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Physical implications of crystal symmetry and time reversal.

§0 Introduction.
To make Physics, one has to practice the art of making “good” approximations. Many
physical systems have a symmetry defined with a very good approximation. That is the
case of crystals. The physical predictions obtained from their symmetry can be applied to
any specific problem of crystal physics whether of classical or quantic nature. Strangely
enough many of these general predictions are still unknown or .. .forgotten; most of those
given here have been discovered recently; some are still unpublished.

Crystals are complicated systems for physicists and the models used for their study
are rather coarse approximations. However if a model has the full symmetry of the crystal,
the predictions of this model will satisfy all predictions of symmetry; so some physicists
think that they have nothing to learn from symmetry that they cannot discover by their
model. The answer to this objection is simple. First, by its generality and precision, the
study of the consequences of symmetry belongs to the general culture of physicists; in
fact it is a handicap to ignore it. More particularly we shall show that some predictions,
although very specific and detailed, are model independent. They must be known in order
to evaluate the nature of the model predictions: which ones are only a verification of a
simple and general theorem of mathematics? Only the other ones can be specific to the
model.

The title describes the aim of these lectures. They are made for all participants of
the school (including those working in solid state physics!). The subject is too vast to be
treated in two lectures. So we will precise explicitly how we restrict it; but we shall treat
in full genenerality the selected types of problems:

a) we shall deal only with periodic crystals L,

b) we shall consider only stationary phenomena, so 7' (the time reversal symmetry) is valid
and, to simplify 2 , we only study the phenomenona for which spin effects can be neglected
(that exclude for instance, all magnetic phenomena and the use of magnetic space groups).

For periodic crystals, all functions describing their physical properties have the peri-
ods of the crystal. However, most experiments measure the Fourier transforms of these
functions, i.e. functions on the Brillouin zone. We will deal essentially with such functions
for all 230 space groups; our results will also apply to the functions on our Euclidean space
for the 73 symmorphic space groups. The summary of the paper is:

§1 recalls the fundamental concepts and tools for studying symmetry in general and par-
ticularly that of periodic crystals.
§2 studies the case of genuine functions. The results, without proofs (which have been

1 Those called erroneously “quasi-crystals” are genuine crystals. Indeed they have a long range order;
moreover their diffraction patterns are essentially made of bright peaks. These new crystals, discovered
since 1984, can be considered as a paricular case of modulated crystals (discovered in the seventies). They
are quasi-periodic, i.e. their physical properties can be described by functions with a number of periods
greater than the dimension of space. Hence crystallography in higher dimension can be one of the useful
tools for their study. So in these lectures, all properties which are independent from dimension, are stated
for dimension n.

2 Subjects for theses should be left for the young generation!
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recently published: [MIC96]), and their physical applications will be given here.

§ 3 will deal with multivalued functions. That corresponds to the important cases of vibra-
tional spectra, energy band structures...I will present some history on it, recall or define
the concepts playing the role of quantum numbers, and give a glimpse of the work presently
in progress with J. Zak.

The two lectures were presented as seminar: one needs only to communicate the new

ideas and the existence of precise results (very thorough for §2). The written version for
a school must be a document worth to be studied carefully. However it is not written
for specialists, but for a general audience similar to that of the school paricipants. It has
two aims: 1) transmit the known general culture (essentially §1 and beginning of §2);
indeed a solid state physicist needs to know what is relevant for him in mathematics, in
crystallography, in mechanics....., in order to have a deep understanding of his subject. 2)
to present the recents result in tables or figures that can be used effectively.
The author is conscious that, for lack of space, this text is very condensed; so readers
should not be disappointed if they cannot grasp it at a first reading. The content is not
perishable, so the reader who has learned more from the references or from books, may
come back fruitfully to it.

§1 Fundamental tools for the study of symmetries. Periodic crystals.
We first recall few fundamental concepts of group actions and precise the notations used.
It is a summary of the first section of [MIC95a] given at the last session of the school; we
refer to it for more details and examples (and also to [MICs0]).

We write H < G for H is subgroup of G; the set of its conjugate subgroups, [H la =
{gHg™', g € G}, is called the conjugacy class of H. When it contains only H, that
subgroup is called invariant subgroup of G' and the traditional short hand is H <« G. The
sets of G-elements gH (or Hyg) are called a left (right) coset of H in G. We denote the set
of cosets by G : H (H : G). Notice that Vg € G,gH = Hg < H < G: in that case, there
is a natural group law on G : H; this group is called the quotient group and it is denoted
by G/H. When a group G acts on a set M, we denote
by G.m = {g.m,Vg € G} the orbit of m, i.e. the set of all transformed of m,
by Gm = {g € G, g.m = m} the stabiliser of m. It is a subgroup of G (often called “little
group” in the physics literature 3 ).

The stabilisers of an orbit form the conjugacy class [Gim]e. Two orbits with same conjugacy
class of subgroups belong, by definition, to the same orbit type. An example of orbit of type
[H]g is the set of left cosets G : H with the action of G on the cosets by left multiplication:
g.xH = gzH = (gx)H.

A stratum is the union of orbits of the same type. Equivalently, two elements of M belong
to the same stratum if, and only if, their stabilisers are conjugate in G.

In the action of G on M, we denote the set of orbits by M|G (those we shall meet are
generally orbifolds, i.e. manifolds with some singularities) and the set of strata by M G
(those we shall meet are all finite). Remark that the set of left (right) cosets G : H can
also be identified with the orbit space G|H with the action of H on G by right (left)
multiplication.

We prefer “stabiliser”, used in the mathematics literature, because the word carries more meaning.
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Example: G acts on its subroups by conjugation (=inner automorphisms of G). In this
action, the orbit of H is its conjugacy class [H]q, the stabiliser Gy of H is called the
normalizer of H in G and it is denoted by N(G ). We denote the set of subgroups of G
by {< G} and the set of conjugacy classes of subgroups of G by {[< G]g}. It is the orbit
space of this action 4

{<GHG ={[< Glg}- 1(1)

In a group action, the set of possible types of G-orbits can be identified to a subset of
{[€ G]} (the set of conjugacy classes of the subgroup of G). That can be translated into
a natural injection of the stratum space to {[< Glg}:

M||IG -2 {[< Glg}, & injective. 1(2)

On the set {[< G]g} of conjugacy classes of G subgroups, there is a natural partial ordering,
by subgroup inclusion up to a conjugation. Given this partial ordering, the injection ¢
defines a partial ordering on the the stratum space M||G. In physics, the role of this space
is essential; indeed, its elements (the strata) correspond to the different symmetry types
of the elements of M. In many theories of physics, physicists give names to the strata.
For instance, in special relativity, in the action of the Lorentz group on the Minkowski
space, the elements of the four strata are called: time-like, space-like, light-like and null
vectors. The strata for the action of each of the 230 spaces groups (= crystallographic
groups) on the 3 dimensional Euclidean space are called Wyckoff positions and are listed
in the International Tables for Crystallography (=[ITC]).

