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§0 Introduction.

§1

I will report on recently obtained results, some of them not yet published, which are consequences
of crystal symmetry and time reversal.

I will consider only periodic crystals. Their symmetry is a very good physical approximation
which allows to make strong predictions. The ones I will present, apply to the results of many
experiments: those which are expressed by functions on the Brillouin zone, invariant by the sym-
metry of the crystal. Time reversal invariance will be added in the case of stationary phenomena,
but only in the approximation that direct spin effects can be neglected; i.e. we shall use only the
230 space groups and not the numerous “magnetic” or “Shubnikov” ones. By its generality and
precision, the study of the consequences of symmetry belongs to the general culture of physicists;
it can be a handicap to ignore them. It is true that a model which has the same symmetry will
satisfy all its predictions. But the model independent consequences must be known in order to
evaluate the nature of the model predictions: which ones are only a verification of a simple and
general theorem of symmetry conservation, which ones are specific to the model?

Mathematical tools.
la. Some theorems on compact group actions.

Symmetry appears in physics through the action of symmetry groups. I just recall some
definitions to precise the notations. Let G' be a group acting on a mathematical object M as
subgroup of its automorphism group. We denote
by G.m = {g.m,V¥g € G} the orbit of m, i.e. the set of all transformed of m;
by Gm = {g € G, gom = m} the stabilizer of m. It is a subgroup of G (sometimes called “little
group” in the physics literature). The stabilizers of an orbit form the conjugacy class [Gm]a of the
subgroups of G conjugated to Gr,. By definition, two orbits with same conjugacy class of stabilizers
belong to the same orbit type. Given any H subgroup of G, an example of orbit of type [H]g is
the set G : H of the left cosets of H with the action of G on the cosets by left multiplication:
g.xH = gzH = (gz)H.

In a group action, a stratum is the union of the orbits of same type. Equivalently, two elements of
M belong to the same stratum if, and only if, their stabilizers are conjugated in the group G.

In the action of G on M, the set of orbits is called the orbit space; we denote it by M |G.

We denote the set of strata by M||G. This set is finite in most physical problems and it is very
important to know it. For instance, there are four strata in the action of the Lorentz group on
the Minkowski space: the time like, the space like, the light like vectors and the origin. The
strata of the actions of the 230 crystallographic space groups on the space, are tabulated in the
International Tables of Crystallography (=[ITC] under the heading “Wyckoff positions”; Bravais
classes, crystallographic systems form stratum spaces (see (5) below), etc. ..

We consider from now on a smooth action of a compact group G on a real manifold M of
finite dimension n. The stabilizers are closed subgroups of G. There is a natural partial order on
the conjugacy classes of closed subgroups of G (by subgroup inclusion up to a conjugation). By
averaging over the group a Riemannian metric on the manifold, one equips M with a G-invariant
Riemannian metric; a particular example is a n-dimensional linear orthogonal representation of G.
An action of G on M defines implicitly the action of G on the real functions defined on M. The
functions which satisfy

Vge G, YmeM: f(gm)= f(m) (1)
are the G-invariant functions. The sums, the products of G-invariant functions are G-invariant
functions; so they form a ring that we denote by F$ . If the G-invariant function f has an extremum
at m € M, all point of the orbit G.m are extrema of the same nature.
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We will use the following theorems for the smooth actions of compact groups on real manifolds.

Theorem 1. There is a unique minimal stratum (i.e. with minimal symmetry): it is open and
dense in M. The maximal strata (i.e. with maximal symmetry) are closed.

Proof by D. Montgommery [MON56]. The minimal stratum is also called generic.

Theorem 2. The gradient V f(m) at the point m € M, of the G-invariant differentiable function
f is normal to the orbit G.m and tangent to the stratum S(m) of m.

Well known.  We call critical orbits those orbits which are isolated in their strata (= no other
orbits of the same type in a tubular neighbourhood of a critical orbit).

Theorem 3. An orbit is critical < It is an orbit of extrema for all functions of Ffj.

