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Complete description of the Voronoi cell of the Lie algebra A,, weight lattice.
On the bounds for the number of d-faces of the n-dimensional Voronoi cells.

Louis MICHEL, THES, 91440 Bures-sur-Yvette, France, - michel@ihes.fr

Abstract. Denoting these bounds by Ng(n), 0 < d < n, we prove that Ng(n)/(n + 1)! is a
polynomial pa(n) of degree d with rational coefficients. We give explicitly the polynomials for
d < 5. The proof uses the fact that these bounds Ng(n) are also the number of d-faces of the
Voronoi cell of the weight lattice of the Lie algebra A, (it is also the Cayley diagram of the
symmetric group S,+1 which is isomorphic to the Weyl group of A, ). Each d-face of this cell is a
zonotope which can be defined by a symmetry group ~ G4(«), d-dimensional reflection subgroup
of the A,, Weyl group. We show that for a given d and n large enough, all such subgroups of A,
are represented and we compute explicitly N(Gq4(«),n), the number of d-faces of type Ga(a) in
the Voronoi cell of L = A},. The final result is obtained by summing over «. That also yields the
simple expression: Ng(n) = (n+1—d)! Sf:fil”d) where the last symbol is the Stirling number of
second kind.

§1. Introduction.

The proximity cell of a lattice of points was defined and studied by (Lejeune-) Dirichlet
for 2-dimensional lattices (= 2 variable quadratic forms) and also by Hermite. The 3-
dimensional case was thoroughly treated in the book [FED885] of Fedorov: An introduction
to the theory of figures ' . The last Voronoi memoir is the fundamental study for arbitrary
dimension; it appeared in two parts [VOR08], [VOR09], the second has been printed after
Voronoi’s death at the age of forty. The proximity cells are usually called 2 now Voronoi
cells. We whall give their definition in (1labc) after introducing the necessary notations.

Let E, be a n-dimensional real orthogonal vector space whose scalar product is de-
noted by (Z, 7); we define N(Z) = (Z,Z). A lattice L C F,, is the set of vectors generated
from an FE, basis by the addition of vectors. It is a group L ~ Z", free Abelian group of
rank n, closed subgroup of R™. Three equivalent definitions of the Voronoi cell D(L) of L

are:
a) D(L) ={# € E,; Y € L,N(Z) < N(Z - 0)};

b) D(L) = {Z € En; Ve € L,2(6,7) < N(8)};
¢) D(L) = {Z € E,; % is a shortest vector in the & + L coset of R"}. (1abc)

If {5]-}, 1 < j < n,is abasis of L, any other basis is of the form Zj mijgj, m € GLn(Z).

So | det 5]| is an invariant of L that we denote simply vol(L). By definition, two lattices are
isomorphic if they can be transformed into each other by an orthogonal transformation.

1 E.S. Fedorov wrote this book between the age of 16 and 26, while serving in the army, or studying
medecine, chemistry and physics. Then he became a mineralogist and six years later his book was accepted
for publication in a crystallography series. No translation in a Western language is known. There exists a
detailed analysis of it in [SEN84].

2 They are often called Wigner and Seitz cells for crystals; that of the dual of the crystal lattice is called

Brillouin zone. Indeed these scientists introduced their use in physics at the beeginning of the thirty’s.
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So a class of isomorphism depends only on the Gram matrices G = (5,-, Ej); each one is
a symmetric positive n X n matrix which defines a positive quadratic form ¥, ; i TiT; -
Since the sum of two positive quadratic forms is a positive quadratic form, the set of
positive quadratic forms form a convex cone that we denote by C,(Q,,) in the n(n+1)/2-
dimensional vector space of n variable quadratic forms. To the change of basis of a lattice
b; — >_; mijb; by the matrix m € GL,(Z) corresponds the transformation q — mgmT
for the corresponding quadratic forms. So there is a natural bijective map between the set
of isomorphic classes of lattices and the orbit space C4(Q,,) | GL,(Z). The generic lattices
(represented by an open dense set in the n(n + 1)/2 dimensional manifold C,(Q,)) and
their Voronoi cells are studied in [VOR08], [VOR09]where they are called primitive. These
cells are combinatorialy equivalent for n = 2,3. Voronoi established that they form three
combinatorialy distinct classes for n = 4. In [VOR09] he also gave an expression for the
bounds Ny(n). The aim of this paper is to give a different and more explicit expression.

§2. The expression of the bounds N4(n) obtained by Voronoi .

That expression is given in (11), at the end of the section. Before, we recall the
fundamental concepts and objects introduced by Voronoi . Instead of giving a summary of
his papers, we shall introduce a more modern (and faster) presentation of the basic facts
on lattice and their Voronoi cells. This can be found for instance in [DGS], [E], [CS]. Here
we shall follow [MS], a monograph in preparation with M. Senechal.

The symmetry point group P C O, of the lattice is the symmetry group of D(L);
hence the origin o is its symmetry center. Definition (1b) shows that D(L) is convex since
it is the interesection of half spaces bounded by hyperplanes. Let &, be the Euclidean
space built from E,,. Its points are z = o + &, the translate of o by 7 € E,,. Conversely,
any pair of points z,y € &, defines a vector y — z = zyy € E,. The set of translates of
the Voronoi cell by all the vectors £ € L, i.e. {D(L)+ ¢ = D, AL); £ € L} form a face
to face paving of the space £. We notice that D(L) is a fundamental domain of L, so
vol(D(L)) =vol(L).