Here is an abstract of §2 of [MIC95a). It precises which concepts defined in the [ITC] are
used here. In a vector space V,,, a lattice L is the Abelian group generated by the vectors
{b;} of a basis of space; note that the only condition that the basis vectors must satisfy is
det(b;) # 0. Every other basis of V,, can be obtained from {51} by a unique transformation
gi.g“l, g € GL,(R). So we’can identify the set B, of bases of V,, with an orbit of type
GL,(R) : 1. The different bases of the lattice L are obtained by: b, = > mijl_;j with
m;; € GL,(Z). So, with the action of GL,(Z) on GL,(R) by left multiplication, we can
identify the set £, of n-dimensional lattices with

Ly, = GLy(R)|GLn(Z) = GLa(R) : GLn(Z) 1(3)

We are interested by the spaces V,, carrying an orthogonal scalar product that we denote
by @.b; it has the specific properties @.a@ > 0, and @.d = 0 = @ = 0. The action of the
orthogonal group O, on the bases of V, (13; b l_;i.r*lwith r~l = rT € 0,) defines its
action on the lattices. The stabilisers are called holohedries. The strata are called in [ITC],
the Bravais crystallographic systems. In dimension 3 there are 7 of them.

4 The equation 1(1) was labelled 1(3) in the set of lectures [MIC95a] given here two years ago, but a
wrong equality was added: = {< G}||G. I wanted to give this erratum with my apologies. Obviously the
stratum space is the set of conjugacy classes of the normalizers of the subgroups. For instance we ask the
reader to check that for the group By ~ Cly,, symmetry group of a square, the number of elements of the
sets = {< G}, {< G}|G, {< G}||G are respectively 10,8,3.
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We need a more refined classification of lattice symmetries which was also introduced
by Bravais [BRA850] somewhat empirically. Indeed the orbit O,.L corresponds to the
different orientations of the same “intrinsic” lattice L(#). So the set £$ of n-dimensional
intrinsic lattices can be identified with

LY = £,|0, = GL,(Z) : GL,(R) : O,, 1(4)

where the last expression means double cosets. By the polar decomposition of matrices,
GL,(R) : O, can be identified to C+(Q,), the (open) convex cone of positive matrices;
that yields

L) =C(2,)|GLn(2). 1(5)

One can obtain the same result by considering the Gram matrix b;.b; = g;;(L), where
q(L) = q(L)T > 0 is the basis dependent quadratic form associated to L), By the
GL,(Z) action g(L) — mq(L)m™, L corresponds to an orbit of the action of GL,(Z)
on C4(Q,), hence equation 1(5) ® . The strata of this action are the Bravais classes; we
call the stabilisers Bravais groups. In dimension 3 there are 14 Bravais classes.

We denote by { BCS},, and { BC},, (n is the space dimension) respectively the sets of
Bravais crystallographic systems and of Bravais classes. One remark is needed to explain
the relation of these results with crystallography. We recall that an Euclidean space &,
is a linear manifold, the orbit of R™ (the Abelian group of V,,) acting on the manifold V,
formed by the vectors of V,,. This orbit is of type ® R™ : 1, so it has the topology R".
The orthogonal scalar product on V;,, induces the Euclidean metric on &£,. The Euclidean
group (= the group of automorphisms of £,) is the semi-direct product E, = R" >1Ox.
An Euclidean lattice is an orbit of the subgroup L < R™ on V,,. Given an Euclidean lattice
in &,, one reconstructs the results we have obtained by choosing a point of this Euclidean
lattice as origin of the linear coordinates in &,,.

Crystallographers call arithmetic classes " the set of conjugacy classes of finite sub-
groups of GL,(Z) and denote it by { AC},. The conjugacy classes in O, of the same finite
groups are usually called geometric classes and we denote here their set by {GC},. One
proves (e.g. [MIC95a] §2-3) the existence of map:

{AC}, % {GC}n, ¢ surjective, order preserving. 1(6)

Notice that ¢ maps the subset {BC} C {AC} onto the subset {BCS} C {GC}. For
dimension n = 3, |[{AC}3| = 73, |{GC}3| = 32.

In solid state books the geometric classes are traditionnaly denoted by the Schonflies’
notation and are well studied. Indeed they classify most of the macroscopic physical

5 The study of these orbits were made by number theory mathematicians of the XIX century under
the name of arithmetic theory of quadratic forms without refering to lattices.

6 In the mathematic literature, orbits of type G : 1 are called principal orbits.

7 This name was used in crystallography before 1920. It is defined in the last edition of [ICT] p. 719.
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properties of the crystals ® . Most of the other physical properties of a crystal do depend
of its space group. For these 230 groups two notations are used in [ITC]. The Schonflies one
distinghishes the groups corresponding to the same geometric class by an upper right index
with sequential values; the “international” one (essentially due to Hermann and Maughin)
is remarkable: with few letters and digits it contains so much information that one can
reconstruct from it the space group law.

For the convenience of the reader we give in table 1 the names of the 7 elements of
{BCS}3 and the geometric class of their holohedry in both notations:

Bravais CS | triclinic | monoclinic |orthorhombic |tetragonal |rhombohedral |hexagonal |cubic

Schonflies C; Cap Doy, Dyp, D3y Dgp, Oy,

ITC 1 2/m mmm 4/mmm 3m 6/mmm |m3m

Table 1: The seven Bravais crystallographic systems and the geometrical class of their
holohedry:

The most important classification we shall need in these lectures is that given by the
arithmetic classes; for them, the only avalaible notation is the international one. For
instance there are three arithmetic classes P3ml, P31m, R3m which correspond by ¢ of
1(6) to the geometric class D3y = 3m. Only the third one, R3m, corresponds to a Bravais
group and its holohedry is isomorphic to the geometric class group, i.e. the crystal belongs
to the rhombohedric Bravais crystallographic system, while the crystals of the two first
arithmetic classes belong to the hexagonal Bravais crystallographic system ° , so their
holohedry Dgp = 6/mmm is larger that the group of their geometrical classes. The list of
the 73 arithmetic classes is given in table 2a.

For the convenience of the reader we reproduce here in Figure 1, a figure of [MIC95a]
which gives explicitly the restriction of ¢ on {BC}3.

One can define the space groups as the discrete, topologically closed subgroups of E,,
(the n-dimensional Euclidean group) which contain a lattice L € L,, of translations. One

8 Remark that the shape and aspect of the crystals depend essentially on the Bravais class, with some
possibility to distinguish the arithmetic classes: e.g garnet (cubic F = face centered) has easily the 14 face
shape (6 squares, 8 hexagons) while iron sulfur crystals (Cubic P) can be perfect cubes. The orientations of
the parallele strias on the cube faces reduce the cubic symmetry to a tetrahedral one. The shape of crystal
was the first object of crystallography. The shape itself depends a lot on random-like effects influencing
the growth but the values of the angles between the faces are much more regular. As A. Janner has shown,
slightly curved faces prove a periodic modulation of the crystal.

9 Although the [ITC] notations correspond to the Bravais classification [BRA850], some vocabulary
they use, e.g. “trigonal” geometric classes, is a remnant of an older classification [WEI816]. Each of
these five trigonal geometric classes contains crystals with very different lattices, since they belong to
two distinct Bravais crystallographic systems, each one containing a unique Bravais class, respectively the
rhombohedral one and the hexagonal one. The five other crystallographic systems, are identical in the

Weiss and Bravais classifications.