Proof in [MIC71].  Let M be compact. Consider an invariant function f € FS& and denote
by fs its rectriction to a maximal symmetry (and therefore closed) stratum. It reaches a maximal
value and a minimal value on S. From the last statement of theorem 2, at any point m of this
maximal stratum Vf(m) = V fg(m). That proves another theorem of the same reference:

Theorem 3’. Moreover, when M is compact, all functions of J-'A(f, have at least two orbits of
extrema on any connected component S, of the closed strata S, when S, contains an infinity of
orbits.

In the particular case of a finite dimensional linear orthogonal representation of the compact
group G on the vector space V,,, G. Schwarz has shown in [SCHT5]:

Theorem 4. The ring of invariant polynomials Rgﬂ is dense in the ring of invariant smooth
functions.

This theorem can be extended to some actions of G on M when a global system of coordinates
exist. I do not know general theorems but it becomes obviously true in the case of the actions
of the point groups on the Brillouin zone with an appropriate choice of the polynomial variables.
Finally we remark that at any point m € M the action of G induces a linear representation of G,
on the tangent plane T,(M) of M at m. We will use it in the next subsection for theorem 5.

We shall need these five theorems only in the particular case of finite groups and compact
manifolds. Then each orbit G.m has a finite number of points, |G.m|, which is a divisor of |G|
(the number of elements of the group); more precisely: |G.m||Gm| = |G|. And the critical orbits
are those belonging to strata of dimension 0. Hence we know the extrema common to all invariant
functions. We will study in the next subsection what Morse theory can predict about the nature
of these extrema.

§1b. Morse theory of fAG,, when G is a finite group and M a compact manifold.

Let us recall Morse theory in its simplest form. It applies to C? real functions with isolated
extrema, i.e. at every extremum, their Hessian (= symmetric matrix of the second derivatives) has
a non vanishing determinant. These assumptions are satisfied for most physical applications; it is
also the case for the critical orbits we study since, for finite groups, their points are isolated. Given
a function f, the number of negative eigenvalues of the Hessian at an extremum is called the Morse
index of the extremum; we denote this index by 4. For a minimum, ¢ =0 and i = n = dim M for a
maximum. The intermediate values 0 < ¢ < n are those of the Morse index for the different type
of saddle points ! Let ¢; be the number of extrema of f with the index ¢; its Morse polynomial is:

1 Morse theory is easily extended to continuous functions with discontinuous derivatives because the Morse index
of their extrema is determined by the topology of the (continuous) level surfaces in the neighbourhood of an extrema.
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Mj(t) = Yy cit'. Similarly one defines the Poincaré polynomial Py (t) of the manifold M with
its Betti numbers by, as coefficients 2 . For instance, for a n-dimensional sphere Ps, (t) = 1 +t".
For a topological product of manifolds M = M’ x M", Pyrxm(t) = Py (t)Ppro(t); hence for a
n-dimensional torus, since it is the topological product S{ of n circles,

Parismn (t) = Py (8)Pyo(t), Ps,(t) =1+1t", = Psp = (1+1)" (2)

The modern presentation of Morse theory can be expressed by the equation (see e.g. [DOU87] Vol
3, chap. 1 §20, theorem 2):

M(t) — Pu(t) = (1 +1)Q(t); Q coefficients are integers > 0. (3)

The inequalities satified by the coefficients of @ are the famous Morse inequalities. They imply
¢; > b; (since the coefficients of the polynomial My (t) — Py (t) are > 0) but they are stronger; for
t = —1 (3) gives the equality 3;(~1)*(c; — b;) = 0 known before Morse’s work.

For functions invariant under the action of a compact (or finite) group, one can make stronger
predictions on the nature of extrema; e.g.

Theorem 5. If the linear representation of G, on Tr,(M) is irreducible on the real and if m is an
extremum of an invariant function f, this extremum is either a maximum or a minimum.

Indeed, at each point m, the Hessian Hy of an invariant function commutes with G,,; that
imposes a multiplicity structure on the spectrum of Hy. Since Hy is symmetric, when the repre-
sentation of G, is real irreducible, H is a multiple of the identity and its Morse index is either 0
or n.