Following [MS], we say that the cells which have a contact with D,(L) form its corona
and the centers of these cells define the corona vectors. Their set is

C = {¢€ L;D,(L)N D.(L) # 0} = LN 8D,(2L). (2)
It follows from (1c) that the corona vectors are shortest in their L/2L cosets, i.e.
eC: Vlel, NE+20)-N@>0e (E8+N@ >o. (3)
The converse also holds. Note that &€ C' = —& € C. Let us replace 2 by m > 2 in (3):
EeCVE#0,le L, m Y (N(@+md)—N(@)=2(@E8+N@)+m—-2)N@ > 0. (4)
This proves ([Ms]) that a corona vector is the shortest vector in its coset L/mL when
m > 2. So we obtain
ICl<3™ -1 (5)
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This result was first obtained by Minkowski [MIN07] for the more general cases of lattice
packings of any convex domain (instead of the Voronoi cell). Equation (5) ‘mplies that the
number of supporting hyperplanes of the faces of Dy(L) is finite. Since vol(Dy(L)) finite,
they cannot be all parallele to a direction, so D(L) is a polytope. To simplify notation
when there is no ambiguity, we will use D for D(L) from now on. Since vl e L, % { = o+ -é— 7
is a symmetry center of L, then -;-c is symmetry center of the face D, N D, (that face is
convex and that symmetry exchanges the points o, ¢, so it transforms this face in itself).
From now on will we call the (n-1)-dimensional faces of D(L) facet. The set of facet vectors

FcCis )
F={feC; dim(D,NDs)=n-1}. (6)

One easily proves the

Proposition 1. f € L is a facet vector if and only if + f are strictly shorter than the
other vectors of their L/2L coset. ’

That proposition was first proven in [VOR09] §55, p.67-69. As a corollary, combined
with (5), we obtain:
2n < |F|<2(2"-1)<|C| <3" —1. (7)

The second inequality is in [VOR09] p.70; it was also proven before in [MIN897].

At least n facets meet at each vertex of D. Each vertex v belongs to n, Voronoi cells
D,,, 1 < a < n, >n and the o, are on a sphere of center v. Voronoi defined ([VOR09]
§60 p.74) and used the polytope that is the convex hull of the points o,; we denote it A,
because it was thoroughly studied by Delone and his school. In dimension n a sphere is
determined by n + 1 points in general position: i.e. they are the vertices of a simplex. So
for the generic lattices (forming an open dense set in C(Q,), see [VOR08]) n, = n + 1 for
each vertex. Each Voronoi cell containing a vertex v meet at v the n others, along n facets.
Voronoi called such cells primitive; we call here the corresponding lattices primitive. It is
- easy to prove ([VORO08] §17, p.228-9)

Proposition 2. D(L) primitive < each of its d-faces is the intersection of n+1—d cells,
ford=0,1,2,... n.

For d = n — 1, we have as a corollary
L is a primitive lattice < Vv, A, is a simplex . (8)
From propositions 1 and 2 we obtain:
L primitive lattice = |F| = |C|=2(2" - 1). (9)

The converse of (9) is not true for n > 4. All 4-dimensional lattices which are tensor prod-
uct of two primitive 2-dimensional lattices, have the same combinatorial type of Voronoi
cells with [F)| = |C| = 30 but those cells, which are studied thoroughly in [MS], are not
primitive: among their 102 vertices, 12 of them are the intersection of 5 facets 3 .

3 In dimension 5 [ENG95] has found 225 combinatorial types of non primitive Voronoi cells with the

greatest possible number of facets, i.e. 62.



Let f; (v), 1 <7 < n be the facet vectors of the n facets meeting at the vertex v of
the Voronoi cell D of a primitive n-dimensional lattice L; these vectors form a basis of the
space. The lattice generated by these n linearly independent f; may be only a sublattice
of L of index w,; so

wy vol(L) = det(f;)| = n!vol(A,), (10)
where the last equality is obtained from the known formula giving the volume of a simplex.
Let us study the sets V(D) of vertices of the Voronoi cell D. If v € V(D) the n points
v; = v — f; are also vertices of D and one verifies that the set V(D) is the disjoint union
of subsets, each one containing exactly n + 1 vertices of D which are obtained from each
other by translations of L ([VOR09] p. 71). Since the set of all Délone cells of L pave the
Euclidean space &,, by choosing a representative v, for each of these subsets, U,A(v,) is
a fundamental domain of L; so

> vol(Ay) = (n+ 1) vol(L). (10')
veV (D)

From this equation and the sum of (10) over the vertices, we obtain

VD)< Y wy=(n+1) (107)
veV (D)

the equality holds if and only if w,, = 1 at each vertex. As we have seen, that means that at
at each vertex v of a primitive Voronoi cell, the corresponding n facet vectors f; generate
the full lattice; we call these lattices and their cells, principal primitive.

The proof of (10”) is only a particular case of the proof Voronoi gave in [VORO09],
§63-66, p. 78-83, of the theorem:

Theorem (Voronoi ). The number of d-faces of a principal primitive n-dimensional
Voronoi cell is

e n—d
0<d<n, Nyg(n)=(n+1-ad) Z(—l)"“d_e( ¢ )(1 +0)". (11)
=0

Voronoi proof uses a discretisation of the space and finite differences 4 . In [VORO09] §101
p. 136 Voronoi proved that the Ny(n) are upper bounds for the number of d-faces of any
n-dimension Voronoi cell. That was a remarkable achievement.

Finally Voronoi gave for all dimensions an open set in C+(Qy), of primitive principal
lattice and he called type I the combinatorial type of their Voronoi cells > . These lattices

4 At the top of p. 82, there is a misprint in the equation which defines the finite difference operator
(replace the last symbol p by k). At the bottom of the page Voronoi equation (11) (the first of §66) is
equivalent to (11) above.