4 Pm3m Fm3m_ __Im3m______________ .m cubic
A \

24 | N ftommm____/ SN .| ]O hexagonal

16 P4/7Kn_1p_1 _____________ tetragonal
rhombohedral
orthorhombic
monoclinic
triclinic

Figure 1. For three dimensional crystallography, the left diagram shows the partial order on { BC } 3,
the set of the 14 Bravais classes and the right one shows the partial order on {C S }3, the set of the
7 Bravais crystallographic systems. The dotted horizontal lines explicit the order preserving map QOI,
restriction to { BC'} of the map ¢ defined in equation 1(6).

shows that L is invariant subgroup of the space group G and the quotient P is called the
point group (we use the symbol ~ for group isomorphisms):

Z" ~LaG; G-% G/L =P finite, P < GL,(Z). 1(7)

We recall the construction of space groups (see e.g. [MIC89] for more details ° ). For
each arithmetic class [P]gr,(z) one constructs the semi-direct product G = L > P. These
groups are called symmorphic by the crystallographers. Cleverly, [ITC] use the same nota-
tion for an arithmetic class and its symmorphic group. It is a classical problem (second
cohomology group; see e.g. [ASH65-68], [MOZ74] or the Polish book [M0Z76]) to contruct
all the other space groups belonging to the same arithmetic class. For the different posi-
tions of a crystal in the Euclidean space, the corresponding space groups form a conjugacy
class [G]g, of the Euclidean group. There is a domain of variations of external conditions .
such as temperature, pressure for which the “symmetry” of a crystal does not change
through phase transition; but its space group, while staying a subgroup of E3, changes
continuously by conjugation in Aff, the connected affine group. So in crystallography,
the crystallographic symmetry classes are defined by space groups as subgroups of E(3)
up to a conjugation by elements of Aff;; there are 230 of them. It is an interesting

10 We want also to mention that the 4783 four-dimensional space groups have been determined by
computer [BRO78]. For n = 4, |{AC}4| = 710, |{GC}4| = 227, |{BC}4| = 64, |{BCS}4| = 33.
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theorem [BIE12] that, in any dimension n, two ismorphic space groups, subgroups of E,,
are conjugated in the affine group Aff,. For n = 3 there are 219 isomor»bhic classes of
space groups. So there are 11 “eniantomorphic” pairs of isomorphic space groups. For the
chemical compounds whose crystals belong to these eniantomorphic crystal symmetries,
the two space groups of the pair are equally represented in nature (for instance as macles).
We shall give some examples of enantiomorphic pairs in 1(11).

There are ten geometric classes of cyclic subgroups of O3. In [ITC] the conjugacy
classes of their generators are called geometric elements; the five rotations are denoted
by their order: 1,2,3,4,6 and the five others, product of the rotations and the symmetry
through the origin (represented by the matrix —I3), are denoted denoted by 1,m, 3,4, 6
(the notation m is used, instead of 2, because this is a symmetry though a plane = a
mirror). The preimage by ¢ (see 1(6)) of these 10 cyclic geometric classes are the 16 cyclic
arithmetic classes:

P1, P2,C2, P3, R3, P4, I4, P6; P1, Pm,Cm, P3, R3, P4, I4, PG. 1(8)

We shall call their generators arithmetic elements (strangely, they are not given names
in [ITC]). All arithmetic classes of point groups are generated by such elements and with
the translations one generates all symmorphic groups. Remark that 1(8) also lists 16
symmorphic space groups in [ITC] notation.

Since a translation leaves no point fixed, the stabilisers G, of the space groups G do
not contain pure translations. Hence (from 1(7))

Gy ~ H(Gw) <P. 1(9)

In [MIC95a] we have proven that the intersection of stabilisers are stabilisers, that almost all
points of the space have the trivial stabiliser 1, so they form the generic stratum (= generic
Wyckoff position), which is open dense. One also proves that The strata with maximal
symmetry are topoligically closed or, equivalently, that the conjugacy classes of maximal
finite subgroups of G' correspond to closed strata. Since the symmorphic groups contains
groups ~ P as subgroups, from 1(9), they have as many closed strata with such stabilisers
as there are conjugacy classes [G.n]g, Gm ~ P; the number of these strata is < 23 = 8.
The dimension of these strata is equal to the multiplicity of the trivial representation in the
natural (= vector) representation of P. For instance, for the 16 symmorphic subgroups of
1(8), the maximal closed strata are of dimension d = 3 (=the whole space) for P1, d = 2
(=reflection planes) for Pm,Cm, d = 1 (=rotation axes) for P2,C2, P3, R3, P4, 14, P6
and d = 0 (=isolated points) for P1, P3, R3, P4,14, P6. For non symmorphic groups,
there are no stabilisers isomorphic to P. We call non symmorphic elements of G its non
trivial elements g # 1 such that no element of its conjugacy class [g]¢ leaves fixed a point
of space. In dimension 3, these are the glide reflections and the screw rotations. A glid(i
reflection is a symmetry through a plane combined (after or before) by a translation %Z

where 7 is a visible vector of L (i.e. no vector A'IZ, A integer# 0 belongs to the lattice).
Then g2 = (Z 1), i.e. the pure translation {. A screw rotation r is a rotation of order p
combined (after or before) with a translation %Z 0 < p < p where the visible vector £ € L
defines the rotation axis; the screw rotation r is denoted by the symbol p, in [ITC]:

r=pu p=1,2,3,461<pu<p r°=(ul1), {visible. 1(10)
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The non symmorphic groups generated by L and one of these non symmorphic elements
are denoted in [ITC] by: :

PC, CC; P21,P31 ~ P32,P41 ~ P43,P42,P61 ~ P65,P62 ~ P64,P63. 1(11)

This list of 13 non symmorphic space groups contains 4 enantiomorphic pairs 11 As
suggested by the comparison between 1(8) and 1(11), the [ITC] notation for non symmorphic
space groups is obtained by replacing in the symbols of symmorphic groups (listed in table
2a) a rotation p by p, and a reflection m by c or a,b,d,n depending of the orientation of
the glide vector (in the reflection plane) with respect to the other symmetry elements of
the point group '? . Indeed if a space group contains a non symmorphic element, it is a
non symmorphic. Beware that the converse is not true, but the only exception is the non
symmorphic space group [21212;; it contains only symmorphic elements.

We leave to the reader to check that the action of the space groups:

PC,CC,P21,P31NP32,P41NP43,P61NP65 1(12)

on the Euclidean space is free, i.e. all stabilisers are trivial, so there is only one stratum,
the generic one. As we had already noticed, that is also the case of P1 ~ L. There are 13
such groups; we leave as a practical exercise to find the 3 others by studying [ITC].

