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At the Colloquium in honor of Léon Van Hove it was very moving to speak of him who died one year before,
and to hear all what was said of this great physicist by his friends and his wife. This is an expanded version of the
given lecture. It starts from the exposition of a paper that Léon Van Hove wrote nearly forty years ago. This paper

was extremely original and important; it is still often quoted.

0 Content.
This paper studies the extrema of continuous functions on the Brillouin zone when they have the

symmetry of the point group of the crystal. It starts first by recalling an historical paper which
emphasized the importance of such study.
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1 One of the famous papers of Léon Van Hove.
In 1952 Léon Van Hove wrote a very original paper: “The occurence of singularities in the elastic
frequency distribution of a crystal” (VHO53) which has become a classic. The frequency distribution
function g(v) is important for the thermodynamical, acoustical, optical properties of a crystal. A
computation by E. Montroll (MON47), for a two dimensional square lattice had shown that g(v)
has two logarithmically infinite peaks !. M. Smollett (SMO52) had just extended this work, with
the same type of lattice, for ionic crystals with long range Coulomb forces and obtained the same
types of singularities. He had noted that these singularities were due to the existence of saddle
points for the function (k) expressing the frequency of an elastic plane wave in terms of its wave
vector 2 k of the Brillouin zone ®. And Van Hove wrote: The main object of the present paper is to
point out that the existence of such saddle points in the v(k) function, far from being accidental,
is necessarily implied by the periodic structure of the lattice. Indeed in part 3 of his paper he

1 Remark that these physically very important analytic singularities did not appear in previous computations
with the Born von Karman approach which replaces the “infinite” crystal by a finite one with periodic boundary
conditions. Born von Karman approach is still widely used by solid state physicists, although it misses important
topological aspects in physics; see e.g. BAC88, MIC92.

2 In this introduction, italics indicate verbatim quotation of Van Hove’s paper except that we use for the wave
vectors, instead of g, the notation k which is traditional now.

3 This paper wants to be very explicit and also to be written for a larger audience than that of solid state
physicists. We precise that only the translational crystal symmetry is taken in account in Van Hove’s paper and
we give the definition of the Brillouin zone in this footnote and in the equation 5.3. The group of translational
symmetries of the crystal in d (=2,3) dimensional space R?%, is a vector lattice L which is isomorphic to the additive
group of sets of d integers: t=(t1,...,ta) €L ~ Z4 ¢ R%. The unitary irreducible representations of this Abelian
group are of the form { + exp(ig.f) where k.t = Z,‘ kjt;, 1 <j<d,t; € Z and the k; are d real numbers defined
modulo 27 which label the elements of [ the set of irreducible representations of L. Remark that L is a group,
isomorphic to Ul" (that of the sets of d phases) that physicists call the Brillouin zone B and mathematicians, the
“dual group” L of L. Tt is true that physicists consider also a geometric aspect of the Brillouin zone, asa fundamental
domain of the dual lattice L* of L, but for the physical problems considered here, only the group aspect of B is
relevant (and too often forgotten in the physics literature). Indeed every function on the crystal may be developped

in terms of the irreducible representations of L.



explains Morse theory and applies it to the function #(k): in dimension d it must have at least
24 extrema, all of them but two are saddle points. Van Hove finishes part 1 (the introduction) by
predicting that in general, for dimension three, ¢(v) remains continuous whereas dg/di has infinite
discontinuities, * one at each extremum of (k).

In fact the “function” (k) has ad branches corresponding to the number of vibration modes
of a crystal in d dimensions with @ atoms per unit cell (whose volume is v). We denote by S, the
ad-branch surface (of dimension d — 1) of the Brillouin zone made of the points k satisfying the
equation v(k) = v. Then:
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From this equation, we see that when Vi(k) = 0 the corresponding singularity of g(v) depends on
the dimension. In section 2 of his paper Van Hove makes a more detailed study of these singularities
for non degenerate extrema of (k), i.e.
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Van Hove shows that the function g(v) has a logarithmic singularity for saddle points and a finite
jump for a maximum or minimum in two dimensions; in three dimensions, it is the derivative of
g(v) which has an infinite singularity for any kind of non degenerate extremum of (k). In section
3 (the longest), Van Hove explains Morse theory and the application to his problem. Several times
in the paper, and again in part 4, the conclusion, he points out that for special interactions there
might be degenerate extrema with stronger singularities. He remarks 5 that the whole paper can
be transposed to the density of states function for the electron energy bands. Indeed, few months
before, a two dimensional computation of this density function by Coulson and Taylor (COoUs2)
found the very singularities listed by Van Hove. Nowadays, these logarithmic singularities in the
density of electron states might be a (partial) explanation of high temperature supraconductivity
which is indeed two dimensional.

Van Hove did not study the influence of the point symmetry of the crystals, except that he
remarked that saddle points of the same type will often correspond to the same frequency. This is
right for about half of the possible crystal symmetries (for example for cubic P or trigonal crystal
lattices) but, as we will show in this paper, for the other symmetries the function #(k) must have
more extrema.

Soon physicists tried to complete Van Hove paper by taking into account the crystal point
symmetry (e.g. PHI56, PHI58), but this was not done systematically and was not very succesful.
Indeed the physicists considered naturally the fundamental domain of the point group on the
Brillouin zone: this is an orbifold, and they had to invent Morse theory for this case; it now exists but
it is somewhat cumbersome. From 1969 I developped an efficient method for studying the extrema
of functions invariant by some symmetry MIC70, MIC71 and applied it, often in collaboration,
to different domains of physics: minima of Higgs potentials, symmetry change in second order
phase transitions, Rydberg states of molecules, etc... One of these papers treat the irreducible
representations of point groups: MIC78. I gave a general review of this method in MIC80 but
nobody applied it to the present problem.

4 In contradiction with Smollett who had announced logarithmic singularities for g(v) in dimension three.

5 As pointed out long before by C. Herring, who is thanked in the paper.
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It is time to do it in this paper! We will specialize the method to the particular problem
here and be as self contained and elementary as possible. It will be even necessary to precise
some points in crystallography which are often poorly or even wrongly explained, even in the best
manuals: the relevant concept needed here is that of arithmetic class. We will give thorough
explanations for dimension two, (less rich than dimension 3). Finally, for the 13, respectively 73 (in
fact 31), arithmetic classes in 2 and 3 dimensions, we will give the minimal number of extrema of
various kind for a continuous invariant function on the Brillouin zone, and its more general form.
Nevertheless we will also be careful to help the reader who would wish to apply the same method
to another problem, by indicating in foot notes more general mathematical properties than those
strictly necessary here.

2 Morse theory.

Consider a smooth (=indefinitely differentiable) real valued function f on a real compact manifold
M with a coordinate system ® {z;},1 < i< d =dim M. If at a point m € M of coordinates z;
the function satysfies an equation similar to 1.2: vanishing gradient, non vanishing determinant
of the Hessian, we say that it has a non degenerate extremum. Then by a change of coordinates
{zi} — {3}, in a neighbourhood of m the function can be transformed into [ =Y, ey? with
¢; = £1. The number of signs - is independent from the coordinate tranformation and it is called
the Morse index p of this non degenerate extremum: for instance # = 0 for a minimum, u = d
for a maximum and the intermediate values correspond to the different types of saddle points. A
function on M with all its extrema non degenerate is called a Morse function. Let ¢ the number of
its extrema of Morse index k; these numbers are finite and satisfy the relations 2.3 and 2.4 below;
these relations are expressed in terms of the Betti numbers of M. The Betti number by is defined
as the rank of the k** homology group of M. Intuitively by is the maximal number of k-dimensional
submanifolds of M which cannot be transformed into one another or into a submanifold of smaller
dimension; for instance for the sphere Sy of dimension 7 d, by = by = 1 and all the others by, vanish.
More generally one has the Poincaré duality: by = b,,_x. It is interesting to introduce the Poincaré
polynomial Pps(t) of the manifold M:

d
d=dim(M), Pp(t)= Z bit*;  e.g. Ps,(t) =1+ 9. 2.1
1=0

The Poincaré polynomial of a topological product of manifolds is the product of the Poincaré
polynomials of the factors. For instance a d-dimensional torus is the topological product of d
circles (1-dimensional spheres):