5 As we told at the end of the introduction, Voronoi [VORO09] showed that there are 3 types of primitive
lattices (all principal) in dimension 4 and, in a side remark (p. 84), he stated that he found some non
principal primitive lattices in dimension 5. In that dimension, with the correction by Engel [ENG95] of
the Baranovskii and Ryshkov result [BAR37], it is now known that there are 222 types of primitive lattices
including 21 non principal ones. Voronoi did not introduce a word for the concept of principal primitive

lattices.



are described by the quadratic forms

QN‘J‘ (.’132) = Z)\“xf -+ Z /\,’j(xi - .’l?j)2 = zq()\)ijxi:cj; /\ij > 0. (12)
T 1j

4,7,1<J

Voronoi showed that each one of these quadratic forms has a formal symmetry S,, 41, the
permutation group of n + 1 objects; it was a generalisation to dimension n of the Selling’s
study [SEL874] of the 2 and 3 variable quadratic forms. In the particular case where all the
N’s are equal, S, becomes a geometric symmetry ¢ . In that case, Voronoi computed the
coordinates of the (n + 1)! vertices (see (27)) and showed that they form a principal orbit
of S,4+1. At that time it was not known that, up a dilation of scale, these lattices were
A the weight lattices of the simple Lie algebra A,,. Moreover, the Voronoi cells D(AY)
are the Cayley graphs of the permutation groups S,; (see [COX80], p. 65-66). That is
one more incentive to study them in detail in the next section.

§3. Detailed description of the Voronoi cells of the A} lattices.

A representative quadratic form q of AY is obtained from (12) with \;; = (n + 1)~}

SO -
q=1- én -+ 1).], with Iij = 51']', Ji]‘ =1. (13)

From J? = nJ one obtains easily ¢~!, the quadratic form of the dual lattice A7 = (A¥)*,
the root lattice of the simple Lie algebra A,,:

¢ lt=I+J (14)

To write explicitly the corresponding bases of this pair of dual lattices we introduce the
following notation. Let A, and A" be the sets of integers m satisfying respectively
0<m<mnand1l < m < n. To exploit easily the action of the symmetry group *
A, ~ Spy1, it is usual to consider the n + 1 dimensional space F, 1 with the orthonormal
basis and the vector €:

v‘ -
B EN,, (Bn@5) = bup, 5:§n+1)zé'a, 50 (é’,é’)z(é’,é’a):%nﬂ—l)! (15)

The group S,,41 is the group of permutations of the n + 1 vectors €,; it leaves € fixed. We
denote by H. the hyperplane (= vector subspace) orthogonal to €. It contains the vectors

-1
@ =He D Ga; U = Ea — &, (o @) = bap — %n—{» 1), Y d. =0 (16)

The vectors of H. are those of F,,; with a vanishing sum of coordinates. S,41 acts
linearly (and irreducibly) on H, and is the group of permutations of the n + 1 vectors .

6 As shown between (15) and (17); see also (29). In fact these lattices are the primitive ones with the
largest symmetry; see [MS].
7 We use the same notation A, for the simple Lie algebra and its Weyl group, but to avoid any

ambiguity we shall always precise if A, denotes the group or the Lie algebra.
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Those vectors generate the weight lattice Aj. From the last equality of (16) one can take
as a basis of A the n vectors

i€ N, {il; = & — &} basis of AY; (a,-,zzj)zaij—%nﬂ). (17)

The last equality shows that its Gram matrix is ¢ of (13). )
We denote by A a non empty proper subset of A, and its complement by A, in order
to define the set W of lattice vectors of A¥:

D#ACN,, W={ia=) i}, @a+ig=0; [W|=202"-1). (18)
aEA

From the defining quadratic form (13) Voronoi proved ([VvOR09] §102, p.137-139) that for
each L/2L coset of A, the shortest vectors form a pair: W, w1 = —w4; by proposition
1 we see that W is the set of the facet vectors of A%:

W = F(AD). (19)

Another proof is given in [MS]).
We now use well known properties of the A,, Lie algebra which were not all discovered
at Voronoi’s time. The roots of the Lie algebra A,, form the set R of n(n + 1) vectors:

R = {fap = €4 — €3 = Uiy — s}, N(7yp) = 2. (20)
These vectors generate the the root lattice A”. One can choose for its basis:
{rio} basis of A7; its vectors satisfy : (i, @;) = bij. - (21)

This proves the duality AY = (A7)*. The weights of the Lie algebra A,, are the non zero
vectors whose scalar products with every root are +1 or 0; they form the set W = F(AY)
of facet vectors of the weight lattice.

For the study of Lie algebras the traditional basis of the root lattice Al is

— -~ s —e

{Fi="7i—1:=&_1— € = i@;_y — @} basis of A7, (22)

Notice that
2 when i = j,

(75,7;) = ¢ —1 when |i —j| =1,. (23)
0  when |i —j| > 1.

The corresponding quadratic form is called the Cartan matrix of A7, The dual basis of
(22) has to be made of weights:

ko
i

{Wy = Ua} is the basis of AY satisfying (7, W) = 6ik. (24)
0

«@



Notice also that
k(n+1—2)

k<0, (@) = > 0. (25)

n+41
The inequality is a necessary condition for the n facet vectors wy to be those of the facets
meeting at a vertex v. Here this condition is sufficient since there is a unique vector v
satisfying the system of linear equations:

(W, ¥) = - N (). (26)

The solution
n(n+2)

. 27
12(n+1) (27)

1 n .
7= %n—kl)(;é——Zaé'a); N@) =
a=0

was obtained by Voronoi ([VOR09] §103, p. 140-143) who remarked that all coordinates
of v are distinct, so the vertices of D(AY) form at least a S,41 orbit of (n + 1)! vertices.
Since this value attains the bound (11), there are no other vertices and (10”) proves that
A is a principal primitive lattice. No other symmetry arguments were used by Voronof ;
it is time to produce more.