Since L < G, the study of action of the space group G on the Euclidean space is
equivalent to the study of the action of P = G/L on R™/L ~ Uf'. Beware that the latter
action, in the case of non symmorphic groups, does not preserve the group structure of
U7, but only its manifold structure, a n-dimensional torus. These actions are different
for each of the 219 isomorphic classes of space groups. As we already said, their strata
are tabulated in [ITC] under the heading “Wyckoff positions”. Of course the points of a
fundamental domain, e.g. the Voronoi cell, with the opposite faces identified, can also
represent the points of the torus.

§2 Functions on the Brillouin zone invariant by the space groups and time reversal.
Given a lattice L C V,,, the set of vectors of V,, whose scalar products with all vectors of L
are intgral, is also a lattice, called the dual lattice; it is denoted by L* in the mathematical
literature. Physicists prefer to consider 2w L* (every vector of L* is multiplied by 27); they

call it the reciprocal lattice. If {5,} is a basis of L, the dual basis,

—

{61}, b;.b; =6y, 2(1)

generates the dual lattice L*. Correspondingly ¢(L*) = ¢(L)~*. Let P a finite subgroup of
GL.(Z); it defines an arithmetic class as well as an action of P on L. The corresponding
action on L* is defined by the contragredient representation of P:

GL.(Z)>P3p— ()T =(")™" 2(2)

11 The seven other pairs also correspond to the exchange p, <« pp—p in a space group symbol.
12 The first letter for the space group symbol, P,C, F,I, A as indicated in table 2a, is related to the

Bravais class of the lattice L, with A which occurs in a unique arithmetic class, as a particular case of C.
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For n = 3 the representation of P and its contragredient one are equivalent on Z for 65
of the 73 arithmetic classes. The non equivalent pairs are the F' and I classes for the
orthorhombic and cubic system. The list of these 3 + 5 pairs are:

Fmmm < Immm, F222 « 1222, Fmm2 < Imm?2, 2(3a)

Fm3m « Im3m, F432 < 1432, F43m < I43m, Fm3 < Im3, F23 < 123.  2(3b)

Every unitary irreducible representation (= unirrep) of the translation group L is one
dimensional and has the form:

L>0— e*f  EFmod 2rL*. 2(4)
Equivalently, with a choice of basis:

E:ZV]'I—)}, E:anl;;f, [Heizinjuj, v; € Z, k;mod 2. 2(4")
J J

So the set L of the unirreps has the structure of a group, with the group law:
k=k® + k@ mod2rL* & Kj = f-cg-l) + K:§-2) mod 2. 2(5)

This group is called the dual group by the mathematicians and the Brillouin zone (= BZ)
by the physicists. Of course the points of a fundamental domain of the reciprocal lattice,
e.g. its Voronoi cell, can represent the elements of BZ. The action of the space group
on BZ is defined through the contragredient representation of G/L = P on the reciprocal
lattice. It it the same action for the space groups belonging to the same arithmetic class;
so we have only 73 actions to study. These actions respect the group structure of the
Brillouin zone L. For instarice L has seven distinct elements of order 2; they satisfy:

E#0,26=0 & rj=0o0rm, Y |n|#0. 2(6)
J

These elements form on BZ, a union of orbits of the space group G.

We denote by G, Py the stabilisers of k in the space group and the point group. The
strata of the action of the space groups on BZ have been computed in many books without
remarking that, with the help of 2(3), they can be read directly from the [ITC] compilation
of Wyckoff positions from the symmorphic groups. The generic (open, dense) stratum
corresponds to P, = 1, Gy = L. From any representation k of the translation group L one
obtains by induction a representation of the space group G:

Ind§ (k). 2(7)

In appendix A we give an explicit computation of the matrix elements of these unirreps of
G of dimension |P| (= the number of elements of P). It shows that the matrix elements are
analytic functions on BZ. Representations induced from two k’s belonging to the same
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orbit G.k are equivalent; those induced from k’s of the generic stratum are irreducible.
Those induced from the other k’s are reducible; from their reduction one obtains all
“unirreps of G. It is important to note that by reduction the matrix elements are defined

only on each stratum of BZ. For non symmorphic groups, for some strata of dimension
1 or 2, the matrix elements are no longer analytic on the closure of the stratum, but only
on a covering of it. That phenomenon was discovered by Herring [HER42] on two examples
of space groups. We shall give more systematic examples at the end of §3 and show the
important physical consequences of this phenomenon.

Another construction of all unirreps of space groups was made by Seitz [SEI36); we
recall it with the improvements made in [HER42]. Given a k € L, we denote by ker k and
Im k the kernel and the image of this unirrep of L; then Imk = L/ ker k and ker k < Gy.
Herring introduced the group P(k) = G/ ker k. Tt is a central extension of Imk by Pk,
i.e. Imk < C(P(k)), the center of P(k); it splits into the direct product P(k) =Imk x Py
when G is symmorphic. For the computation of P(E) when G is a non symmorphic group
we refer to [MIC83] and to appendix A. One calls allowed unirreps of P(E) those in which
the subgroup Im#E is represented faithfully. They are also the allowed representations of
Gr. The induction from G} to G of these allowed representations yields all unirreps of G.

We want to study the properties of functions on BZ implied by their invariance under
the space group G, i.e. Vp € P, f(k ) flpT Ic) We also require the invariance under 7T,
the time reversal, when spin coordinates do not intervene explicitly. For a real observable
function this requires f(k) = f(—k). This is already required from P invariance when
P contains —I3; that is the case for 24 arithmetic classes. For the other we replace the
point group P by the one generated by P and —I3. For convenience to the reader we give
explicitly this substitution in table 2a. An equivalent table can be found implicitly in [ITC]
under the heading: Patterson symmetry 3

Examples of such invariant functions are the electron energy for a simple band, i.e.
with a unique branch (in that case [NEN83] proves that the function is analytic), the Fermi
surface energy of the electrons,.... To study the invariance of such functions we have to
study only 24 cases. Moreover, using 2(3), the same study can be used for the functions
on the Euclidean space when G is symmorphic. That was done for instance in [W1G33] for
metallic sodium: one atom per fundamental cell 4 of Im3m. In that paper it was already
remarked that at the points of a symmetry plane, a rotation axis, the gradient of invariant
functions was in the plane or on the axis. More generally one can prove (see [MIC71] for
the exact assumptions) that the gradient of an invariant function on a manifold is tangent
to the stratum !° . The orbits isolated in their stratum are called critical orbits because
they are orbits of extrema for any invariant differentiable function. In our problem that
is the case of the symmetry centers and, more generally, of the points of strata of zero
dimension. Moreover if the linear representation of the stabiliser P, at such a critical

13 That symmetry appears in diffraction pattern when one measures only the intensity.
14 Ag far as I know, that paper was the first to use the Voronoi cell in physics, hence the name of

Wigner-Seitz cell often used in physics literature.
15 3o this theorem can be applied to the action on any space group on BZ and also on the direct space,

thanks to the last paragraph of §1.
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2l (P1) P1; 5 (R3m) | R32, R3m;

8 (P2/m) |P2,Pm; 4 P3 P3;

5 (C2/m) |C2,Cm; 7 P3lm | P312, P31m;
300 (Pmmm) | P222, Pmm2; 77 P3ml | P321, P3ml;
15 (Cmmm) | C222,Cmm2, Amm2; 9 P6/m |P6,P6;