Ta=S{E = Pr(t)=(1+1)% = be(Ty) = (f) 2.2

For Morse functions on a compact manifold M it was known that:
d d

d
Y1 e —bi) =0 & Y (~1)t ke, = 3 (=1 (m); 2.3

k=0 k=0 k=0

5 In general a single coordinate system cannot be defined on the whole manifold, but this is possible on the
Brillouin zone.
" An example of S; is the boundary of the unit ball in the d + 1 dimensional Euclidean space.
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the integer x is called the Euler Poincaré characteristic. Note that for a torus y = 0. Note also
that x and the total number of extrema are either both even or both odd 8. To 2.3 Morse added
the inequalities MOR27:

L
0<e<d: Y (=D er—bi) 20 = ¢ > by 2.4
k=0

The last inequalities are not equivalent to Morse inequalities, but they give lower bounds to the
number of extrema of a Morse function. For the Brillouin zone:

d:2a 6021,612236221; d:37 6021,6123,0223,6321. 2.5

From Poincaré duality one verifies that 2.3 and 2.4 yield the same conditions on ¢ and c,_g; it
has to be so from the consideration of the pairs f, —f of Morse functions. For the Brillouin zone,
equations 2.3 and 2.4 are equivalent to:

d=2, co—c1+¢c2=0; cg>1<ecz, co+1<¢; >ey+1, 2.6

d =3, co—c¢ +c2—c3=0; co>1<e3,¢12>2c0+2, cg >c3+2. 2.7

By looking at the set of points m € M for which f(m) has a given value, one can define for
continuous functions extrema and their type; for instance, by looking at a geographical map with
level lines which are continuous (and have any type of singularities for their derivatives), one recog-
nizes immediately a summit (around it, level lines are topologically equivalent to concentric circles)
from a pass (two level lines intersect). So Morse theory has been extended to continuous Morse
functions with singularities in their derivatives. It has also been extended to unbounded functions
with values +o00 or —oo; these values can be replaced by finite maxima or minima respectively 9.
We do need these extensions for the applications to solid state physics.

3 Finite group actions on a compact manifold: the closed strata.
Symmetry groups enter in physics through their actions. Every mathematical structure M has
a group of automorphism; an action of the group G on M is defined by a group homomorphism

G %5 Aut M. For instance if M is a set, a vector space, an Euclidean space, a Hilbert space,
a manifold, a Riemann manifold, etc... Aut M is respectively the group of permutations of the
elements of M, the general linear group on M, the Euclidean group, the unitary group, the group
of diffeomorphisms of M, the group of isometries of M , etc... The action is effective if kerf = 1,
i.e. no group element # 1 acts trivially on M. When M is a vector space, § defines a linear
representation of G' (in that case we also say, when kerf = 1 that the representation is faithfull).
Instead of using #(g)(m) for the transform of m € M by g € G, we shell use the shorter notation
g.m when there are no ambiguity about the action of G' which is considered.

Given a group action G 2, Aut M, one defines the orbit G(m), the set of points of M
transforms of m € M. Remark that two distinct orbits have no common points. One also defines
the stabilizer G, i.e. the set of elements of G’ which leave m fixed: g.m = m; they form a subgroup
of G. Let m' = h.m; then (hgh~').m' = m' for all g € G,,: this shows that

Ghm = hGph™t. 3.1

8 For instance x(S2) = 2 and 2.3 tells for the earth: “the number of mountain summits minus the number of
passes plus the number of lakes plus one (for all communicating oceans) is two”; a direct proof is easy.
9 More recently Morse theory has also been generalized to functions invariant by a compact group (so finite

groups are a particular case) WAS69. However this is not the best adapted method for our problem.
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In a orbit the set of stabilizers form a conjugate class of G-subgroups. We say that orbits are of the
same type when they have the same conjugate class of stabilizers 1° . The union of orbits of the
same type is called a stratum; equivalently m' belongs to S,,, the stratum of m, if and only if G,/
and G, are conjugate. This decomposition in strata is the most natural and useful for physics since
it corresponds to classify the points of M according to their symmetry. For instance the Wyckoff
positions of the ICT (=international crystallographic tables HAH83) are the strata of the action of
the space group on the d = 2,3 dimensional Euclidean space !!. Let us consider another example:
the natural !? three dimensional representation of Oy = m3m (see the ICT), the symmetry group of
the cube. It has |Ox| = 48 elements. Its seven strata are: the origin (stabilizer 04), the 3 fourfold
symmetry axes (perpendicular to the cube faces), the 4 threefold symmetry axes (=the diagonals
of the cube), the 6 twofold symmetry axes (joining the middles of two opposite edges), all these
axes with the origin removed (the corresponding stabilizers are: Cay,C3y,Cay), the 3 symmetry
planes parallel to the cube faces and the 6 symmetry planes, each containing two diagonals, without
the origin and the rotation axes they contain, the corresponding stabilizers forming two distinct
conjugation classes of groups C,, and finally the three dimensional complement of the symmetry
planes, which is the open dense stratum of points with trivial stabilizer 12.
We use the following notations for the set of orbits and the set of strata in the action of G on
M:
orbit space : M|G; stratum space : M||G. 3.2

Remark that for a given group action, M||G can be identified to a subset of {[.]¢} the set 14 of
conjugation classes of subgroups of . There is a natural partial ordering of the subroups of a group
defined from the inclusion: H < K meaning that H is subgroup of K’; this partial order on the
set of G-subgroups has a unique maximal element G and a unique minimal element 1, the trivial
subgroup of . For finite groups '® , there is also a partial ordering on the set {[.]¢} by subgroup
inclusion up to a conjugation. If there are no fixed points in the action of G on M, in general the
stratum space will contain several maximal strata, i.e. strata with maximal symmetries. But it is
a theorem !¢ that for the action of a finite goup G on a manifold M, there is a unique stratum
with minimal symmetry; moreover this stratum is open dense in M.

Let M be a compact smooth manifold of dimension d. The action of G on M transforms the
tangent planes of M into themselves 7. More precisely, if 7,,(M) denotes the tangent plane of
M at m, the group element g transforms 7., (M) into Ty ,,(M). In particular, this defines at each
point m € M a linear representation of G, on T,,(M). A vector field on M is a function v which

10 Given a subgroup H of G and g € G, one calls left, right cosets of H in G, the G-subsets gH, Hg. The set of
left,right cosets are denoted respectively G : H, H : G. By multiplication on the left,right by elements of G, they
form a G-orbit that we often consider as prototypes of the G-orbits whose conjugate class of stabilizers is that of H.

11 Another example: in the action of the Lorentz group on space time(=Minkowski space), outside the zero vector
(an orbit and a stratum by ifself) there are three strata, those of time-like, space-like and light-like vectors.

12 In the solid state literature, this representation is also called the “vector” representation.

13 For a detailed study of the orbits, strata, invariants and covariants vector fields of the representations of the
closed subgroups of O3, see JARS4.

14 To explain this notation: { } means the set of elements defined inside the bracket; we denote by [H]g the class
of subgroups conjugate to H in G and when we remplace H by a dot, we mean “any subgroup”.

15 More generally this is true for all groups G such any strict subgroup K < G cannot be conjugate (in G) to one
of its strict subgroup H < K < G.

16 Pinite groups are compact Lie groups of dimension zero. This theorem was first proven for compact groups in
MONS57. It has been extended in PAL61 to the actions of a non compact group, when all stabilizers are compact.