Of course extrema of the same orbits are of the same nature; so, for finite group actions, the
¢;’s are the number of points of a set of G-orbits. There are several studies of the “equivariant
Morse theory”; I will summarize their conclusions for the cases of interest here by the requirement
that Morse theory has to be applied not only to M but also to the topological closure of every
stratum. Those compact closed subspaces are not necessarily submanifolds of M. So one may
have to use the extension of Morse theory to manifolds with boundary, to orbifolds, or even to
more complicated spaces (as union of manifolds). The required generalisation of Morse theory is
explained in [GORS0]; however, in the cases studied below, we shall not really need it ( only the
closure of one dimensional strata are not submanifolds: e.g. set of circles with a common point).

§2 Extrema of functions on the Brillouin zone, invariant by the crystal symmetry and
time reversal.
I first recall the basic facts of crystal symmetry classification. The symmetry group of a periodic
crystal contains a lattice of translations. It is an Abelian group L ~ Z% where d = 2,3 is the
dimension of the space. The translations acts on our Euclidean space; the full symmetry of the
crystal, called in physics the space group S, is a subgroup of the Euclidean group Eug = R*>04.
The translation lattice is an invariant subgroup of S and the corresponding quotient P = S/L is
the point group of the crystal. The point group P acts on L and must be a subgroup of Aut(L),
the automorphism group of the lattice. .
Let us introduce provisorily an orthonormal basis €,.€, in our Euclidean space. Let {b;} aset
of d vectors generating the matrix (by addition and subtraction of vectors); so L 3 (=3 ; éjgj,

¢; € Z. We denote by b the matrix of components of the by’s, i.e. bjy = b;.€,. Since the b,’s are

2 This number by is the rank of the kth homology group of M in Z; intuitively it is the maximum number of
k-dimensional submanifolds of M which cannot be deformed continuously into each other or into a submanifold of

smaller dimension.



linearly independent, deth # 0 < b € GL4(R). Any other generating basis of the lattice must be
of the form 51 =3 m,-,-i;j with the matrix m € GL4(Z) (that implies (det m)? = 1). By definition
r € Oq4 is a sysmmetry of the lattice L when 7.L = L; then the L basis b is transformed into br~!
which must be another basis of L:

rL=Lebl=mber=>b"'m . (4)

That shows that Aut(L) is finite . Moreover we have two points of view for the symmetry of a
lattice: the set of conjugacy classes of Aut L in Oy and in GL4(Z). The first stratum set is {C'S}q,
the second one is {BC}4 according to the names Bravais crystallographic systems and Bravais
classes given to them in [ITC]. To be more explicit: we consider the set of lattices in dimension d:
it is the orbit (set of cosets) £, = GL4(R) : GL4(Z) and we study the orbits and strata of O, on
it. The orbit of a lattice, O4.L, is the set of different positions of a same “intrinsic” lattice L(¥);
the latter is characterized by the Gram matrix * ¢;; = b;.b;. Note that ¢ depends on the basis b
and that the change of basis b — mb, m € GLg(Z) transforms ¢ into mgm". Hence an intrinsic
lattice L(®) is an orbit of GL4(Z) acting on the set of ¢’s that we denoted by CJ. Indeed the ¢(L)’s
are symmetric positive matrices; in the d(d + 1)/2 dimensional vector space of d x d symmetric
real matrices, the set of positive ones is a convex cone Cj. Finally, explicit expressions for the two

stratum spaces are:
{CS}a = Lal GLa(R), {BC}a=CJlGL4(Z). (5)