5 (Fmmm) | F222, Fmm2; 18 (P6/mmm)| P622, P6mm, P6m2, P62m;

9 (Immm) | 1222, Imm2; 5  Pm3 P23;

9 P4/m | P4, P4; 100 (Pm3m) |P432, P43m;
40| (P4/mmm)| P422, PAmm, P42m, P4m2;| 3| Fm3 F23;

5 I4/m | 14,14 8 (Fm3m) |F432, F43m;
14 (I4/mmm)| 1422, PAmm, I4m2,I42m; |4  Im3 123;

2 R3 R3; 6 (Im3m) |1432,143m;

Table 2a. Arithmetic classes (in dimension 3) obtained by adding —Is. Number of
corresponding space groups. This table gives the application, by adding —I, of the 73 three
dimensional arithmetic classes onto the 24 ones containing -I (columns2,5). In physical applica-
tions —I might also represent the effect of time reversal on the Brillouin zone. For the labels of
the arithmetic classes and for the order in their listing, we follow the “International Tables for
Crystallography” [ITC]. The 14 arithmetic classes of the Bravais groups are between (). Columns
1 and 4 give the number of space groups corresponding to these 24 cases.

point is irreducible, all invariant functions have a maximum or minimum at these points.
Table 2b lists the critical points of BZ in the 24 cases to be studied; among them we find

—

k =0 and the 7 points which satisfy 2(6), as critical points for each of the 24 cases.

We can say more on the extrema, their nature, their number by using Morse theory.
That was made for the first time by Van Hove [VHO53] using only the periodicity of the
function. [PHI56],[PHI58] tried to do more for some space groups. Let us explain first Morse
theory. It applies to real continuous functions with non degenerate extrema 6 , i.e. the
Hessian (= symmetric matrix of the second derivative) has a non vanishing determinant.
Those assumptions are satisfied for most physical applications. The number of negative
eigenvalues of the Hessian at an extremum is called the Morse index of the extremum (it is 0
for a minimum and n (= the dimension of the manifold) for a maximum. Let ¢ the number
of extrema of index k of the function f; its Morse polynomial is: M;(t) = > h—o CktE.
Similarly one defines the Poincaré polynomial Pys(t) of the manifold M with its Betti
numbers as coefficients; for instance, for a n-dimensional torus, Py, = (1 +¢t)*. The
modern presentation of Morse theory can be expressed by the equation (see e.g. [DOU8T]

16 Their defination can be extended to continuous functions with discontinuous derivatives: e.g. [GORS0].
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Extrema common to all functions on the Brillouin zone
invariant by the crystallographic group and time reversal

cs | arithm. class | 0 2%=0 Wk=0Bk=0fpk=0| nb |03 | 1,2 2,1 3,0 G(t)
te Pi 11,1,1,1,1,1,1 8 1 (141411 +4+1+1 1 0
'g P2/m |1 |1,1,1,1,1,1,1 .8 1 [1+141|141+1 1 0
" c2/m |1| 1,1,1,2,2 8 1 142 1+2 1 0
‘;” Pmmm |1 |1,1,1,1,1,1,1 8 1 [141+1|1+41+1 1 0
8| Cmmm |1 1,1,1,2,2 8 1 142 1+2 1 0
M 1 4 1+14+(2)] 1 t
Fmmm |1 | 1,1,1,4 8+(2) |1 11| 4 14 (2) 1 1,8
1 242 242 1 t
“| Immm |[1]| 1,2,2,2 [2W 10 s | 242 4o . Lo
it P4/m
6| Pajmmm |1 | DLL22 8 1 142 1+2 1 0
14|  I4/m 1 4 242 1 t
12| I4/mmm ! 1,2,4 2P 10 2 4 1+2 1 1,62
rh =
14 s 1 1,3,3 8 1 3 3 1 0
R3m
12
hd P3 1 | {2}+3 | {2}+3 1 2t
8 P3im 1 1,3,3 {2}c | {2}c |8+ {4} | {2} | {2} +3 1+3 1 1+ t,t(1+1)
{2} | 1+3 1+3 {2} 1+t
P3m1 1 2+3 2+3 1 2t
8| Pe/m |1 1,3,3 2K |2H 12 2 | 243 1+3 1 | 1+t,t(1+1)
P6/mmm ’ 2 1+3 1+3 2 1+
cu Pm3
6 Pmﬁm [1] [1]» 3» 3 8 [1] 3 3 [1] 2
. [1] 3 {6) 4 3t%,3
14 Fm3 (1] 3,4 {6)c 8+ {6) 1 4 {6) 3 £ 4212, 2t 4 £2
= 1] 3 6 4 3t%,3
14| Fm3m |1 3,4 6 W 4y 4 6 N PP S
I3m [2] (6) 6 1] + 1] 2
T L ar 0+6)) 6 6 |m+n| tTEF
Table 2b. Minimum number of extrema and their positions for the functions on the 3-

dimensional Brillouin zone, invariant by the crystallographic group and time reversal.
Column 2 lists the 24 arithmetic classes obtained from table 1.
Column 1 recalls their crystallographic systems (cs) and the combinatorial type of their Brillouin
cell: 14,12,12,8,6 (numbers indicating their number of faces). ” is a short for {14,12,12}.
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Columns 3 and 4 give the critical orbits k=0 and among the 7 vectors 2k = 0 i1 BZ ; they are
listed by their number of points. With the same notation, columns 5,6,7 (dependiig on the order
of E) give the other critical orbits when they exists (they are followed by an upper case label not
universally used). The points of critical orbits between [ | have to be maxima or minima because
their stabiliser acts as an irreducible 3-dimensional representation.

Columns 5,6,7 may also contain one non critical orbit required by Morse theory (their number of
points is between { } or { )).

Column 8 gives the minimum number “nb” of extrema for any invariant function as a sum of the
number of critical and non critical points. When Morse theory requires that it must have extrema
outside the critical orbits, the smallest orbit of those extrema is given between parentheses ( ); this
occurs with (2) for the orthorhombic F Bravais class and with (6) for the Cubic I Bravais class, so
the minimal number of extrema is 16 for the latter case. For two arithmetic classes of hexagonal
P, there is a 2-component closed stratum (corresponding to two “vertical” edges of the hexagonal
prism); each orbit (of the infinite family of them) has a point in each connected component (only
the “horizontal” components of k satisfy 3k = 0). On this stratum, there must be 2 orbits of 2
extrema (the Morse index for the two orbits must differ by 1): each orbit is indicated by {2}c.
Because the arithmetic class Fm3 has only 3 critical orbits, Morse theory requires more extrema;
since there is a stratum whose closure contains six circles meeting at k = 0, there must be an
orbit of 6 extrema on them (one extremum on each circle); they are indicated by {6).

Columns 9 to 12 give the orbits of extrema with a given Morse index.

The last column gives the corresponding polynomial Q(t).

Vol 3, chap. 1 §20, theorem 2):

Ms(t) — Py(t) = (1+1t)Q(t); Q coefficients are positive integers. 2(8)

In our case, Morse theory should be applied to the topological closure of every stratum 7

on BZ. The results we obtained are given in table 2b.