17 Technically, one says that the action of G on M extends to T(M), the tangent bundle of M.
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associates to each point m € M a vector v(m) € T,,(M). A G-covariant vector field satisfies:
Vg e G, Vm e M, g.v(m) = v(g.m); 3.3

To a Riemaniann metric on M corresponds an orthogonal scalar product on each tangent plane.
Averaging it by the finite (or compact) group yields an invariant Riemann metric; from now on we
assume its existence.

We denote respectively by Tpn(G.m) C Tpn(Sm) C Trm(M) the tangent plane at m of the orbit
of m, the stratum of m, the manifold and by Npn(G.m) 2 N,,(S;,) the corresponding normal

L L
planes; so Trn(G.m) & Np(G.m) = Ti(Sm) & Nm(Sm) = Trm(M). The gradient at m of any
G-invariant function f(m) = f(g.m), is orthogonal to the orbit and tangent to the stratum, i.e.

V(M) € Fam = Ta(Sm) N Nyu(G.m0). 3.4

The natural d-dimensional orthogonal representation of G, on T,,(M) is reducible and respects

the decomposition:
L L

Tim(M) =Tm(G.m)® Fn @ Nn(Sm). 3.5
This representation is trivial on Fp,; on N, (S,,) it does not contain the trivial representation;
the representation of G, on Tp,(G.m) does not depend on the specific action of G on =: it is the
restriction of the adjoint representation of G to the subgroup G, and to the subspace G (where
L is defined by the Cartan Killing metric of the Lie algebra of the compact group G). When G is
finite, T;n(G.m) = 0, and Npp(G.m) = T;n(M) so equation 3.5 simplifies to

G finite, Tr(M) = Tr(Sm) & Non(Se)- 3.5/

Strata with maximal symmetry are closed. If they contain a finite number of orbits, at any of
their point F,, = 0 and 3.4 shows that V f(m) = 0. Those orbits isolated in their strata are called
“critical”; indeed MIC71 every one of them is an orbit of extrema for every G-invariant function
18 on M. On every closed stratum containing an infinity of orbits, every G-invariant function has
at least two orbits of extrema MIC70.

For a crystal with point group P, these two results yield a minimum number u of extrema for
a P-invariant function on the Brillouin zone: it is the sum of the number of points of all critical
orbits + the sum, for each closed stratum with an infinity of orbits, of 2|G.m| (where |G.m| denote
the number of points of the orbit G.m). Let us write this as an equation: we label the closed
strata by the index o and denote them either C'S¥= where v, is the (finite) number of its orbits,
or C'SY. Then the minimum number of extrema of any invariant functions for the action of P on

the Brillouin zone is:
p= Y valGmal+ Y 2/Gimgl 3.6
a,CSlees a,CSrES
where m, is any point of C'S, and § is the stratum space. For many point groups P, p is larger
than 8 for d = 3 or 4 when d = 2. Moreover, for all point groups we will have to check if this
minimal number p of extrema is compatible with 2.6 and 2.7 (Morse inequalities) 9.

18 For instance: you know the symmetry of a problem and you write an invariant Lagrangian whose extrema give
you the “good” spontaneous symmetry breaking; most likely you are on a critical orbit, and any invariant Lagrangian
would have given you the same result as a verification of this theorem! So you have to test your model on more

selective features.
19 The method is similar to the one introduced in MIC78 for the invariant functions on the unit sphere of the

irreducible representations of the point groups



We can extend the method of arguments we used for the gradient to the Hessian at m € M

ot Of%(m
s (7)) S X

of the invariant function f expressed in a local system of coordinates k; of M. Indeed, at the point
m, for any function, the Hessian is transformed by the isotropy group G,, as a quadratic form. So
for an invariant function, it has to be invariant:

Vg € Gm, D(g)H(f(m))D(9)™" = H(f(m)), 3.8

where g — D(g) = D(g~')T is the linear orthogonal representation of G,, on Tpp(M). When m
belongs to a critical orbit, F,,, = 0 and we have shown that this representation does not contain the
trivial one. Moreover when G is finite, Ty, (G.m) = 0 so T, (M) = Nyu(Sn,) and this representation
might be irreducible on the real. If it is so, we have the lemma:

Lemma 3.1 When the symmetry group G is finite, if at a point m of a critical orbit the orthogonal
representation of Gy, on Tp(M) = Npy(Sy) is irreducible on the real, then G.m is either an orbit
of minima or of maxima for every G-invariant function.

Indeed a (real) symmetric matrix which commutes (see 3.8) with every matrix of a group repre-
sentation irreducible on the real must be a multiple of the identity 2° | so all eigenvalues of the
Hessian are of the same sign.

4 Bravais classes, crystallographic systems, arithmetic classes, geometric classes.
Among its symmetries a periodic 2! ideal 2? crystal has a discrete translation group isomorphic
to Z4; it is a lattice that we denote by L (see footnote 3). In dimension d, the discrete group
L ~ 7% is generated by a basis b = {b;}, 1 < i < d of the d-dimensional (real) vector space;
we consider b as the matrix of the d components of the d basis vectors. The condition of linear
independence of the basis vectors is equivalent to detb # 0 < b € GL4(R). We shall denote by By
the manifold of GL4(R); it describes also the set of bases of the d-dimensional vector space and
the set of all bases of all d-dimensional lattices. All possible bases of L are obtained from {b;}
by linear transformations mb = Ej mi;b; with integral coefficients which have an inverse with the

same property: i.e. m € GLg(Z). We can also say that two bases b, b’ generate the same lattice
property ‘ Y g

if, and only if, the matrices b,b' are in the same right coset of GL4(Z) in GL4(R). Hence we can
identify the set L4 of lattices with the orbit (the notation was defined in foot note 10)

Lq=GLy(7Z): GLa(R) 4.1

which is a d?-dimensional manifold. We can give another equivalent interpretation of the same
facts: the maps on G'Lg(R), g — mg defined for all m € G L4(Z) define an action of G La(Z) on
B and each orbit is the set of bases of a given lattice, so the manifold L4 of d-dimensional lattice

is the orbit space:
Lqg =Bl GL4(Z) 4.1

20 We remind the reader that if this representation, irreducible on the real, is reducible on the complex, there are
antisymmetric matrices commuting with all the matrix D(g); their square is a symmetric matrix AJ with A < 0.

21 Since 1984, SHE84 crystals with icosahedral point symmetry and many others have been discovered; they are
not quasi-crystals but genuine crystals; however they are aperiodic, i.e. they have no translational symmetry.

22 By ideal we mean that the defects and the boundaries are neglected so the crystal extends infinitly in all

directions.



The orthogonal group 2* O, acts on the manifold L4 of all lattices; the orbit O4.L of the lattices
transformed of L can also be considered as the set of all possible positions of the “abstract” 24
lattice L; the latter can be given for instance by the Grammian of a basis (the dot denotes the
orthogonal scalar product):

This matrix 2 does depend on the choice of basis of L but it is invariant by orthogonal transfor-
mations: 7 € Oy transforms the basis b into br = 5=1T. Moreover the multiplication on the right
of b € GL4(R) by 7 can be applied to the right cosets of 4.1; it yields the explicit action of O4 on
Lg; so the double cosets GLg(Z) : GLa(R) : Og represent

= GLd(Z) : GLd(R) . Od, 4.3

the set of all d-dimensional lattices up to an orthogonal transformation 26.
The lattice L is invariant by an orthogonal transformation r € Oy 1f the transformed basis

b' = br is again a basis of L, i.e.
m € GL4(Z),b € GL4(R),r € Oy, mb = br. 4.4

which is equivalent to:

mbrT =b e m =brbL. 4.4’
This shows that the symmetry group 27 Hy, of the lattice L is the intersection in G'L4(R) of GL4(Z)
and a subgroup conjugated to Og4; therefore it is finite 28.