In dimension d = 2,3, |[{CS}q4| = 4,7, |{BC}4| =5, 14.
When the crystal of a chemical element has only one atom per fundamental cell of its lattice
L (e.g. the alkaline metals), its space group is the semi-direct product L >1Aut(L). The crystal
space group S is a subgroup of it when there are several atoms in the fundamental cell of L and
the point group P = S/L can be any subgroup of Aut(L). So the conjugacy classes of all possible
point groups are the conjugacy classes [Plgr,(z) of all finite subgroups P € GL4(Z); they are
called arithmetic classes, [ITC] p. 719. The macroscopic aspects of the symmetry of a crystal are
essentially classified by the corresponding [P]p, classes; they are called the geometric classes.
In dimension d = 2,3, |{AC}q4| = 13,73, |[{GC}4| = 10, 32.
The number of arithmetic classes corresponding to the same geometry class varies from 1 to 2, 1
to 5, in dimension 2, 3. The usual notation for the arithmetic classes is that of [ITC]; it is good and
we shall use it. To each arithmetic class [P]gy,(z) corresponds a unique space group, semi-direct
5 product L >aP. There may also correspond other space groups ¢ with same quotient S/P.
For d = 2,3 the number of space groups per arithmetic class varies from 1 to 3, 1 to 16.
Diffraction experiments (with X-rays, neutrons, electrons,...) by periodic crystals show the
reciprocal lattice 2w L* where L* is the dual lattice 7

L*={f:VteLl*icZ)} (6)
It is interesting to use for L* the dual basis of that of L:

b.b; =6, then g(L*)=q(L)7", (7)

As intersection of the compact Oy and the discrete b~1 GL4(Z) b subgroups of GL4(R).

That explains why we introduced the orthonormal basis &, “provisorily”

These 13, 73 space groups are said to be “symmorphic” in crystallography.

They are called non-symmorphic groups in crystallography, non trivial extensions in mathematics.

~N >t W

This concept was also introduced by Bravais, [BRA850].
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We are interested by experiments measuring the functions over the Brillouin zone. i.e. the Fourier
transforms of functions over the space of L. The Brillouin zone (=BZ) is the dual group of
the translation lattice: it is generally denoted in mathematics by L and it is isomorphic to Uf.
Let us be more explicit for some readers. In the Euclidean geometry, to perform the Fourier
transform of functions we use the unitary irreducible representations k of the translation group:
R® 5 # ~ exp(ik.%). The set of the representations k is a group, that of the reciprocal vector space
~ R®. The situation is different for the lattice of translations:

Lotk efl = iB+R)E R ¢ onL*. (8)

This shows that the set of unitary irreducible representations of the translation lattice L is the set
{kmod2xL*}. It is a group isomorphic to R*/2rL* ~ U¢ and it is called the Brillouin zone of L
(in shorthand we will write: BZ(L)).

In solid state physics, BZ’s were introduced as the fundamental cell of the lattice 2w L* with

symmetry Aut(L*) in [BRI31]. They are defined as the set of points nearest to the origin than to any
other point of the lattice; their boundary corresponds to an equality of distance (to the origin and
to another lattice point). Obviously the origin is symmetry center of the cell. The torus topology
is obtained by identifying opposite faces. These cells had been introduced in the XIXth century.
Dirichlet was first to study them in 2 dimensions; for 3 Bravais classes: diclinic (generic case),
c-orthorhombic and hexagonal, the cells are an hexagon with a symmetry center and inscriptible in
a circle; for the 2 other Bravais classes, p-orthorhombic, quadratic, they are rectangles, squares. In
dimension 3, they were studied by Fedorov [FED885] who found the 5 combinatorial types of these
centrosymmetric polyhedrons with 6,8,12,12,14 faces respectively; all faces have a symmetry center
and either 4 or 6 edges. For 3 Bravais classes the lattices may have 3 different combinatorial types
of cells, for 2 other Bravais classes, 2 types and for the 9 others, a unique type (see e.g. [DEL74] or
[MIC95]). Here we need only the BZ group law ~ Ug; so, to obtain general results, we do not need
to consider several different cases corresponding to the different types of Brillouin cells of a space
group. Since, by definition, the translations of L act trivially on BZ(L), a space group S acts on its
BZ(L) only through its point group P = S/L, i.e. the action depends only on the arithmetic class.
This action preserves the group law of BZ; for instance, for any m > 0, the number of elements
which satisfy mk = 0mod 27L* is m? and for each m they form a union of P-orbits.
Time reversal, T, tranforms a unitary irreducible representation of the translation lattice L, into
its complex conjugate, i.e. it exchanges +kmod 2wL* on the BZ ._The only BZ elements invariant
by this transformation satisfy —k = k mod 27L*, equivalent to 2k = O0mod 2w L*; as we have seen
there are 2¢ of them. Since the elements in a neighbourhood of every such points is not invariant
by the exchange k < —k, by theorem 3 we obtain:

Lemma 1. The 2¢ points of the Brillouin zone satisfying 2k = 0 mod 2rL* are extrema of every
continuous function invariant by S and T.