In an orthogonal vector space, we denote by o(7) the reflection through the hyperplane
H, orthogonal to 7. Its action on the vectors is given by

o(F).Z = & — 2(Z,F)N(7) "'+ (28)

The Weyl group A,, is the group generated by the reflections o(7s) with 743 € R. Since
the roots 7,3 generate A], the Weyl group is symmetry group of this lattice. That group
leaves the vector € of (15) fixed and acts irreducibly on the n-dimensional subspace He.
Applying the reflection o(7,3) to the basis vectors é, of E, ;1 one verifies that the €,’s,
a # v # [ stay fixed while the vectors €, and €3 are exchanged. This verifies the
isomorphism of the Weyl group A,, ~ S,41, the group of permutations of the n + 1
coordinates of the vectors € EF,,; in the basis (15). With the use of the classical notation
by cycles for the permutations, this isomorphism corresponds to:

o (Tap) ~ (aB). (29)

It is well known that the permutation group S, 4 is generated by the n involutive permu-
tations (¢ — 1,7). They are represented by the n reflections o(7;) and from (23) and (28)
one obtains the relations between these generators for the group A,

1<i<n; o(f)? =15 [i— gl = L, (a(7)o (7)) = 15 |i = j| > 1,(o(F)a(7))* = 1. (30)
Remark that the first equality implies that the last one is equivalent to
li —j| > 1;  o(Fi)o(r;) = o(7;)o (7). (30")

The Coxeter diagram for the group A, has n vertices labelled by 7,1 < ¢ < n, each
representing the reflection o(7;), and the n — 1 edges joining the pair of vertices 4,7 + 1.

Coxeter diagramof Ajg: &——o— 6 o 6 o o o o0



A pair of vertices not joined by an edge represents commuting reflections. As we have
seen, this orthogonal n-dimensional representation of A,, is also the group of permutations
of the vectors i,, generators of A¥. So the Weyl group is symmetry group of the lattices
Ay, AL It is not their full symmetry group because, for n > 1, it does not contain —I,,
the symmetry through the origin on the n-dimensional vector space H.. It will be more
convenient here to use only the symmetry A,,.

We have proven after (27) that the group A,, ~ Sn+1 acts transitively on the set V of
vertices. We leave as an exercise the computation of the action of some of its elements on
the vertex v (given in (27)):

0 (Fap)-T = (af).5 = &+ ;i;(a = B)Fag. (31)

(o(71)o (7)o (73) .. .U(Fn))k.i}' =(1,2,...,n,n+ 1) .0 = 7 — . (32)

For 1 < k < n those are the n other vertices of D,(AY) obtained from @ by translations
of the lattice; it could have been obtained geometrically that these n translations are the
opposite of the n facet vectors {u} (24) meeting at v. Any edge from the vertex v is the
intersection of n — 1 facets meeting at v, so it is orthogonal to n — 1 of the facet vectors
Wi. This shows that edges meeting at v are parallele to the roots of the basis {7} defined
in (22) which is the dual basis of {w)}. From (22) and (27) we obtain (¥,7;) = 1/(n + 1).
With the symmetry A,, ~ S, .1, this shows that any vertex is equidistant from the n walls
of the Weyl chamber which contains it. As a particular case of (31) we obtain:

o(7).0= (iyi+1).7 = 7 — %n +1)7. (33)

That shows the the neighbouring vertices of v are obtained by reflection through the Weyl
chamber walls. Given another vertex v', there exists a unique g € A,, ~ Sp41 transforming
v into v’ = g.v; it transforms roots into roots and o(9.7;) = go(Tig™!). Hence the

Proposition 3. All edges of the Voronoi cell of A} are parellel to the roots (€ R defined
in (20)) and have the same length v/2/(n + 1).

In [COX72] at the end of §6.2 p. 65-66, it is explained that this cell is combinato-
rially equivalent to the Cayley diagram of Sn+1. The proof is easily obtained from the
isomorphism based on (29) and from (30). The vertex v of (27) can be chosen to represent
1 € Sny1 so the n vertices of (33) represent the n group generators o(7;). Repeating the ac-
tion of the group generators on the newly obtained vertices one defines the correspondence
between the (n + 1)! elements of S, ,; and the (n 4 1)! vertices of D(AY).

Proposition 4. The Voronoi cell D(AY) is a zonotope.

Proof: We must recall first the definition of the vector sum & + of two convex polytopes
P', P" in the Euclidean space &,. We follow here [GRU67], beginning of Chapter 15 (which
has been written by G.C. Shephard). The following two equivalent definitions are given:

P’-i"PN — {.’l?l +.73”' .'I,', € Pl, .’I?N € P//}; (34)

8 It is also called Minkowski sum.



With {v;} and {v}'} the sets V(P’), V(P") of vertices of F’, P", the second definition is:
P'+P" = convex hull({v] + v/}), 1 <i < [V(P)|, 1< j < [V(P") (35)

A change of origin translates the vector sum; so it should be considered as an binary
operator on the classes of translated polytopes. It is straightforward to prove that this
sum is commutative and associative. A trivial case of such sum is the parallelipipede
built on a basis of vectors (identified with 1-dimensional polytopes=line segment). In the
general case of eventually non linearly independent vectors we have '
Definition: A zonotope is the vector sum of a finite number of segments.