There are several interpretations of 4.3 in terms of group action b — mbr. It describes the
action of the direct product GL4(Z) xOg4 on By (the manifold on GL4(R)). The stabilizer of b € By
is the holohedry Hp given by 4.4’ as a “diagonal” subgroup of GL4(Z)x04. We will respectively
denote by Hf, Hg the projections of Hy, on the two factors GLg(Z) and O4. Equation 4.3 also
describes the action of GLn(Z) on GLg(R): Og = C*(Q4) (see footnote 25); this action can also
be written:

VYm € GLy(Z),Yq € CT(Qq), b=qw— mbb™m™ = mgm”. 4.5
The stabilizers are the H and by definition the strata of this action are the Bravais 2° classes
BRAS50; to summarize:

L3 =C%(Qa)|GLiZ), {BC}s=C*(Qa)l|GL4(Z), 4.6

23 Of the Euclidean space in which lays the crystal.

24 The situation is similar in elementary geometry: we can consider a triangle or this triangle independently of
its position, i.e. up to an Euclidean transformation in the plane. This “abstract” triangle is then completly defined
by the lengths of its three edges.

25 Remark that b;.b; is a positive quadratic form. The set of d x d positive quadrative forms is a convex cone
C*(Qgq) in the d? dimensional vector space of d x d matrices. It is well known that the real symmetric positive
matrices, e.g. bTh have a unique real symmetric positive square root that we denote by \/I;_Tg and any b € GL4(R)
have unique left and right polar decomposition: b = r\/ET—: = \/zl?rr, 7 € O4. So CH(Qqa) = GL4(R) : Oy.

26 Instead to consider the set LG, of position of lattices it is often more interesting to consider the set [,3" of lattice
up to a similitude (an orthogonal transformation and a dilation); for this replace Oy by the group of similitudes
Od x R*.

27 Wich is called the “holohedry” of L in crystallography.

28 As an intersection of a discrete subgroup and a compact subgroup.

29 In the same year 1850 appeared two works which stimulated the study of lattices: the Bravais classification of
lattices in d = 2, 3 dimensions and the introduction by Hermite HER50 of the manifold L4 for an arbitrary dimension
d and the search of densest sphere packing on lattices. Hermite did not use the word lattice, but the definition of
L4 of 4.6.
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where { BC'}4 is the set of Bravais classes in dimension d. For d = 1,2,3,4 there are 1, 5, 14, 64
Bravais classes.

Finally 4.3 can also be interpreted as the action of O4 on L4 (defined in 4.1). The stabiliz-
ers are the H¢ and the strata are called Bravais crystal systems 3° in the ICT (=international
crystallographic tables HAH83):

LS = L£4]04, {BCS}q= L4||Oa. 4.7

In an ideal periodic crystal the atoms are not at rest: their motion around average positions
increases as function of the temperature. The use “atom position” ( or sometimes, “atom”) is a
short for this average of positions. To say that the group L (a lattice of translation vectors) is a
symmetry of the (ideal) crystal means that for each atom position a, the orbit L.a is an Euclidean
31 Jattice. If the crystal contains only one Fuclidean lattice of atom positions, its symmetry group
(one says its space group) is the semi-direct product G = L>HZ. But in the general case a
crystal contains several Euclidean lattices of atoms of different kinds and the space group G is
the largest subgroup of the Euclidean group which transforms the Euclidean lattices of identical
atoms into themselves. In general GG is not a semi-direct product (crystallographers say G is not
“symmorphic”). By its definition, the discrete translation group L is an invariant subgroup of G
and the quotient P, = G/ L is a subgroup of H}.

In crystallography, the conjugation class of P, in GL4(Z) is called an arithmetic class. Con-
versely, any finite subgroup F of GL4(Z) leaves invariant some positive definite quadratic forms;
indeed, it is easy to prove that ¢¥ defined from any positive quadratic form ¢ by:

F<GL4(Z), q=q" >0, ¢F= Z mgm " ; 4.8
meF

is F-invariant; it is also definite positive as a sum of definite positive quadratic forms. So the set
{AC}4 of arithmetic classes in dimension d is the set of conjugation classes of finite subgroups
of GL4(Z). Jordan JORSO showed that this set is finite for any d. The number of arithmetic
classes (which is also the number of symmorphic space groups) is respectively 32 2, 13, 73, 710 for
d = 1,2,3,4. For a given dimension d, there is a partial ordering on the arithmetic classes (by
subgroup inclusion up to a conjugation). The number of maximal arithmetic classes is respectively
1,2, 4,9, 17 for the first five dimensions. Maximal arithmetic classes are Bravais classes.

Finite subgroups of GL4(Z) are conjugate in G Lg(R) to subgroups of O4. One can prove that
finite subgroups of Og4, conjugated in G Lg4(R) are conjugated 33 in O4. So there is a natural map

30 1n the crystallographic literature, there are several inequivalent definitions of crystallographic systems (=CS);
the first introduced one, in 1815, is due to Weiss WEI15; that introduced here (=BCS) is often called French
crystallographic system, e.g. BRO78. These two definitions are not equivalent for the distribution of crystal space
groups among the different crystallographic systems, but they define the same list of holohedries HP so the sets
{CS} and {BCS} have the same number of elements in any dimension: explicitly 1, 4, 7, 33 ford = 1,2, 3,4.

31 A Euclidean lattice is a closed discrete subset set of points in an Euclidean space which is an orbit of a vector
lattice. As for the Euclidean space itself, the Euclidean lattice has no distinguished point, (no origin), so it is not a
group!

32 Curiously, many mathematiciens give 70 for the number of arithmetic classes in dimension 3: e.g. WEYS52,
SPE56, NEW72.

33 Hereis the proof. Assume g,g' € O4 conjugate by s € GLg(R) : ¢’ = sgs~ . Let s = rt,7 € O4,t = VsTs=tT
the polar decomposition of s. Then I = g'Tg' = (s7 )" 1gTt3gs~!, i.e. t? = g~ltgg~ltg. Since the positve square

root of t? is unique, t = g~ 'tg, i.e. gt = tg and g’ = sgs~! becomes ¢’ = rgr—!.
que,
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¢ between the arithmetic classes and the conjugation classes of finite subgroups of O4. It is an
order preserving map between these two partially ordered sets. Those in the image of ¢ are called
“geomnetric classes” in crystallography. In the correspondence:

{acy £ (Gcy; ¢(P,) = P, 4.9

often several arithmetic classes correspond to the same geometric class; beware that if the latter
is a holohedry P, = Hg, all the arithmetic classes in the preimage ¢~!(P,) are not necessarily
Bravais classes. As we will see, this already occur for d = 3. In dimension d = 1,2,3,4, the
number of geometric classes is respectively 2, 10, 32, 227. For the dimensions d = 2,3 the ICT
(international crystallographic tables) distinguish the different arithmetic classes mapped by ¢ to
the same geometric class; first one letter is added in front of the symbol of the geometric class in
order to distinguish the different possible types of lattices: this letter is p or ¢ in dimension 2 and
one of the letters P,C, F,I, R in dimension 3. When this is not sufficient, some permutation is
made among the elements (letters or digits) of the geometric class symbol 3¢ ; for an example in
dimension 2, see 6.6.