Forty five years ago, in a famous paper using Morse theory, Van Hove [VHO53] pointed out the
existence of at least 2¢ extrema for every Morse function on BZ and he showed how they are related
to what is now called the Van Hove singularities. He did not used T invariance, so he did not know
their positions. Several papers, as [PHI56-58] extended this study to some space groups. Since that
time it seems that this problem has been completely forgotten. I gave its general solution last year
in a short note [MIC96]; the results were presented in two tables which are reproduced here as tables
1 (d=2) and 2 (d = 3). A correction has been made in the last case (common to I'm3, Im3m) of
the second table: by a stupid oversight I had not applied theorem 5 to it.

As said before, for d = 2,3 there are 13, 73 arithmetic classes, each one corresponding to a
different action of the points groups. For the 7, 24 classes containing —Ig4, T' invariance does not
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cr. syst. |sg |Bc|arithm. class [k =02k =0 [3k=0|nb|0,2|1 |2,0|Q(%)
diclinic 2| 6| p2 pl O |R,AB 441 4,111 § 0
ortho- 5| 4pmm| pm O |R,AB 4=t 1ol |0
rhombic | 2 | 6|emm | cm O |R,AB 411121110
square 1| 4| pd [O] |[R],AB 4 (1] (2 (]| o0
2 | 4|pdm (O] |[R],AB 4 (1] (2 (@] | o
hexa- 2| 6| pb p3 [O] | RAB |[[cC'] |6 [[2] |3 |[1] | 1
gonal | 3 | 6|p6m ﬁi’fﬁi 0] | RaB |[cc |6 | |3 |@ | ¢

Table 1. Extrema common to all functions on the two dimensional Brillouin zone, invariant by
the crystallographic group and time reversal.

Column 1 gives the crystallographic system; each contains one Bravais class except the orthorhombic one
which contains two: pmm and emm. Column 2 gives the number of corresponding space groups. Column 3
indicates the number of sides of the geometrical Brillouin cell. Columns 4,5 list respectively the arithmetic
class containing —I, and those which yield that arithmetic class when —I is added to them. Column 6,7,8
list the critical orbits. When the Brillouin cell has 6 sides, the 3 points satisfying 2k = 0 are the middle
of them; the 2 points 3k = 0 represent the 6 vertices. We choose R to correspond to the pair of shrinking
symmetric edges when the Brillouin zone is transformed into a 4 side one (rectangle). Then R represents
the four vertices and is invariant by the full point group. The points of the orbits between [ ] have to be
maxima or minima because the stabilizer acts as a 2-dimensional representation irreducible on the real.
Column 9 gives the minimal number of extrema. Columns 10 to 12 give the critical orbits of extrema,
labelled by their number of points, with a given Morse index. Column 13 gives the corresponding Q(t)

(defined in (3)).

give stronger consequences. For the other classes, adding T' invariance is equivalent to replace the
point group by the direct product P x Z;(—1I). So we have only 7424 applications of Morse theory
to work out, with the method sketched at the end of §1b, in order to obtain the complete solution.
The strata of the action of P on BZ where first given in the fundamental paper [BOU36] for the 3
cubic Bravais classes. For the other ones they have been given in many books (at least for d = 3)
with different notations for the geometric elements of the Brillouin cells.

