band representations induced from
non-conjugate maximal isotropy groups, the following criterion is proven in the
paper : a sufficient and necessary condition for two band representations

y(p) and

(g,p) and (g',p') to be equivalent is for the representations
y(p') of the isotropy groups Gr and Gr' to be induced from a single repre-
sentation. This is a very useful criterion and for any space group it 1s easy

to check whether one obtains equivalent band representations. It might happen

that a band representation (a,p) induced from an irreducible representation

y(p) of Gr is equivalent to a reducible band representation, e.g. (a',p') which
is induced from a reducible representation vy of Gr' . In this case we say

that an irreducible representation of a maximal isotropy group induces a reducible-
band representation. Such cases are exceptional and a full list of them is given

in Table 10. For example, this never happens when the induction is from one-
dimensional representations of maximal 1sotropy groups. In the latter case one
induces irreducible-band representations only. Equipped with the list of the

exceptional equivalent band representations (Table 10) it is easy to find all

the inequivalent irreducible-band representations of any space group. For this
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we find the maximal isotropy groups (corresponding to closed strata) from the
International Tables [13] for the particular space group and check whether any
of them appear in Table 10. For example, for the diamond structure group Oé
none of its maximal isotropy groups appear in Table 10 (See Table 4). What this
means is that the irreducible representations of Td (for the closed strata a

and b ) and of D (for the closed strata ¢ and d ) induce inequivalent

3d
and irreducible-band representations, altogether 22 in number [5] (10 from Td

and 12 from D ). The same situation prevails for the hexagonal close-packed

3d
structures with the symmetry Dgh . The Wyckoff position a has the symmetry

D3d while the positions b-d have the symmetry D3h . This space group has 24
inequivalent irreducible-band representations [4]. As an example of a space group
with exceptional band representations let us consider the tetragonal group DZh
(this is the first space group that has reducible-band representations among the
ones induced from closed strata, See Table 10). From the International Tables [13]
we find the following closed strata : a and c¢ with DA-Symmetry, b and d
with Cah—symmetry, e with C2h—symmetry and f with D2-symmetry. From the
irreducible representations of these groups we induce 34 band representations

(See Ref.[15] for irreducible representations of point gorups). From Table 10

we find that the band representations D4(a,5) (induced from the irreducible
representation # 5 of the point group D4 ) and C4h(b’3+7) (induced from the
reducible representation 3+7 of the point group Cah) are equivalent and

the same is true for Da(c,S) and C4h(d’3+7) . From Table 10 it also follows
that DA(a,S) and C&h(b’3+7) are both equivalent to the band representation
Cé(g,3) (induced from the representation # 3 of the point group c, ). This

is in agreement with the criterion according to which if two band representations
induced from different closed strata are equivalent then they are induced from

a third stratum (an open one). The band representations Da(a,S) and Dé(c,S)

are therefore reducible-band representations. With this in mind we find that

the space group Dih has 32 inequivalent irreducible-band representations.
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Table 10 enables one therefore to find all the inequivalent irreducible-band

representations of space groups.