5 Strata of the action of the point group P, on the Brillouin zone.

Before specializing to dimension 2,3, we want to give some general reults on this subject. Let
P, < GL4(Z) be the arithmetic class of a crystal. As soon as a basis b of the vector space R? is
chosen, P, is represented by a set {m} of integral matrices which define a linear representation of
P,; it transforms the translation lattice L in itself; P, acts on the dual space R¥* of R? by the
contragredient representation: m — (mT)"! = (m™")T and transforms in itself the dual lattice
L*, which is defined by:

kel*aViel, ikearZ 5.1

Indeed: ~ B
Vie LVke L*,m¢€ Hi, mt_f(mT)_lk = t.k. 5.2

The contragredient representation of P,, that we denote by (P,7)~!, might belong to an arithmetic
class distinct from that of P, and both correspond to the same geometric class. We have recalled
in footnote 3 that dual group L = R**/L* ~ U{ is called the Brillouin zone (denoted by B here):

BE'[ = R¥*/1* ~ UZ. 5.3

However most physicists consider B only as a fundamental domain of L* i.e. as a geometric
realisation of the orbit space R%*|L*. The group (P, )~! < GLa(Z) ~ Aut(Ug2) defines the natural
action of P, on the Brillouin zone. One obtains explicitly this action for all arithmetic classes by
restriction of the action of the holohedry H§ for each Bravais class. Given an R? basis: {b;} which
generates L, one defines the dual basis {3} of R%* by

bib? = 850 5.4

In this basis the components of the vectors k € L* are multiples of 27. And from the definition
of the Brillouin zone recalled in 5.3, its elements, that we denote by k are described by a set of d
real numbers defined modulo 27. That correponds to an additive notation for the group B. For

34 In dimension 3, the maximum number of arithmetic classes mapped by ¢ on the same geometric class is 5. This
occurs for C3, = mm2; the corresponding arithmetic classes are: Pmm2, Cmm2, Amm?2, Fmm2, Imm?2 (the use of

the A lattice occurs only in this case).
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instance its elements of order 2 are defined by the equation 2k = 0 (in multiplicative notation they
are the square roots of the identity); their components are either zero or 7. So there are 2% elements
which satisfy 2k = 0, the origin 0, invariant by the holohedry and the 24 — 1 elements of order 2
which must be transformed into each other by H.

There are dozens of physics books which give the complete list of little groups and orbits which
appear in the action of the holohedry on B for the 14 Bravais classes, but strangely enough, they give
only the geometric class of these little groups although, in cases of ambiguity, physics requires the
knowledge of their arithmetic class! This is hard to understand since there are symbols, universally
adopted by all crystallographers, for labelling the arithmetic classes. It is worthwhile to add several
other facts related to the sociology of crystallographers and physicists. The “international” symbols
(devised by Hermann and Mauguin) used by the ICT for labelling the 230 space groups contain
enough information for reconstructing exactly the group law %% | but many physicists prefer to use
the original symbols of Schonflies or, for some Russians, of Fedorov, although this symbols are an
arbitrary sequential labelling of the space groups of a given geometric class. Moreover the ICT
have fixed an arbitrary but universal labelling for the strata (=Wyckoff positions) appearing in
the action of the 230 space groups on R9, d = 2,3. Alas! they do not deal with the 14 Brillouin
zones (and with space group representations). Except that the 0 element of B is labelled by I
in all physics books (is that a progress?), there are no common notations for the strata of the 14
Brillouin zones. And the relations among these strata are never mentionned; they are due to the
natural partial ordering 3¢ of the 14 Bravais classes, but very few physics books give this ordering
or they give it with an error: the holohedry H# of the trigonal lattice is not a subgroup of that
of the hexagonal lattice 37; an equivalent error is to pretend that one can deform continuously the
hexagonal lattice directly into the trigonal lattice, in contradiction with the original Bravais paper
BRAS5O0.

We now prove the lemma:

Lemma 5.1 Every P,-invariant function on the Brillouin zone has an extremum at each of the 2¢
points defined by 2k = 0 when the arithmetic class P, contains —1I.

As we have seen the set of these 2¢ elements of the group B is a union of orbits of P,; we show
that they are isolated in their stratum and therefore critical. Indeed no other point of B satisfies
2k = 0 & —Fk =k, so no other point of B has a little group containing —1.

In 2 dimensions, —1I; is the rotation by = and in 3 dimensions, —/I3 is the symmetry through the
origin. In any dimension it belongs to the holohedry of every lattice. In dimension d = 2,3 there
are respectively 7, 23 arithmetic classes for which this lemma applies. Moreover for 7 arithmetic
classes in dimension 2 and 15 (that of the cubic crystal system) in dimension 3, the group of integral
matrices P, is irreducible on the real, so we can apply the lemma 3.1 to the point 0 € B and to
the other points of the critical orbits which have an irreducible little group.

6 Minimal number of extrema of P-invariant Morse functions on the dimension 2 Bril-
louin zone.
The elements of finite order of O, are the rotations by 2r/k with k a positive integer, and the
conjugation class of reflections through an axis, i.e. the orthogonal matrices of determinant 1 and
trace 0. The ITC denote the rotations by *® %k and any reflection by m and they use the same
symbols for the cyclic groups they generate; the Schonflies notations for these groups (very much
used in molecular physics) are respectively Cg,C,. The other finite subgroups of O, form the

35 Although they are made of 2 to 7 charaters: letter, digit or /.
36

37
38

Obtained by restriction of the ordering of the arithmetic classes.
See figure 7.1; that is true only of their geometric class.

Here we shall sometimes use r instead of k.
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conjugation classes of dihedral groups generated by a non trivial rotation k and any reflection m;
these groups have 2k elements and are denoted by km (although mm is preferred to 2m) in ICT
and Cp, in Schonflies notations. A necessary condition for a rotation to be conjugated, in GLy(R),
to an element of GL;(Z) is that trk = 2cos(m/k) be an integer; this restricts the values of k to
k =1,2,3,4,6. This condition is sufficient as the existence of the representative matrices shows 39:

1 -1 0 -1 0 -1
r6:(1 0)’ 1'4:(1 0), m:ré:(l _1), r=1=—r, 6.1

To summarize: The 10 geometric classes in two dimensions are:
1:Cla m:Ch 2302) mm:CZu1 3:C3’ 3m:C3ua

4:C4, 4m:C4,,, 6:C6, 6m=C6,_,. 6.2

In two dimensions there are 13 arithmetic classes because there are 3 pairs of arithmetic classes
whose image by ¢ are only 3 geometric classes:

d(pm) = ¢(em) = m;  $(pmm) = ¢(cmm) = mm;  $(3ml) = ¢(31m) = 3m. 6.3

We do not give here a proof of the uniqueness of the arithmetic class for the other seven geometric
classes, but we explain each of the three exceptions; indeed this is absolutely necessary for an
understanding of crystallography by the non specialist.

i) The matrices:
My = 10 = —m Mgy = 0 13 _ —Mag 6.4
T — 0 -1 - LAl Ty — 1 0 - Ty °

are not conjugate in GLz(Z). Indeed the largest common divisor of the elements of an integral
matrix is invariant by conjugation in GL4(Z); the largest common divisors of the elements of
I + mg and I + mgy are respectively 2 and 1. We leave to the reader the proof that there are only
two arithmetic classes of reflections: for the most general integral reflection matrix: (cl ba>,
a® — be = 1, these two classes are given by the value of @ + b + ¢ = mod2. These two classes
correspond to symmetries through the coordinate axes or through their diagonals and they are
respectively denoted by pm,cm in ICT.

ii) The group C3, = mm is generated by two orthogonal symmetries; therefore both belong to the
same arithmetic class: either pm or ¢m, and they generate respectively the groups of the arithmetic
classes pmm or ¢cmm. These are two Bravais classes. The first one is that of the “rectangular”
lattices: any such lattice is generated by two orthogonal vectors t;.t, = 0 of different lengths; its
vectors are t = pyty + patz, i € Z. The Bravais class of the sublattice defined by py + py € 22
(i.e. an even number) is emm; indeed t;,¢, do not belong to this new lattice, but t; + ¢, form a
basis and these vectors are exchanged, eventually up to a sign, by the reflections of axis t; and t,.
iii) The group 6m = Cj, has two conjugate classes of 3 reflections (their axes are labelled ¢, ¢', c"
and a,b,d in fig. 6.2), each one generates a subgroup 3m = Cj,. These two subgroups are not
conjugated in 6m = Cg, but they are conjugated in O,; we prove that they are not conjugated 40