Tables 1, 2 show that the extrema common to all invariant functions have known positions
and in 2, 7 cases, their number is larger than 4, 8. Moreover, for 6 other 3-dimensional cases Morse
theory requires for each function the existence of at least 2,4 or 6 other extrema (their stratum is
known when the number of these extrema is the smallest possible). Finally, in dimension 2, for
the square and hexagonal systems we know that the center and the 4, 6 vertices of the Brillouin
cell (respectively 1 point orbit, 2 point orbit of the BZ) are maxima or minima of all invariant
functions; the middle of the edges are also critical points and, for functions on BZ with the minimal
number of extrema (4,6 respectively), these critical points have Morse index 1 (saddles). The d =3
cubic system contains 3 Bravais classes: P, F, I; we know for the 8, 14, 10 critical extrema common
to all functions the position of those which have to be maxima-minima (see table 2): the sign
cannot be determine by symmetry arguments but by the physics dynamics! The full geometrical
discussion (similar to the one done here for d = 2) for the five types of Brillouin cells is postpone
to a future publication (soon available).



cs | arithm. cla.ssl 0| 2k=0 WYk=0B3k=06k=0 nbd 0,3 1,2 2,1 Q(t)
te Pi 1]1,1,1,1,1,1,1 8 1 |1+141 14141 0
’g P2/m |1|1,1,1,1,1,1,1 8 1 (1414114141 0
n|lc2/m 1] 1,1,1,2,2 8 1| 142 1+2 1 0
°6’ Pmmm |1(1,1,1,1,1,1,1 8 1 [1+1+1 14141 1 0
8| Cmmm |1]| 1,1,1,2,2 8 1| 142 142 1 0
1 4 1+14((2)] 1 t
# | Fmmm |1| 1,1,14 8+@|; 11 4 J{+*(’2§ ) . "
14| Immm |1 1222 |2w 0 |} ; i ; 2 i ; : L
tt P4/m
6 | Pajmmm | 1,1,1,2,2 8 1| 142 1+2 1 0
14|  I4/m 1 4 242 1 t
5| 14/mmm |1 V2t | 2T 101, 4 142 1 1,2
rh =
14 R1§3 1 1,33 8 1 3 3 1 0
m
12
ha P3 1 | {2}+3]| {2} +3 1 2t
sl p3im || 133 {2}e | {2}c |8+ {4} {2} | {2} +3| 1+3 1 | 1+tt(1+1)
{2} | 1+3 143 {2} 1+ t2
P3mi1 1| 2+3 2+3 1 2t
8| P6/m |1| 133 oK |2H| 12 | 2 | 243 1+43 1 |1+tt(1+1)
P6/mmm 2 1+3 143 2 1+t
cu Pm3
6l Pmam |1 (133 8 | [ 3 3 (1] 0
= 1 3 6 4 3t%,3
1| Fm3 |y 34 | {6)e s+go)| 11| 3 %63 A P S G
a 1 3 6 4 3t2,3
14| Fm3m |1 34 6 W 14 . p o 3 ligo2 e
I3m 2 (6) 6 1+ 2
12| fn3m (1) W6 EIP 10+ (6) 3 s © | 1t

Table 2. Minimum number of extrema and their positions for the functions on the 3-dimensional
Brillouin zone, invariant by the crystallographic group and time reversal.

Column 2 lists the 24 arithmetic classes obtained from table 1.

Column 1 recalls their crystallographic systems (cs) and the combinatorial type of their Brillouin cell:
14,12,12,8, 6 (numbers indicating their number of faces). ” is a short for {14,12,12}.



Columns 3 and 4 give the critical orbits k = 0 and among the 7 vectors 2k = 0 in BZ; they are listed by
their number of points. With the same notation, columns 5,6,7 (depending on the order of k) give the other
critical orbits when they exists (they are followed by an upper case label not universally used). The points
of critical orbits between [ ] have to be maxima or minima because their stabilizer acts as an irreducible
3-dimensional representation.

Columns 5,6,7 may also contain one non critical orbit required by Morse theory (their number of points is
between { } or { )).