For D(A}), these segments are defined by the roots. Following the literature on semi
simple Lie algebras, we choose as the set Ry of positive roots the n(n + 1)/2 roots TaB
satisfying a < 8. To conclude the proof one verifies that by adding to v, for each subset
of R, the sum of its elements, one obtains the set of vertices

w 1 -
V(A ={v+ — E NapTap| Nap = 0 or 1}. (36)
n+1
0<a<pf<n

Notice that most vertices can be expressed by different sums.
Let us recall well known properties of zonotopes. A zonotope has a symmetry center;
for the Voronoi cell A it is

LR L
v+;:;p, with g = Z TaB; (37)
0<a<p<Ln

(this half sum of all positive roots is often used in the study of semi simple Lie algebras).
The faces of zonotopes are zonotopes; so they have a symmetry center. Notice that it is
generally not true for the d-faces, 1 < d < n — 1, of Voronoi cells. That is the case of
the two other types of primitive Voronoi cells in dimension 4; they have pentagons among
their 2-cells, e.g. [ENG92).

It is well known that the number of edges of a primitive principal Voronoi cell is
Ni(n) = (n+1)!n/2 (indeed n edges meet at any vertex and each edge has two vertices).
Let us apply to this elementary case d = 1 the method we shall develop for computing the
Ng(n)’s. Since the stabiliser of any vertex v is trivial, the stabilizer of an edge is the A,
subgroup A; ~ S; which permutes the two vertices of an edge. Note that this group leaves
fix the middle of the edge, so it is a stabilizer of the Weyl group acting on E,. There are
[An|/|A1] = (n+1)!/2! edges in each A, orbit. From the fact that the stabiliser of a vertex
is trivial, no element of the group A, can be a permutation of the edges meeting at the
vertex. Hence the n edges meeting at v (or at any vertex) belong to the n different orbits
of edges. Moreover each orbit can be associated with a 7}, that is the position of A; at
one of the n vertex of the Coxeter diagram of the reflection group A,. In (10”) and now,
we have determined two polynomials defined in the abstract:

po(n) =1, pi(n) = S (38)

9



‘We now study the general case of a d-face ®§ of the Voronoi cell D of AY. It is defined
by its set of vertices V(®§) C V. This d-face defines its supporting d-plane H(®S) (the
affine span of V(®9)) and V(®3) = V(D) N H(®F). So the edges of % are parallele to
the roots parallele to the d-plane H(®S). Since this d-plane does not contain the origin
(center of D), its normaliser in the group A,, (i.e. the subgroup of A,, made of all elements
which transform H(®5) into itself) is a reflection group generated by the reflections o (7ag)
whose roots 7,5 are parallele to the d-plane. From proposition 3 and (31), this group is
also the normaliser in A, of the d-face ®J and it acts transitively on its vertices. We

will denote this reflection group (or anyone of its conjugacy class) simply by Gfia) . All the
d-dimensional reflection subgroups of A,, are known. Their Coxeter graph is obtained from
that of A,, by removing n-d vertices and the edges issued from them; in general it is not
connected but is the disjoint union of diagrams A,,, with d = 3. m;. From (30’), these

distinct subgroups A,,, commute between each other. Hence the group Gfia) is a direct

product:
G((ja) o= XiAmi, Zmz =d (39)

It is convenient to write the direct product of s isomorphic group A,, as A% . So the
general preceeding equation can be written

Gga) = XiA:,"“, Zmisi = d; (39’)

when s; = 1, we write simply A,,,. Conversely, given a d-dimensional reflection group of
type (39) (i.e. direct product of irreducible reflection groups A,,,), it defines a zonotope
with all edges equal which, for n large enough, is a d-face of a Voronoi cell D(AY). Each
factor A, defines the Voronoi cell D(A}. ). The direct product of factors define a partic-
ular case of the vector sum of the cells; indeed these polytopes are in linearly independent
(in our case, orthogonal direct sum of ) vector subspaces ® . We will use a different notation,
P’ x P”, for this particular case of the polytope vector sum defined in (34),(35) because it
has richer properties. For example, with the notation Ny(P,) for the number of d-faces of
the n-dimensional convex polytope P, and the conventions N4(P,) = 1 for d = n and 0
for d > n, we have:

Nd’+d”(P7/u * P,,:,u) = Ndr(P/L,)Nd/l(P;:n) e (40)
& Na(Pl, xPl)= Y Na(PL)Na(Pl). (40")
d dl dl!

In this paper we replace the symbol P, by its symmetry group: for instance A; is a line
segment, No(A;) = 2; then Af represents the s-dimensional hypercube and we obtain
immediatly the well known formula

0<d<s, Nu(A])= (d) pi-d. (41)

9 This particular vector sum of polytopes is studied in [COX63], p. 123-124; it was called “rectangular
product” by Pdlya.

10



Similarly we obtain immediately the number of vertices of the d-faces labelled by the
general reflection group (39); it is exactly its number of elements:

NO(XiAfy;i): l Xi“fri,'l :H((mi+1)!)si. (41/)

1

It is important to emphasize that, as 4, was not the full symmetry point group of the
lattices A, and of their Voronoi cell (see end of paragraph containing (30°)), X;AJi is not
the full symmetry group of the d-face type it labels. For instance the symmetry of the
hypercube is the wreath product '© A4 75 = O,(Z) = By; it is again a group generated by
reflection, hence the notation B, of the Weyl group of the simple Lie algebra By ~ Ogs41.
Note that for d > 1, s > 1, A; | s is not a group generated by reflection; note also that it
is not a subgroup of A4 but it is a subgroup of GL4(Z).