39 Of course we could have chosen r3 = —7g.

40 Indeed, by multiplication by one of the elements of these two 3m = Cj, subgroups, the O, transformation which
conjugates them can always be transformed into a rotation by 7/6; such rotation of order 12 cannot be represented
by an integral matrix. We also give in the text another, more explicit proof in order to show to the reader the use

of integers, so important in crystallography and so ignored in solid state physics text books.
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in GL(Z). Given two finite group representations G 3 ¢ — di(g), ¢ — d2(g), and an arbitrary
matrix z, one easily verifies:

s(z) = Z di(9)2d2(g™Y) = di(g)s(2) = s(2)da(g) 6.5
g€G

Moreover any intertwinning matrix s can be obtained this way: put z = s|G|~? where |G] is

the number of elements of G. Here the two representations we consider are the two integral

representations of 3m, generated respectively by 73, mg, and r3, —mg, respectively and z is the
. . b . .

most general integral matrix z = ((Cl d) . Then s(2) = u—MgyUmgy with u = z+rz27; Vprglarg;

explicitely: s = (a + 2b — 2¢ — d) (:; ?
determinant of s(z) is a multiple of 3, so s(z) ¢ GL,(Z) and there is no integral matrix which
conjugates these two representations of 3m on the integers. Following the convention of ICT, we
label the two arithmetic classes isomorphic to the geometric class 3m = Cjs, by:

); whatever the value of the integers a,b,c,d, the

p3lm = (rg, mgy), p3ml = (r3, —Mgyy). 6.6

A coordinate independent distinction between these two arithmetic classes is the following property:
the space group L >ap3ml is the group generated by the reflections through 3 axes containing the
sides of an equilateral triangle 4!.

In figure 6.1 we give the two partially ordered sets { AC'}, and {GC'}, and the order preserving
map o.

There are 4 holohedries (they are underlined in fig. 6.1); indeed the two maximal classes 6m
and 4m are holohedries; since t € L = —t € L, every lattice has the symmetry group 2 = C,.
To have more symmetry one may add either a reflection or the rotation 3. In the first case the
multiplication by r, = —I, gives the orthogonal reflection so the holohedry is mm = Cj,. As
we have already seen, there correspond two Bravais classes pmm, cmm. When the lengths of the
orthogonal vectors t;,t, (used above) become equal, the symmetries of these two lattices become
both identical to 4m = Cy, whose Bravais class is denote pdm. When the rotation 3 is added to
the generic lattice with minimal symmetry 2, it gets the symmetry 6 and it is easy to prove that it
has also reflection axes so its holohedry is 6m = Cs,. The table 6.1 gives the traditional names of
the 4 crystallographic systems.

Bravais class p2 pmm  cmm pdm p6m
Holohedry 2=10C, mm = Cq, dm = Cyy 6m = Cgy
Crystallographic system diclinic orthorhombic quadratic hexagonal

Table 6.1. Crystallographic systems, holohedries and Bravais classes in two dimension.

We make the choice of basis corresponding to the matrices of 6.1 and 6.4. The 12 element group
pbm is generated by the matrices rg, M4y, while the 8 element group p4m is generated by 14, mzy.
These last two matrices are orthogonal and therefore equal to their contragredient; (rd )~! = (‘; —11)
The other P, groups are subgroups of these two. So we need only to study the action of p4m and
p6m on their respective Brillouin zones; we obtain the action of the other groups by restriction.

Outside the generic two dimensional stratum, the action of p4m on B defines 4 strata, 2 of
dimension 0, composed of 4 points that we give with their little groups:

pdm : ko = (0,0), kg = (m,7); pmm: kg = (7,0), kg = (0,7), 6.7

41 Among the 17 space groups in dimension 2, only 4 are generated by reflections; they are the symmorphic
groups of the arithmetic classes pmm,p3m1l, pdm, pém; they are the Weyl group of the Kac Moody Lie algebras

;h X ;11,;12,32,6'»
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Figure 6.1(a,b). For two dimensional crystallography, the diagram a) shows the partial order on {AC},
the set of the 13 arithmetic classes and b) shows the partial order on {GC'}, the set of the 10 geometric

classes. The dotted horizontal lines explicit the order preserving map {AC'} 2, {GC}. The underlined
arithmetic classes are the five Bravais classes and the underlined geometric classes are the four holohedries.
We use for the arithmetic classes the only existing notation: that of ICT; we use the Schénflies notation
for the geometric classes in order to help the reader to make the translation from this notation to that of
the ICT.

and 2 strata of dimension 1, composed of 6 circles minus that four points:
0#k, —m<k<m, pm:a=(k0),d =(kn);pm': b=(0,k), b' =(r,k),
em: c=(k,k), em_: d=(k,—k). 6.8
The little groups of these one dimensional strata are 2 element groups generated by one reflection:
pm = (mg), pm'=(my), em=(mgy), cm_={(—mgy). 6.9

The groups pm, pm' and ¢m, cm_ form two pairs of conjugate little groups.
Outside the generic two dimensional stratum, the action of p6m on B defines 5 strata, 3 of
dimension 0, composed of 6 points (the first four ones are defined in 6.7):

pbm: ko; cmm: kg, emm': kg, emm" : ky; p3lm: ke = (-2?},-?) = —kci 6.10

and 2 of dimension 1, composed of 6 circles minus those six points:
0#£k, —n<k<m, em_:d=(k—-k), em’ :b=(0,k), em”: a=(k0), 6.11
for the first stratum, and for the second one, with 0 # k # + 2%):
em: c=(k,k) —7m<k<m, 6.12
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Figure 6.2(a,b). These figures a) and b) show the strata of the Brillouin zones of the maximal arithmetic
classes p4m and p6m respectively. In these two Brillouin zones the points and the axes with the same coordinates
bear the same label; e.g. AOA, BOB are the coordinates axes. The cooordinates are defined modulo 27 so, on the
drawing, they are limited by —7 < k; < 7, i = 1,2. The figures respect the space metric (so the p6m zone is a
rhomb). The Brillouin zones are Abelian groups with neutral element O. The closure of the one dimensional strata
form conjugation classes of one parameter subgroups:

p4m Brillouin zone: @ Ua’,bU b’ (these 2 conjugated subgroups have 2 connected components) and c,d;

p6ém Brillouin zone: ¢,c'(path OX'BY'0),c" (path OX"AY"O) and d,a,b.

With the added dotted lines, fig. b) gives also the hexagonal Voronoi cell. It is otained by translating four triangles
CAY'R, CBY”R, C'AX'R, C'BX”R by 27 along the coordinate axes.

(=2(k+m),k) when —7 < k < - Z, BC'X’
em': ¢ = { (=2k,k) when — 3 <k < %, X'OY' 6.12'
(=2(k—m),k) when Z<k<m, Y'CB

(k,=2(k+ 7)) when -7 <k < -%, AC'X”
em" " = ¢ (k,—2k) when -2 <k <Z, X70Y” 6.12"

2

(k,=2(k—m)) when ZI<k<m, Y’"CA

The little groups of these one dimensional strata are 2 element groups generated by one reflection:

em = (s), em'=(s'), em" =(s"), em_=(-s), eml =(=s"), em" =(-s"),

— 0 1 [ 1 "1 "o__ “1 0
8“<1 0), s._(o -1)’ 8 ”(ml l)' 6.13

The groups em, em/,em!" and em_, em!_, em” form two triplets of conjugate little groups. Finally
the triplet of conjugate little groups of d, b, a are defined as

emm=cm xcem_, cmm' =cm' xem', emm" = em" x em!. 6.14

Figure 6.2 a,b show this decomposition in strata for these two Brillouin zones. The table 6.2
gives the strata composition for the action of the 12 non trivial arithmetic classes P,. From figure
6.1 we remark that cmm and its subgroups em, p2, pl belong to both pdm and p6m Brillouin zones.
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a Y | oa b d ¢ (0] R A B C ¢ closed strata