Column 8 gives the minimum number “nb” of extrema for any invariant function as a sum of the number
of critical and non critical points. When Morse theory requires that it must have extrema outside the
critical orbits, the smallest orbit of those extrema is given between parentheses ( ); this occurs with (2)
for the orthorhombic F Bravais class and with (6) for the Cubic I Bravais class, so the minimal number of
extrema is 16 for the latter case. For two arithmetic classes of hexagonal P, there is a 2-component closed
stratum (corresponding to two “vertical” edges of the hexagonal prism); each orbit (of the infinite family
of them) has a point in each connected component (only the “horizontal” components of k satisfy 3k = 0).
On this stratum, there must be 2 orbits of 2 extrema (the Morse index for the two orbits must differ by 1):
each orbit is indicated by {2}c. Because the arithmetic class Fm3 has only 3 critical orbits, Morse theory
requires more extrema, since there is a stratum whose closure contains six circles meeting at k= 0, there
must be an orbit of 6 extrema on them (one extremum on each circle); they are indicated by {6).
Columns 9 to 12 give the orbits of extrema with a given Morse index.

The last column gives the corresponding polynomial Q(t).

§3 The general form of functions on the Brillouin zone invariant by S.
This section presents the strategy and some results of a work in progress with Jaisam Kim and
Boris Zhilinskii; the manuscript will soon be finished. We study the 7, 24 rings of functions 7 £
and give a minimal set of generators for 7, 16 of them.

The BZ’s are tori, so they have a global system of coordinates. As we said after theorem 4
the extension of this theorem applies to them; hence we can limit ourselves to rings of polynomials.
There are theorems of Mostow [MOS57] and Palais [PAL57] which tell that a smoth action of a
compact group on a compact manifold can be linearized. We did it and found that the dimensions
of the linear representations we obtained for our problems are: 4,6 for d = 2 and 6,8,12 for d = 3.
The rings have so many generators for the F' and I Bravais classes that we do not intend to study
them (at least in our announced paper).

We first recall what is known for the ring of polynomial invariants for n-dimensional vector
space V,, on which the finite group G acts through a linear orthogonal representation p by summa-
rizing a Molien paper [MOL897) one hundred years old. The character x(™)(g) of the m** completely
symmetrized tensor power of this representation is given by the generating function:

(=]

3 XM (g)t™ = det(I — tp(g)) ™" 9

m=0

If z;,1 < j < n are the coordinates of V,,, the coordinates of the m* order completely symmetrized
tensor of the representation are homogeneous n variable polynomials of degree m. We denote by
R, the vector space of these polynomials; then

m+n—1>‘ (10)

m

dimR,, = (

The dimension r,, of the subspace RS of invariant polynomials is obtained by taking the component
of (™) on the character x(g) = 1 of the trivial representation. We denote by Mg the generating
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function of 7,,,; using 2(1) we obtain the Molien function:

rm = dim RS = |G|™* Z x™(g), so Z rt™ = Mg(t) = |G|™* Z det(I, —tp(g))~*. (11)
g€EG m=0 g€eG

It is a rational function of ¢ of the form:
Mg(t) = Ng(t)/Dc(t), (12)

with

De(t) = [Ja -t*), [[di=AIGl, 1<B€Z, No(t)=1 +Y t, 0< €2 (13)

i=1 ) i=1 s=1

It is known now that a form of the Molien function ® corresponds to the structure of Macauley
algebras, i.e. the ring of invariant polynomials RC is a Ng(1) = (1 + v)-dimensional free module
over a polynomial ring P,[0;]. Explicitly there exist n algebraically invariant polynomials 0; of

degrees:
1< i < n, degree(6;) = d;, (14)

and P,[0;] is the ring of n-variable polynomials. The basis of the module is formed by Ng(1)
homogeneous G-invariant polynomials ¢q, with ¢ = 1 and v, polynomials are of degree s. These
invariant polynomials ¢, form a ring: '

0<0,B7Y<V,  Pap= PapyPy Papy € Palbil; (15)
Y

i.e. the coefficients pnp, are polynomials in variables ;. So the algebra RG is the set of polynomials:

eia Pa € Pn[xla oo axn]a RG = {zpa(ez)%x}, with Yo = 17 (16)

a=0

where the p, are arbitrary n variable polynomials. The module determined by n algebraically
independent polynomials 6; and v polynomials ¢, satisfying (15), is denoted here by:

oia‘paepn[mla---,xn], RG= n[gl,---aen].(1a<Pl’---a‘Pu)' (17)

Remark that the explicit expressions of the polynomial invariants depend on the basis chosen for
Va.