We shall denote by Qa(x; A5 ,n), >, sim; = d, the number of such d-faces of D(A¥)
per orbit of the group A,:

) (n+1)!
Qu(x;A% n) = — " 42
d( i ) Hi((mﬁ'l)!) ( )

Then the number of d-faces of D(AY) for a given symmetry group of (39’) is

]\fd( XiA‘:r;i R Tl) = Qd( XiAffLi s TL)I\"d( XiAfriLi s 'I’l), (43)
where Kq4(x;A7; ,n) is the number of d-face of symmetry x;AS: at the vertex v (or at
any vertex); that is also the number of different Coxeter subdiagrams (of the diagram of
Ap) corresponding to the group isomorphism class x; A}y, . For instance there are n+1—d
possible positions of the Coxeter diagram of A, in that of A,,. Hence the number of D(AY)
d-faces which are D(AY) zonotopes is:
n+1-d n-1 n
Ng(Ag,n) = (n+ 1)! ;oeg No(Ag,n)=(n+ 1) —, Ni(A,n)=(n+1)!-.
(d+1)! 6 2
(44)
The last expression is the maximum number of edges of an n-dimensional Voronoi cell; we
have already computed it before (38). The 2-faces of the Voronoi cell D(A¥) are either
regular hexagons, with symmetry A, or squares, with symmetry A%; so Ny(Ag,n) is the
number of hexagonal 2-faces.
By recursion with all m; different we find

k—1

#Fmi, 1<i<h d=3Y mi, KoxiAm)=[[(n+1-d—€) =k ("*i‘d) . (45)
7 =0

The vanishing of this expression when d + k < n corresponds to the necessity, for obtening
the diagram of a direct product of k factors as a subdiagram of A,,, that one has to remove

10 Tpe group G 1s = G* >4, is generated by the direct product G° and the group of permutations of
the s factors of this direct product. So |G 15| = |G|* s!.
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at least k£ — 1 vertices in order to separate the subdiagrams of the A,,,’s. When, in the
direct product A;, the factors are identical, one cannot distinguish between their diagrams
in that of A, so one must divides the expression of K by the factorial of the number of

factors: .
d=ms, Kq4(A4;,) = (s))~1 H(n +1—-d—-¥)= (n+1_d) . (46)

¢=0 ¢

Using this expression for the particular case of the d-dimensional hypercube, m = 1,d = s
and (42-43) we obtain for the number of d-hypercube in D(A¥):

Nay(Ad) = (n+ 1)1 274 ("*2“‘); e.g. No(A2,n) = (n+1)! (n— 1)(n—2)/8.  (47)

Adding this expression with the middle expression of (44), we obtain:
Ny(n) = (n+ 1)! pa(n) with pe(n) = (n —1)(3n — 2)/24. (48)

The general expression of K, for a general reflection group of (39’) is:

k—1
5. _(n+1-d—-2) k! +1-—d
d= z :misi’ k= § :si’ Kd(x'iATr‘Li’n) - Z_OH s;! - H ER <n k ) (49)

With (42-43) we finally obtain for Ny(x; A5 ,n) withd =Y, m;s;, k=, 85

kot n+l—d—~¢ n ! nt+1—
Na(xs A% n) = (n 4 1)) ez 17970 (vt ( i "). (50)

Hi si!(mi+l)!)si N Hi s,-!(m,-—)—l)!)si k

Note that d is the dimension of the face of symmetry type Gfia) and k is the number of

factors of the direct product group G((f) (we always denote by n the dimension of the space
spanned by the lattice).

To summarize this section, we have obtained a detailed knowledge of the combinato-
rial structure of the Voronoi cell of the AY lattice by giving:
1) the list of the d-dimensional reflection subgroups of A, ; it describes the different types
() of the d-faces. Each one is either the Voronoi cell of dimension d or the x-sum of such
cells of smaller dimension.
ii) the number of (a)-cells at each vertex; it is given by K d(G‘(f’)) (49).

iii) the total number of (a)-cells; it is given by Nd(Gf;’)) (50).

As a last example, let us study the symetry types and the number of facets of the
Voronoi cell AY. Their symmetry type are A,,_1, A,_2 X Ay, An_3 X Ay, Ap_4 X Az,
... (This structure of the facets was given by theorem 2 of [RYS62] and its theorem 3 gives
informations on the structure of the d-faces). From (49), it is easy to complete the proof
of

12



d Gy Ka(Gy") Na(GY)

0 l=vertex 1 (n+1)!

1 Aj=edge n (n+1)%

2 | Ax=hexagon n—1 (n+1)t 2=t
A3=square @—1%@12—) (n+1)! gﬂ:—l—)g@:—zl

3 | A3=3-(Vcell) n—2 (n+ 1)1 22
Az X A; prism (n—2)(n—3) (n + 1)! ﬁg_—_gf)én_—_ii)
A3=3-cube (n=2)(n—3)(n=4) "53)'"“4 (n+1)! (n=2)(n-3)(n=4) "4;3 nod

4 | Ay=4-(Vcell) n—3 (n+1)12:8
A4 X Ap prism (n—3)(n—4) (n+ 1)! Lusisﬁl‘l—)-
43 (=) (n+ 1)t =n=0)
Ay x A2 S’L:@M;_‘l)(ﬂ:i) (n+1)g£11_—i)ifﬁﬂﬁ~_5)
Ad=4_cube (r=3)(n=4)(n=5)(n=6) (n + 1)1 == (n=5)(n=6)