§3 Space group and time reversal invariance for multivalued functions. .

We use here the short hand mwf(k) for multivalued functions on BZ. A muvf(k) can be
considered as a union U; fi(lz) of b distinct functions on BZ but there is arbitrariness in
defining them 2 . B

The two main physical applications are the study of the energy mv f w(k) correspond-
ing to the vibrations of the atoms of the crystal and the energy E(E) of the bound states of
the electrons. One can neglect the perturbation, due to the presence of the neighbouring
atoms, to the electronic states for the closed shell of the crystal atoms 1° ; so we con-
sider only the electrons in the non closed shells (in short, the valence electrons). These

17 Those of dimension 1 may not be manifold (e.g. a set of circles meeting in a unique point); the
application of Morse theory can be done intuitively in that case, without the need of the generalisation of
[GORS8O0]!

18 For most solid state books a convention is made (under the name of “labelling of bands”). Van Hove
[VHO53] already doubted of the interest of this convention. We shall not make one, but some convention
may be very natural when we know better their structure; e.g. some muvf might be transformed in an
analytic function on a covering of BZ (e.g. 3(4).

19 por them, the corresponding mv f are nearly constant.
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two mv f’s on BZ are most important for the study of the thermodynamical and physical
properties (e.g. electrical conductivity) of the crystals. Each muvf defines a set of hyper-
surfaces (called the graph of the mvf) in the 4-dimensional space of coordinates, the three
k;’s (defined in 2(4’)) of BZ and the energy value. For w(k) the f;’s are generally called
branches of bands; there are three branches which satisfy

w(0) =0 3(1)

they belong to the acoustic band. But for the valence electrons, the graph of E(E) is often
called “a band structure” and each f; is often called a band; however one also used the
expressions “composite bands” and “simple bands”. We will use the vocabulary of bands
made from branches, currently used for vibrations, also for electron energy.

Of course space group (=G) and time reversal (= T') symmetry conditions do not
apply separately to the different branches of a mvf, but they apply globally to its graph;
e.g. it is periodic in the k; with period 27. The direct extension of the §2 results to these
mu f is difficult to do presently ?° and, in my opinion, it is not advisable to try it. Indeed
we should first ha,vg a more detailed knowledge of the general frame of the physical theory;
for instance for E(k), G and T invariances applied to a Schrodinger equation problem 2! .
The corresponding program was explained in the fundamental paper [BOU36]: let us quote
three sentences of its introduction:

Thus far the group theory of the B-Z is not different from the group theory of
any other system. But while in atoms, molecules, etc., the characteristic values of (1)
[= the eigen values of the Schrodinger equation for bound states| are well separated,
the characteristic values of (1) for a crystal form a continuous manifold.... [for
example the graph of the energy E on BZ].

Thus a certain topology for the representations must exist and it will be shown
that part of this topology is independent of the special B-Z. ....

The investigation of the "“topology” of representations will be essentially the
subject of this paper, from the mathematical point of view.

The last quote is the last sentence of the introduction. This paper 22 st@‘rted the
program by recalling the proof of the continuity of the energy as function of k and by
giving the compatibility conditions imposed by continuity on the unirreps of G when k
sweeps BZ. As the next step along its program, that paper announced Herring’s thesis
whose summary appeared a year after in two papers [HER37. The first one shows the
importance of using “corepresentations” (i.e. using also antiunitary operators) for the
group generated by G and T'; it gives theorems for the sticking of two branches of an

20 The generalisation of Morse theory to mvf’s is not finished and too involved for our needs.

ER §2 we did not use it.

22 This paper is much quoted, but very little read! The notations introduced by the authors for the
strata on the Cubic P, F, I Brillouin cells and for the unirreps of their Gy ’s are still currently used. But I
observed that the great majority of solid state physicists ignore the emphasis of this paper on the “topology
of representations”. Indeed this is quite a foreign idea to the users of Born von Karman groups with a BZ
replaced by a finite set of points. Prof. R. Dirl in his 3rd lecture proposes an explicit method to perform

the continuous limit.
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muf. The second one discusses the accidental contacts or crossings of muv f’s branches,
i.e. those not due to symmetry; so they can disappear when one changes continuously
the potential in the Schrodinger equation. That leads to the study of the existence of gap
between branches, which has a great physical importance (it is necessary for insulators or
semi-conductors). With changing external conditions (e.g. temperature or pressure) the
two branches may meet 2> . That was the basis of the prediction in [WIG35] that under high
pressure solid hydrogen will be metallic; this has been verified this year (more than sixty
years after!) at Livermore. We can extend the concept of “changes in the potential” by
going down a column of the Mendeleev table. C as diamond, Si, Ge have a commun crystal
structure: the cubic (non symmorphic) space group Fd3m, with 2 atoms per fundamental
cell, on an orbit of the Wyckoff position a (stabiliser F43m ~ T,). Their Fermi surface
corresponds to the upper end of the energy spectrum E(E) of the valence band. Diamond
is an insulator because the gap with the conduction band is about 6ev while it is 1.1ev
and .7 ev for Si and Ge respectively; the last two (with precise doping of impurities) can
be excellent semi-conductors. The crystal structure of Bi, lower in the next Mendeleev
column, is obtained from the previous by a slight elongation along the cube diagonal;
so it is rhombohedral: space group R3m with 2 atoms in Wyckoff position ¢ (stabiliser
R3m ~ Cj3,). It is a metal (or semi-metal); when pressure is increased, the gap appears
at about 25 Kbars.

Obviously, the first step for studying the complicated “band structures” obtained in
experiments is to try to decompose them into simpler system by “removing” the accidental
degeneracy until one obtains “indecomposable elements” which are so simple that one can
classify them. De Cloizeaux ([CLO63] p. 561) gave the obvious definition for the indecom-
posable band structures: their graph should always be connected. He called the latter
bands and their components: branches and showed that their symmetry was described by
an induced representation. In his thesis, Herring had emphasized the the electron energy
bands and the vibration bands have some similarity in their mathematical structure. The
band classification was first made for the vibrations. Indeed, it was natural to extend
to crystals the group theoretical method introduced by [WiG30] for molecules. I am not
able presently to retrace the history of the statement very clearly given for instance in the
textbook [STRé67]:
the space of eigen states corresponding to the muv f w(lZ) carry the representation:

iy, Indgw V(Gy); V(Gy) is the vector representation of G, 3(2)

and the direct sum is over all Wyckoff positions occupied by atoms. If n is the number
of atoms by fundamental cell, the number of branches is 3n. [STR67] does not speak of
induced representation; the translation in the form 3(1) is done in [MIC82] which also gives
the explicit reduction in unirreps of Gy, for each ke BZ. Eq. 3(1) yields the connectivity
of the 3 branches for n = 1 and many exemples of the 6 branches for n = 2 are given in

23 The meeting of two branches is a sufficient condition for destroying the gap between the two connected
intervals (on the real line) of their energy spectrum; however it is not a necessary condition since the two
branches have no common points when the common part of the values of the mvf E(k) comes from

separated domains of BZ.
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[MIC95b). A full study will be made; in the general case the total vibration spectrum is the
union of several indecomposable bands.