(1) jpm (1) (1) ()| (em) | (1) (pm) (1) a,a’

O ® @ @@ @) 2 p2 p2  p2 | (1) (1) (1) (1) |O,RAB
W@ @) @) em|(em) [(em) (1) (1) | (1) (1) (1) (1) ]z

(1) 1) (1) (1) em_cm| emm | emm p2  p2 | (cm) (em) (1) (1) |O,R, AB

pm pm'|pm pm' (1) (1)| pmm | pmm pmm pmm O,R,A,B

MmO @ @ @ @) k4 | P4 2 p2 (O], [R], A

pm pm'| pm  pm' cm_ cm | [pdm] |[p4m] pmm pmm (O], [R], A
(1 @ @ @ R3] | 1) (1) (@) | @] [ (1) (1) |[0)[C][Cc]
(1) (1) (1) (1)) [»6] | 2 p2  p2 | [p3] [p3] (1) (1) |[O], RAB,[CC"]
eml em” cm_ (1) | [p3m1] | (em-) (em™) (em™) | [p3]  [p3] (1) (1) |[0],[CC]

[C
[C],[c]
,RAB,[CC"]

eml cm” cm_ cm | [pém] | emm cmm' cmm" | [p31m] [p31m] cm' cm”

(1) (1) (1) em|[p31m]| (cm) (ecm") (cm') |[p31m] [p31m] em' cm' |[O],
[

Table 6.2: Brillouin zone strata for the actions of the 12 arithmetic classes P, # 1 in dimension 2.
The last but one column headlines list the connected components of the non generic strata (see fig. 6.2 a,b and
equations 6.7 to 6.14 for their definition). In these columns the table gives the little groups P < GL3(Z) for each
stratum of the Brillouin zone. P, leaves fixed the origin O, so it is given in the 7th column. The last column indicates
the closed strata. Except for the arithmetic classes pm, cm, these strata contain only critical orbits; they are given
by their points and the orbits are separated by a “”. These orbits are between [ ] when the representation of the
stabilizer on the tangent plane is irreducible on the real; then P is also between []in the previous columns.

The symbol of Py is between () in & column when the corresponding part of the Brillouin zone is not a connected
component of a stratum but only a strict subset of it. The two element subgroups (generated by one reflection)
pm,pm!,cm,cm_ and em,cm!,em!!, em_,em' ,cm! are defined in equations 6.9 and 6.13 respectively and the
subgroups cmm,cmm’, ecmm!'’ in 6.14.

The maximal Bravais classes p4m,p6m have distinct Brillouin zones; this explains the blanks in the table. The

Bravais class cmm (to which correspond the arithmetic classes cmm, em, p2, 1) is smaller than both maximal ones.

From table 6.2 (see also fig. 6.1) we can reach the following
Conclusion:  The minimum number of extrema for a P, invariant Morse function f on the Bril-
louin zone is 4 (one maximum, one minimum, 2 saddle points) for the 8 arithmetic classes < pdm
and 6 (1 or 2 maxima, 2 or 1 minima and 3 saddle points) for the 5 arithmetic classes > p3..

For each arithmetic class we can give more details and precise for invariant functions with the
minimum number of extrema where those are located:
pdm, p4, pmm: for these arithmetic classes there are 4 critical points on 3 critical orbits: O, R and
the orbit AB. So A and B must be saddle points and therefore the minimum and the maximum
are either O, R or R,0. Lemma 3.1 requires that for any p4m or p4 invariant function.
cmm, p2: any permutation of the critical points O, R, A, B corresponds to the four extrema: one
maximum, one minimum, two saddle points.
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cm: the circle ¢ is the only closed stratum. At each point k& € ¢ the normal Ni(¢) is orthogonal
to the gradient and is an eigendirection of the Hessian; the correponding eigenvalue has a fixed
constant sign for all k € ¢. The restriction of f to ¢ has one maximum and one minimum; so this
corresponds for the whole function to a saddle point and either a maximum or a minimum. It is
possible for f to have only 2 other extrema outside ¢.

pm: there is one closed stratum with two connected components, the circles @,a’. By the same
argumentation than the previous case there must be a saddle point on each circle and the maximum
on one of them and the minimum on the other.

1: only the translational symmetry; this is the case considered by Van Hove.

pbm, p6: from lemma 3.1 we know that the two points of the critical orbit C', C" are either maxima
and minima, then O is the unique minimum or maximum; the critical orbit R, A, B carries the 3
saddle points.

p3ml: same conclusion as the preceding case for C',C' and O. The three saddle point form one 3
point orbit; so each of the 3 circle d, a, b carries a saddle point; those could again be R, AB.
p31m: same as the previous case for the 3 saddle points, except that they must be on the circles
c,c',c" (they still can be R, A, B); any permutation of the three fixed points O,C,C' must carry
one maximum and two minima.

p3: same as the previous case for the three fixed points. The rest of B is the generic stratum; it is
made of 3 point orbits; anyone can carry the three saddle points.

7 Minimal number of extrema of holohedry invariant functions on the dimension 3 Bril-
louin zone.
For dimension 3 we first give in table 7.1 the name of the 7 crystallographic systems, their cor-
responding holohedry and Bravais classes. Those different classes carry the same label that their
holohedry H§f which is distinguished from the crystallographic system holohedry H £ by adding one
of the letters P,C, F,I, R in front of the symbol for Hg.

BC P PC PCFI PI P R PFI
Hp 1=C; 2/m=Cyn mmm= D 4/mmm = Dy, R3m = D3y 6/mmm = Dgn m3m = O,
CS triclinic monoclinic othorhombic tetragonal trigonal hexagonal cubic

Table 7.1. The 14 Bravais classes (BC) and the 7 crystallographic systems (CS) in dimension 3.
The holohedries H§ of the crystallographic systems are given in ICT and Schénflies notations. For the
Bravais classes, we indicate only the first letter (=type of lattice) of their symbol. To have the full symbol
one must add the H? symbol in ICT notation.

In figure 7.1 we give the partial ordering of the sets { BC'} of Bravais classes and {C'S} of the
crystallographic systems with the increasing map ¢’ between them. Indeed, by their holohedries
(defined as little groups) {BC} C {AC} and {CS} C {GC}; they acquire by restriction the natural

order of {AC} and {GC7}; the restriction of the map {AC} 2, {GC} (defined in 4.9) to {BC}
defines { BC'} LR {Cs}.

As we announced after 4.9, the preimage of {AC} 2, {GC} for a holohedry Hg is not
necessarily a set of Bravais classes H}. Indeed

1 (3m = D3q) = {R3m, P3m1, P31m}; 7.1

Of these 3 arithmetic classes, only the first is a lattice holohedry: that of the unique lattice (R3m)
of the trigonal system 42.

42 There is some confusion in many physics books about this lattice and the distinction between the trigonal
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cubic

hexagonal

tetragonal

trigonal

orthorhombic

monoclinic

2 1 i triclinic

Figure 7.1. For three dimensional crystallography, the diagram a) shows the partial order on {BC1}, the
set of the 14 Bravais classes and b) shows the partial order on {C'S'}, the set of the 7 Bravais crystallographic
systems. The dotted horizontal lines explicit the order preserving map ¢', the restriction to {BCY} of the
map ¢ defined in equation 4.9.

Since we study only the invariance under the holohedries of the Bravais classes, we know from
the lemma 5.1 that in each Brillouin zone, the 8 points solutions of 2k = 0 belong to critical orbits.
One of these orbits is the point k = 0; we give the partition in orbits of the 7 points of order 2 in
table 7.2 where we also list the other critical orbits: they occur in 5 of the Bravais classes. Only the
point groups of the cubic systems have 3 dimensional (real or complex) irreducible representations;
in table 7.2 we put between [ ] the five critical points with an irreducible little group; according to
lemma 3.1, they have to be maxima or minima.