5 | As=5-(Vcell) et (n+1)1{2=4)
As X Ap prism (n—4)(n—5) (n+ 1)! @—:%%1—_—52
Az X As (n—4)(n—5) (n+1)! M;%L(T"‘—@
As x A? (=) -5)(n=6) (n + 1)1 2=t(n5)(n6
A% x A, iz:_iuizzz:éli;n_:@ (n+1)! L’:@M%M;ﬁ_)
Az x A3 (=)= 5)(n =) =7) (n+1)! B=A0=0)n=6)(n=1)
AP=5-cube =080 O [ () 4 1)) (ZOE=SE-E(=T)n=8)

n-1 | An_1=(n-1)—(Veell) |2 2(n+1)
Am X Aniem -1 2. 1<m< ﬂéi 2 (;’1:_11)
A? 1. n=2m+1 (;’1‘:‘1)

n | A,=n-(Vcell) 1 1

Table 1. The d-faces of the Voronoi cell D(A®).

Column 2: k—(Vcell)=A}" Voronoi cell. Gﬁf') X Ay is a prism of basis cha).

Column 3: number of G,(c") faces per vertex. Column 4: total number of Gi“) faces.
The last line is a natural convention.
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Proposition 5. At each vertex meet 2 facets of each of the (5] symmetry types A,, X

Ap_1-m withm € Z,0 <m < (n—1)/2 and, when n is odd, 1 facet of type A?n_l)'?.

Hence, the total numbers of facets of the different symmetry types are (with m irteger
and A the trivial group):

0<m< _n;—_l, Nn——l(Am X An—l—ms TL) =2 <n+11), (51)
m+

n—1 2 n+1 e/

and for odd n, m = 0 Nn-1(AZ,n) = ( 1) . (517)
m+

Adding these numbers for all values of m yields N,_1(n) = 2(2" — 1), already given in (9).

Table 1 summarizes the nature of d-faces for 0 < d < 5 and for d = n —1 and n
(i.e. the cell itself), and for each symmetry type, their number per vertex and their total
number. Some results on the structure of the Voronoi cell of the lattice A¥ have been
given in [CS], [CON91]. A general algorithm for studying the structure of the Voronoi cells
of root and weight lattices is established in [MOO95].

§4. The new explicit expression of the bounds N4(n).

When d is given, (50) shows that Nd(Gfia)/(n-l—l)! is a polynomial of n of degree k < d;

the maximum value of the degree is reached for G((f) = A{ (the d-dimensional hypercube).
To find the expression of Ny(n), which is both the total number of d-faces of the Voronoi
cell D(A}Y) and the upper bound of the number of d-faces of any n-dimensional Voronoi cell,

we just add the polynomials Nd(Gga),n) for all d-dimensional reflection subgroups Gfia)
of A,,. That proves the result announced in the abstract: for a given d, Ny(n)/(n + 1)! is
a polynomial in n of degree d. Moreover the coefficients of these polynomial are rational
numbers.

We can predict an upper bound of the smallest common multiple of the denominators
of these coefficients (in the reduce form). These denominators contain two types of terms.
One of them appears in the number of elements of an orbit: Qq(x;Ag: ) in (42); indeed it
is the quotient |A,|/| x; A3 |. Since we factorize (n + 1)! in the final expression of Ny(n),
the number of elements of all reflection subgroups of A,, are in the denominators and their
‘smallest common multilple is (n 4 1)! = |A,|. For the direct product of identical reflection
groups, as in A;, another type of terms appears in denominator: s! in the middle of (46).
This number of permutations was introduced because one cannot distinguish between the
different factors A,, of A$, in the Coxeter diagram of the later group. As we pointed
it (after (41)) for the hypercube (case m = 1), that was another way to state that the
symmetry of the face A?, is the wreath product 4,, T s with

|[Am Ts| = ((m+1)!)°(s)). (52)

For m > 1, A}, is no longer a group generated by reflection but, as for A$, it is also a
subgroup of GL4(Z) with n > ms.
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To summarize: the denominators of the rational coefficients of the polynomial pg(n)
are the orders of different finite subgroups of GL,(Z). Minkowski [MIN890] has computed
the smallest common multiple of all finite subgroups of GL4(Z) and has denoted it by d|:

oo d

H“I: H q k=°[qk(4~1)]; = 2d+1 = 2._23. (53)

g is prime

He also proved (Bjy is the dth Bernouilli number):

(/2]
by = denominator of(Ba/d), 2d = 2bg.2d 1| « d| =2 [] b (54)
k=1

From 1] = 2 with this equation and the last equality of (53), it is easy to compute:
1<d<7 E| = 2, 24, 48, 5760, 11520, 2903040, 5806 080. (55)

Then -

d>0, Ng(n)=n+1D!(n+1-d)(d) *Pn). (56)
where Py(n) is a polynomial in n of degree d-1 and integer coefficients. For 1 < d < 5 the
polynomials P;(n) can be computed by adding the expressions of the last column of table
1 corresponding to a given d. These Py(n) are listed in table 2.

P](’n) =1

Py(n) =3n—2

P3(n) = (n—1)(n—2)

Py(n) = 15n® — 10512 + 230n — 152

Ps(n) = 3n* —38n3 + 173n2 — 330 n + 216.
Table 2. The polynomials Py(n) for 1 < d < 5.

§5. Expression of Ny(n) as multiple of a Stirling number of second kind.