Intuitive classifications of electron energy bands were made by assuming their relation
with atomic electron orbitals. Zak [ZAKS80] was the first one to show that the band represen-
tation, i.e. the representation of the space group G on the Hilbert space of the Schrodinger
equation solutions corresponding to the band was an induced representation of the form of
3(2), in which the Wyckoff positions w might be a position of atoms, but more generally
they have to be determined by the nature of the physics as well as the representation of
G (instead to be restricted to the vector representation). With that clear formulation
of the nature of the band representations, Zak was able to define non ambiguously the
decomposition of band structures! Indeed a band structure is decomposable if its band
representation is a direct sum of band representations. He called “irreducible” the band
representations which cannot be decomposed 24 into a direct sum of band representations.
He added (on p. 1026) “The irreducible band representations serve as elementary building
bricks in the symmetry definition of bands in solids”. That is the qualificative we used
in our later common publications. Bands whose band representations are elementary are
simply called here elementary bands. Furthermore [ZAK80] gave necessary conditions for
elementary band representations: it is induced from a unique Wyckoft position w which
satisfies the two conditions 1) it has has maximal symmetry 2 , 2) the representation
of the stabiliser G, is irreducible. These two conditions are not sufficient; an example
showing it was found by [EVA84]. Moreover, distinct elementary band representations can
be equivalent: the first example was found by [ZAK82] in the study of the diamond like
structure.

In 1987, with Bacry, we established the complete classification of elementary band
representations: [BACss]. All band representations satifying conditions 1) and 2) are el-
ementary except 40 of them belonging to 25 space groups: they all occurs for the two
dimensional representations of stabilisers isomorphic to 322 = D3, 422 = Dy, 622 = Dg,
42m = Dyy. Among the elementary band representations there are 152 equivalent pairs:
57 at the same w and 37 at different w’s for some unirreps of G, and 62 for all Guw
unirreps for 17 pairs of Wyckoff positions in 14 space groups. For this last class of equiv-
alent representations a (Berry phase like) topological invariant seems to distinguish them
[MIC92). Using a well known Mackey’s formula (eq. (20) of [BAC88]) for the reduction
of band representations 26 that paper gives the explicit decomposition of an elementary
band representation on Gy for all points of BZ. For Gy = 1 (corresponding to the generic
stratum) the multiplicity b is the number of branches of an elementary band:

PL dim p(G). 3(3)

b=

w

24 Thatis a very confusing term, because these infinite dimensional band representations are reducible
(by a direct integral) into the finite dimensional unirreps of G.

25 We have stated after 1(9) that “Wyckoff position with maximal symmetry” is equivalent to either:
a) the stabiliser Gy is a maximal finite subgroup of G, or b) the stratum with stabilisers in [Gw]g is
topologically closed.

26 We assumed (and I hope to prove it!) that Frobenious reciprocity (see the appendix) can be extended

to space groups; that assumption also extends to them the Mackey’s formula.
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For instance for diamond, Si, Ge, the valence band and the first conduction band are both
elementary 4 branch bands; their symmetry 7 is respectively “w = c trivial 1epresentation
of G ~ D3y = R3m” and “w = ¢ 1 dimensional representation of G, ~ D3q = R3m with
kernel D3 (so its image is {1, —1})” (J. Zak, private communication).

The next evident step in the program of [BOU36] on the topology of representations
on BZ is the conjecture:
The graph of an elementary band is connected ?® that Zak and I have formulated
and are trying to prove 2° . Here we prove it for the 13 non-symmorphic groups of 1(11).
We denote by ¢ the visible 30 lattice vector defining the glide vector %[ for Pc,Cc or the
screw rotation axis for the other space groups of 1(11). As any visible vector, ¢ can be
chosen as a vector basis of the lattice; we denote by {* the conjugate vector in the dual basis
(defined in 2(1)) and by k' mod 27 the corresponding coordinate in BZ. In the unirrep
k'0* of the translation lattice L, the translation 7is represented by e'*'. We have called 7
in 1(10), a non-symmorphic generator of the groups in 1(11). From 1(10) we obtain that
r is represented by

i 2R BP0 < N\ < p, 3(4)

in the p-dimensional induced representation Ind$ (k'#*) (defined in 2(7)). One verifies that
these p branches, labelled by A, form 1-dimensional inequivalent unirreps of G on the circle
C of coordinate k' on BZ. After a complete cycle on C, k" ~— k' + 27 which, from 3(4), is
equivalent to A — X 4+ p. That is the phenomenon of holonomy of the G unirreps found
in [HER42]. Let us first consider the case u = 1; i.e. we study only the 9 non-symmorphic
groups of 1(12). As we have pointed out, the full space is their unique Wyckoff position;
therefore they have a unique equivalence class of elementary band representations. Its p
branches are continuous functions of the representative of r in 3(4). They form a unique
analytic function of &’ on the p-fold covering of C so the graph of the elementary band on
C is connected on C and, a fortiori, on BZ.

For each of the 4 other groups of 1(11) there are several closed Wyckoff positions; each
one is a rotation axis with an infinity of finite orbits. Each closed Wyckoff position yields
different elementary bands and the connexity of their graph is again a direct consequence
of 3(4). Since all non-symmorphic space groups but one (I212;2;) contain as subgroup
at least one of the 13 space groups of 1(11), the proof of the graph connexity of their
elementary bands is easy to extend to them. It is verified directly for 12,2,2; from the
compatibility conditions on the edges on BZ.

To end these notes, let us consder in detail, for the unique elementary band of P4y,
its graph over C. This circle contains two points, X’ = 0 and k' = m, invariant by time
reversal 7. At k' = 0, r is represented by exp(iAr/2); then T requires the contact of the
branches with complex conjugate values, i.e. for A = 1,3. At k' =, 7 is represented

2T We give it by the sequence: w, and the unirrep of Guw.

28 Very natural conjecture since an elementary band is by definition indecomposable; see above.

29 Our proof for non-symmorphic groups seems in good shape, but we have some difficulty for some
symmorphic groups.

30" Concept defined before 1(10).
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by exp(i¢(2A + 1)w/4); then T requires the contact of the branches of the pairs A = 0,3
and A = 1,2. Taking in account the holonomy of the G representations and the global
symmetry of the graph over C for ¥’ = —k’ mod 27, one obtains Figure 2 for two possible
schematic shapes of this graph. They are topologically distinct; their difference is explained
in the caption of figure 2.