We see from table 7.2 (column 8) the list of 8 Bravais classes for which there exist holohedry
invariant functions on the Brillouin zone with only 8 extrema: one maximum, one minimum and
three saddle points of Morse index 1 and 2:

> 8: triclinic P; monoclinic P, C; orthorhombicP, C'; tetragonal P; trigonalR; cubicP. 7.2

For three other Bravais classes we have a minimum of 10 extrema including 8 or 7 saddle points
(hence more than the Van Hove number of singularities):

>10=(1,4,4,1)or (2,4,3,1): orthorhombicF, orthorhombic/; tetragonall. 7.3

and hexagonal system. The ICT class these two systems in one “family”, each of the five other 3-dimensional
crystallographic systems forming a family by itself. But do not confuse crystallographic systems and families! The
latter concept has been introduced in order to have a map from {GC} the set of geometrical classes, to the set of
crystallographic families {C'F}: it can be defined in any dimension as the least coarsed set obtained from {BCS}
such that the map exists! This shows that this family concept is not very deep and I regret that the ICT have
adopted it.
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crys. sysBravais class |0 2k=10 4k =03k=06k=0| nb |0,3 1,2 2,1 3,0
./ |triclinic Pi 101,1,1,1,1,1,1 8 1 1+4+1+114+141] 1
»~ |monoclinic/, P2/m 141,1,1,1,1,1,1 8 1 B4+14+11+4+1+4+1) 1
¥ ” C2/m 1 1,1,1,2,2 8 1 1+2 1+2 1
y |orthorhom{ Pmmm 111,1,1,1,1,1,1 8 1 A+14+1141+4+1} 1
v o7 Cmmm |1] 1,1,1,2,2 8 1 | 1+2 | 142 1
” Fmmm 1 1,1,1,4 842 1 4 1+1+42) 1
1+1 4 1+2 1
" Immm |1 1,2,2,2  |2(W) 10 |1 | 242 | 2+2 | 1
2 242 1+2 1
s |tetragonal | P4/mmm |1 1,1,1,2,2 8 1 1+2 1+2 1
» I4/mmm |1 1,2,4 2(P) 10 |1 4 24+2 |1
2 4 1+2 1
 |trigonal R3m 1 1,3,3 8 1 3 3 1
hexagonal | P6/mmm |1 1,3,3 2(K) |2(H) 12 1 243 2+3 1
2 243 1+3 1
2 143 143 2
3 243 142 1
cubic Pm3m 1] 1,3,3 8 1 3 3 1
” Fm3m 1] 3,4 6(W) 14 1 3 6 4
1 4 6 3
» Im3m 1] 1,6 [2)(P) 1046 1 6 1+6 | 2

2 6 6 1+1

Table 7.2. List of the critical orbits of the Brillouin zone B for the actions of holohedries of the 14 Bravais
classes, according to the order of k € B; number and Morse index of extrema of H} invariant continuous
functions with minimum number of extrema.
Lemma 5.1 proves that under the action of its holohedry, every Brillouin zone has at least 8 critical points: k = 0

and the 7 points of order 2; column 4 gives their distribution into orbits. Five Brillouin zones have more critical
points: thier orbits are listed (with their usual label) in columns 5,6,7. The points between [ ] have to be maxima or
minima (lemma 3.1). The eighth column gives the minimum number “nb” of extrema of invariant functions, giving

the number of critical points plus, for two Brillouin zones, the smallest orbit of extrema which must necessarily be

added. The last four columns give the number of extrema with a given Morse index.

There is at least one type of saddle point with multiplicity 4, either as 2 two-point orbit for
orthorhombic/ or as a four-point orbit for the two other Bravais classes.
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For orthorhombic/' there must always be some extrema on a non critical orbit; the smallest
such orbits have 2 points, their little groups are C2. In the repartition of this orbit and the five
critical ones among the different Morse indices for extrema, in table 7.2 one can exchange 1+1 and
2. All possible orbit repartitions among the extrema (in minimal number) of Morse index 0, 1,2, 3
or 3, 2,1,0 are:

>10=(1,4,14142,1) = (14 1,4,14+2,1) = (2,4,14+ 1+ 1,1): orthorhombicF. 7.4

For the three last Bravais classes the minimum number of extrema is respectively 12, 14, 16 cor-
responding to a minimum of saddle points of 8,9 or 10, 9 or 10, and 12 or 13. For the hexagonal
Bravais class, in the table 7.2 one can permute 3 and 1+ 2, so all possible decompostions into orbits
are:

>12=(1,2+3,2+3,1) = (2,24+3,1+3,1) = (2,1 +3,1+3,2) = (3,2+3,1+2,1) =

=(142,2+3,3,1): hexagonalP. 7.5

Remark that for the cubicl Bravais class, one of the 6 point orbit is not critical and its little groups
are I4mm.

We already pointed out (see table 7.2) that, in the three Bravais classes of the cubic system,
the point k = 0 is either a maximum of a minimum for every H# invariant function and this is also
the case for the 2 point of the orbit P of the Bravais class cubic/. For invariant functions with the
minimum number of extrema, the point ¥ = 0 has also to be a maximum or a minimum in the
trigonal R Bravais class.

In crystallography, there is a natural map {AC} — {BC} from the arithmetic classes to
the Bravais classes MIC89. Given an arithmetic class [P,], the little groups of the action of P,
on the Brillouin zone are obtained from those, denoted here by H, of the action of the holohedry
Hi € y([P.]) as the intersection P, N H. If these little groups are all non polar (i.e. their vector
representation does not contain the trivial representation), every critical point in the action of the
holohedry on the Brillouin zone is a critical point for the action of P,; and no other critical point
can appear. So we can immediatly extend to these arithmetic classes the results we have otained
for the 14 Bravais classes. These means that we know the minimum number of extrema (and their
positions) of P, invariant functions for the arithmetic classes listed in table 7.3.

P cubic : Pm3m  =OnP P43m=T4P  P432 =OP Pm3 =TpP P23 =TP
F cubic : Fm3m  =0npF F43m=T4F F432 =OF

I cubic : Im3m =0xl 1432 =01 Im3 =TI

P hexagonal : P6/mmm =Dgn P P622 =DgP  P6/m=CgnP  P3ml= one of the D3yP
R trigonal : R3m =D3qR R3  =Cy4R

P tetragonal : P4/mmm =Dy, P P422 =DyP  P4/m=Cyp P42m= one of the D,z P
I tetragonal T4/ mmm =Dgpl

P orthorhombic: Pmmm =Dy, P P222 =D,P

C orthorhombic: Cmmm  =DypC

F orthorhombic: Fmmm  =DypF
I orthorhombic : Immm  =Dsypl
P monoclinic : P2/m =Cyp P
C monoclinic : C2/m =CyrC
P triclinic : P1 =C;P

Table 7.3 List of the 30 arithmetic classes with known positions of the extrema of invariant Morse
functions on the Brillouin zone, when these functions have the minimum possible number of extrema; these
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extrema are on the critical points. Among these 30 classes there are the 14 Bravais classes; they are listed in the

second column.

In this paper I have not completly fulfilled the program announced in its title since I have
determined the minimum number of extrema of P, invariant functions on the Brillouin zone for
only 30 of the 73 arithmetic classes: they are those for which the position of the extrema are known
(they are at the critical points). The trivial class P1 was treated by Léon Van Hove, but taking
account time reversal the result is in fact similar to the Bravais class P1, i.e. the eight extrema
are at the points £ = 0 and 2k = 0. Indeed the treatment of the other arithmetic classes is more
interesting to physicists when more physical input is introduced. I intend to do it in a lengthy
paper or in a book. Meanwhile this paper has treated completly the mathematical problem for
dimension two; and it gives to the reader all the tools to treat the other 42 arithmetic classes in
dimension three!
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