In this section we first give a reinterpretation of the general formula (50). We consider
first the cases where all s; = 1. We have studied in (51) the simplest of these cases with
k=n+1—d = 2; we can generalize it to other values of k small enough compared to
n (e.g. k? < (n+1—k)); then G = x| A,,, with 1 < m;, the m;’s are all different.
With these conditions (50) becomes:

- X . o (n+1)!
k=n+1-d,1<1<d,1<m; € Z, m; all different, Ny(n)=k! Z m

Z m;=d
(57)

With the change of notation Ny(n) = N/(n), n; = m; + 1 and ordering the integers n;’s
by decreasing values, this last equation can also be written:

n !
k=n+1-d, 1<i<k, n;>nip, ng>2, Ng(n)=Ni(n)=k! Z (k+1) .
Zni=n+1 H.’:l it
(57')



To obtain the equation equivalent to the general form of (50), we have to relax the condition
n; > Ni41 to n; > n;y; and count the contiguous numbers of = :

$1,82,...,8q,... are the numbers of contiguous = in the sequence n; > n; ;. (58)

Then (50) becomes, with k =n + 1 — d:

1 = 7 < k, Ng > Niy1, Nk Z 2, Nd(n) = N,f,(n) = k! Z L-Hk)'——' . (59)
ni=n+1 H Hi:l L

Finally we have to relax the condition k small compared to n and to consider the cases
where k¥ < n + 1 —d (as is the case for instance for the facet of symmetry A, _;). For
that we complete the sequence n; > ... > ni > 2 by adding to it (n+1 —d — k) “1” ’s;
this add a new s, whose value is n 4+ 1 — d — k. Then (59), which is equivalent to (50), is
transformed into:

£’=n+1—d,15i5£’,ni>m+1, ne > 1, Nd('n)ENé(n)=e! Z %
Z'ni=n+l H Sa H.’=1 ik
(60)
This is a new general expression for Ny(n). It is easy to verify that for 1 < d < 5 and for
the different partitions of n+ 1 into £ = n+ 1 —d terms, the different terms in the the sum
over the partitions in (60) have exactly the form given in the last colummn of table 1.
The expression

1
1<i<Y, ny > niqa, ne>1, Z o BEL, (61)

nij=n+1 H fa H:=1 tal

is the number of ways of partitioning a set of n + 1 elements into £ non empty subsets. By

definition this number is the Stirling number of second kind: it is denoted S( ) 1 in [ABR64].
Thus we have establish that (it is also valid for d = 0 and d = n):

0<d<n, Nyn)=(n+1-d)SlH . (62)

- The right hand side corresponds to the ordered partitions: it includes the permutations of
the different non empty subsets which define the partition. Through the use of (62) and
(56), any relation between Stirling numbers of second kind yields a relation between the
polynomials Py(n) (defined in (56)). For instance:

S Y=(n+1-d)Srt-44 gr-d (63)
yields:
(n+1)Piy(n) — (n—d)Ps(n—1)=(n+1 - d) Pd 1(n—1). (64)

This gives another possibility for computing the P4(n) by recursion.
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One closed expression given in [ABR64] for the Stirling numbers of the second kind is:

S(m) = (m!)~1 Z(—l)m—’c (m> k™. (65)
k=1 k
That yields
nEld n+1-—d
Na(n)= 3" (*1)n+1,—d"“( . )k"“. (66)
k=1

With the change of dumb index k — ¢+ 1, one obtains the expression (11) given by Voronoi

So we can either consider that we have given another proof of the Voronoi formula
(11) or, most modestly, that (62) is a simplest form of the Voronoi expression. Equations
(62) and (56) show that the Stirling numbers of second kind can be expressed as a one
family of polynomials; that was known long ago: e.g. [JOR60], §58. However the only
reference I know ! to a form similar to

d
SUH T = @) Pun) [[(n +1-0), (67)
=0

Is in [GRASS8], their equations (6.45),(6.50). These authors define the “Stirling polynomials”
oa(n+ 1) from a formula identical to (67), but written for the Stirling numbers of the first
kind '2 . The relation between the two families of polynomials is:

Pa(n) = (=)™ 'djog(~(n + 1 - d)). (68)

Using this relation, the recursion (64) yields that to be proven in [GRAS8S] exercise 6.18.
§6. Final remarks.

As we noted, we have also studied the Cayley graph of the symmetric group S,,+1. The
use of its natural realisation (29) as n-dimensional reflection group imbeds this graph as a
polytope of the orthogonal vector space E,. That introduces the roots, their orthogonal
hyperplanes and the Weyl chambers. Then we can define the set of vertices of the Cayley
diagram, not as an abstract principal orbit of S,,;, but as an orbit of a point in the
interior of a Weyl chamber and equidistant to its walls. The Coxeter elements of this
reflection group are the permutations corresponding to a cycle of length n + 1. They
play an important role (see equation (32) which involves the weigths = facet vectors of
the Cayley graph). Then the theorem 1.7.7 of [KER96] which in sompne cases leads to
set ordered partitions, is probably the shortest way to obtain (62). So one could have
started the study of Cayley graphs of symmetric groups without any reference to their

U yam very grateful to Dr Thomas Scharf (in Bayreuth) who pointed out to me this reference.
12 Their Stirling numbers of first kind do not change of sign, so they are those of [ABR64] multiplied by
(=1)%. In their book, the denominators of the oy polynomials are not recognized as Minkowski numbers.
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identification (given e.g. in [COX63]) with the Voronoi cells of the lattices AY. But in this
paper, we wanted first to describe the structure of the Voronoi cell of Ay,

§7.
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