-TC 0 T -T 0 T

Figure 2. Two possible topologies for the graph of electron energy F(k’) above the circle
on BZ corresponding to the skew rotation axis for the unique elementary band of the space
group P4;. )
The left diagram corresponds to the (increasing or decreasing) order A = 0,1 = 3, 2 for the energy levels
at k = 0, the right one corresponds to the different order A = 0,2,1 = 3. In the two cases T invariance
requires two contact points at k' = 7 and one at k' = 0. The second case b has two more contact points,
with same F (k') value, at the symmetric coordinates £k’ with 0 < |IC'| < 7. These two contacts are
required by the topology (continuity of F/ (k/)) but are accidental since by variation of the potential one
might replace the order of the energy levels at k' = 0 in the right diagram by that of the left diagram.
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§6 Appendix.
The space groups are discrete subgroups of the Euclidean group E,. To write the group
law of the latter we choose an origin on the Euclidean space £,. Then every element of
E, can be written as the product of first, an orthogonal transformation A and second, of
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a translation t. We write such an element 3! {¢, A}. Its action on the point z € &, is:
{t,A}.x = Az + . A(1)
The Euclidean group is the semi direct product: E, = R" >10,; its group law is:
{s,A}{t,B} = {s + At, AB}, {s,A}"'={-A"1s,A7"} A(2)

As we have seen in §1 a space group G is a discrete subgroup of the Euclidean group,
containing L, a lattice of translations, as invariant subgroup; the quotient G/L = P is
the point group. The majority of space groups are non symmorphic (i.e. are not semi-
direct products) and P cannot be identified with a subgroup of G. In that case we have
to choose a section for the homorphism G -2 P of the equation 1(7), i.c. a map 32
P -5 @ such that 0 o 7 = Ip the identity map on P. For any A € P, 7(A) is an
element {v(A), A} € E,. When the translation {v(A), I'} does not belong to the translation
subgroup L, the translation v(A) is called a non-primitive translation 3 . The product
of two elements of the space group G < FE,, is given by:

{s+v(A), A}{t +v(B),B} = {s + At + v(AB) + 2(A, B), AB} A(3)

with the definition:
de f

2(A,B) = v(A) —v(AB)+ Av(B) € L A(4)
The function v(A) depends of the choice of origin in the Euclidean space; indeed if we
translate this origin by the translation z = 0o/, we make a conjugation in E, by the
element {—x,0}:

{s' +v'(4), A} = {-=2,0}{s + v(A4), AH{z,0} = {s + v(A4) — (I - A)z, A}

ie v'(A)=v(A) - (I- Az A(5)

From this equation and the definition A(4) it is easy to verify that the function z(A, B)
is independent from the choice of origin. This important property makes this function
very useful in physical applications; by contrast, because they depend on an arbitrary
choice of origin of the physical space, the imprimitive translations cannot appear exlicitly
in the general equations governing physical phenomena. From the convention v(I) = 0,
the function z(A, B) satisfies:

2(I,A) =0=2(A,I) A(6)

31 1n the solid state literature it seems to be a tradition to write the elements {A,t}, although A is
performed before t and the usual convention of product of operators or group elements from left to right:
g192 means first g; then g2. Here we cannot adopt this incoherence.

32 which cannot be a group homomorphism.

33 When {v(A), I} € L, one can choose the section 7 such that v(A) = 0. However the only convention

we require here is v(I) = 0, because it is independent from the choice of origin.
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Moreover, the associativity of the space group law requires:
2(A,B) — z(A,BC) + 2(AB,C) — Az(B,C) =0 A(T)

We shall refer to the two variable function z(A, B) defined on P and valued in L as a
cocycle since it is the mathematical name of such functions satisfying A(6) and A(7). Note
that a cocycle has still some arbitrariness. Indeed instead of the section 7 we could have
chosen 7/(A) = 7(A) + ¢(A), ¢(A) € L, the coeycle is changed into z’(A, B) given by:

Z'(A,B) — 2(A,B) = b(A, B) = ¢(A) — ¢(AB) + Ac(B). A(8)

The particular cocycles of the form given by the last equality, are called coboundaries. For a
given arithmetic class (i.e. a given action of P on Z3 ~ L) the different possible cocycles (by
addition of their value) form a group denoted by Z%(P, L) and the coboundaries form the
subgroup B?(P, L). The “second cohomology group” mentionned after 1(7) is the quotient
H?(P,L)= Z*(P,L)/B?(P, L). A simpler notation than that of A(3), independant of the
choice of origin is used in the text (e.g. in 1(10)). With it, the space group law is written:

(s,A)(t,B) = (s + At + 2(A, B), AB). A(9)

The corresponding law for the stabiliser G, is given by the matrices:

-

A,B € Pk, (Cik'gA)(eiEFB) — Cig'(§+F+Z(A’B))AB. A(].O)

Replacing the exponentials of translations by their value yields the Herring group P(E)
(defined in the paragraph after 2(7)).

We now recall the definition and fundamental properties of induced representations.
We first consider the case of a finite group G and its sugroup H. The complex valued
functions on the group which satisfy:

$(9192) = 8(9291) < ¢(919297") = ¢(g2), A(11)

form a finite dimensional Hibert space Hg with the Hermitean scalar product:

(0, 8) = 1GI71 Y @(9)8(9). | A(12)

geG

Labelling the unirreps of G by a, their characters x& form an orthonormal basis of Hg.
Restricting the functions ¢ € Hg to the subgroup H < G defines the linear operator:

a
Resy;

He — Hy. A(13)
By definition, its adjoint operator is the induction operator:

n (e
My 2% Mg Ind$ = (Res§)!. A(14)
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From this definition we have immediatly the Frobenius reciprocity:

(Ind§ X%, X&) = (X Resf x&) - A(15)
From the associativity of the linear maps we obtain the theorem of induction by step:

H<H <Hy<..<Hp1<Hy,<G =Ind§ =Ind§ Indi  ...IndJJ* Indj
A(16)
and from the other fundamental properties of linear maps:

nd$, X% & x4 = Ind§ x4 ®Ind§ xg, Indf x% ® x§ = Indf x5 @ Indf x%, A7)

To construct an induced representation from H to G one chooses representatives of the
left cosets G : H

G =U,s;H. ’ A(18)
Then, given a representation h +— D(h) of H, one obtains the induced representation of G
as block matrices:

— TndC . _ [ D(s7'gse,) if s71gs, € H; A(19
A=Indg D, Ajelg) = {0, ’ othierwise. )

Obviously that formula can be extended to finite dimensional representations of a subgroup
H of finite index 3* in G. For instance the induction of the unirreps k of the translation
subgroup L to the whole space group G is straightforward:

Aje(t) = Ajg((t,l)) = 0j¢ eikj't, kj = (S;'r)'—lk, A(20)
' ik;.2(S,S¢0)  if §. = S, Y
Air((0,8)) =4 ¢ W95 £ A(20
ﬂ(( )) {O, otherwise (4

In a d-dimensional allowed unirrep of P(k) (which is also an allowed unirrep of Gk) the
translations are represented by multiples of the unit matrix (Ig with ¢ € Imk. The
induction to G is straightforward.

Equation A(19) could also be used for the induction to the space-group G of a rep-
resentation of the finite subgroup G,,; it yields infinite matrices. Frobenius reciprocity
cannot be defined by A(15); however its definition has been extended to locally compact
groups in the mathematical literature. The space groups are a particular (trivial) case of
such groups and we had assumed e.g. in [BACS8] that it was valid and that we can use
the expressions written as scalar product of characters of finite representations. I hope to
study more thorougly this problem.

34 That is G : H is a finite set.
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