This choice depends on the coordinates on the BZ. The bases 5;‘ in the reciprocal space satisfy
the following conditions:_the middle of the two basis vectors coincide with the middle of an edge of
the Brillouin cell and b}.b3 < 0. The 2 coordinates of the points in the BZ are the angles k; mod 27;
we use the shorthand ¢; = cosk;, s; = sink;. I have no place to explain here the choice of bases
for d = 3 and, in all cases, the linearization of the actions of the point groups which produces
the representation p(P). Let RP the ring of polynomials invariant by p(P). In V, the image of
the BZ is an algebraic variety defined by n —d polynomial equations which are sometimes non
homogenuous: they form an ideal B of R”. The quotient RP /B is the ring of invariant polynomials

8 That is not necessarily the most simplified form of this rational function.
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class 01 0y ©1 P2 3
pl c c2 81 82 S182
* | p2 c1 Co 5182
pm C1 Co S1
* | pmm C1 Co
cm c1+¢2 c1C §1 + So 8182 €182 + €281
* | cmm c1 + ¢ c1Co §182
* p4 c1 + Co C1C2 (61 - 62)3132
* | pdmm c1 +\Acz c1Co
p3 c1 + 2 + ey — 8182 | crca(c1ca — $182) ¢ " ¢7 " | b7 = b1 T2
p3ml |c1 + co + cica — 8182 | crca(cica — 8152) o7t
p3lm |ci + ca+ crco — 5182 | crca(cice — 5182) >
* | pb c1 + ¢y +c1cp — 182 0162(0162 — 3182) ¢3 -
* | pbmm | ¢1 + ca + c1ca — s182 | crcz(cica — 5182)

p7t =51 +82— (c1s2 +cas1), ¢3 = (c1— c2)(s1 + s2) — (c1 + ca — 2c162)(81 — 82),
(6T H)2 =1—20, + 6 — 465 (¢ )% =2+ 46, + 67 +200, — 203 + 200,05 — 0} + 4670, — 463

Table 3. Modules of invariant polynomials on the Brillouin zone for the 13 arithmetic classes in
dimension 2. Time reversal restricts to the seven cases indicated by * .

Remark the compatibility with the chain of subgroups p2 < cmm < pbm, and em < p3ml. Let us
denote by cm’/ = Zy(—(cm)) the group generated by the reflection through an axis orthogonal to
that of the reflection of (cm); its invariants are obtained from those of cm by changing s9 into —ss.
So we remark also the compatibility with ecm’ < p31m.

This table should be quoted as table 8 of the paper The algebra of real invariant functions on the
Brillouin zone by J.S. Kim, L. Michel, B. Zhilinskii (to be published).

in ¢;,s; on BZ. We found that these rings are also modules. Here I will give only the final result
for the 13 2-dimensional arithmetic classes: see table 3. It is interesting to check how the invariants
given in this table satisfy table 1.

§4 Conclusion.
The applications of the results presented here are obvious. What seems to me more important is
to point that these results apply to functions only and that in physics we observe also multivalued
functions; I have already given some results for them in [MIC97] explaining the work I am doing
with Josuah Zak. The branches of multifunctions describe the branches of vibration or electron
energy bands in solids. For the latter, Zak [ZAK80] has introduced the concept of elementary band
representations: they are induced from an irreducible representation p(S,,) of the stabilizer in S
of a point w belonging to a maximal (closed) stratum (=Wyckoff position) of our space. This
necessary condition is not sufficient; a complete classification of the equivalence classes of these

10



representations has been given in [BACS88] (we should have included time reversal and considered
corepresentations) as well as the number b of branches: b = dim(p(Sy)).|P|/|Gw|. Presently Zak
and I are trying to prove the conjecture: The graph of an elementary band is conaected.
Acknowledgements: I am very grateful to the organizers who have invited me to this very interesting
conference.
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