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§0. Introduction.

These lectures contain work carried out with Josuah Zak, at the Technion Physics
department; they are the direct continuation of the previous ones given two years ago
[MIC97]. They ended by the presentation of a conjecture made with J. Zak:

The graph of an elementary band is connected
and showed on an example the idea of the proof for non-symmorphic space groups; it
was essentially based on the monodromy on the Brillouin zone of the unitary ireducible
representations of the non-symmorphic space groups. We also explained that this idea
did not work for the 73 symmorphic groups. This year we will present the basic ideas we
need to complete the proof of our conjecture and show them at work on a characteristic
example.

§1. Study of the symmetry of a crystal.

We will explain again the concepts appearing in this very short introduction; some-

times we will be somewhat sketchy and will refer for more details to the quoted reference of
the 1996 Zajaczkowo school and even the [MIC95] 1994 Zajaczkowo lectures. Let us begin
by recalling the group theory topics we shall need. We are interested by 3-dimensional
or 2-dimensional crystals; however when the dimension does not need to by specified?, we
denote it by n. By definition, a basis {5]—}, Jj=1,2,...,n, of a n-dimensional real vector
space E, generates, by addition and substraction of vectors, a lattice L; it is a group
isomorphic to Z™ ~ L.
The group of symmetry of a crystal is called space group and we denote it here by G. It
contains a lattice of translations which is an invariant subgroup: L<G. The corresponding
quotient P = G/L is the point group; it is a finite group which must have a faithful repre-
sentation by matrices with integral elements, i.e. it can be identified to a finite subgroup of
GL,(Z). A conjugation of P in GL,(Z) corresponds simply to a change of basis of L; so
a symmetry classification is made by the different conjugacy classes of finite subgroups of
GLy(Z). The crystallographers (e.g. [ITC] p. 719) call them arithmetic classes. There are
13, 73 of them in dimension 2,3 while these different point groups form only 10, 32 geomet-
ric classes 2 , i.e. conjugacy classes in the general linear group GL,(R) or, equivalently,
conjugacy classes in the orthogonal group O,,. Here, we will consider only the arithmetic
classes of point groups; the standard notation for them is that of [ITC]. Each arithmetic
class defines a distinct point group action on the lattice of translations; it defines also a
space group: the semi-direct product G = L > P. The tables [ITC] use the same notation
for the arithmetic classes and the corresponding 13, 73 space-groups L > P; they call them
symmorphic space groups. The other 4, 157 space groups are called non-symmorphic; they
exist in 3, 61 arithmetic classes. By definition, given an arithmetic class defined by the
point group P, the space groups (in dimension 3) which satisfy:

P finite < GL3(Z); L~2%<G; G-5G/L=P 1(1)

1 Part of crystallography in dimension 4,5,6 is useful for the study of modulated and of “quasi” crystals.
2 The classification of crystals into geometric classes is sufficient for studying most macroscopic physical

properties of crystals but not for their microscopic properties.
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are called extensions of P by L and they belong to the same “arithmetic class of space
groups”.

Many experiments on crystals (e.g. those involving the scattering of a beam of pho-
tons, electrons,...) yields Fourier transforms of functions on the space of the crystals; they
are defined on the reciprocal space whose vectors are called 1 quasi-momenta and are usually
denoted by k. As for the Fourier transform on our space, k defines a unirrep (initary irre-

ducible linear representation) 7 —?—» exp(zk.x) of the group of space translations. However
the crystal symmetry contains only a lattice of translations, so there is a discrete infinity
of vectors K in the reciprocal space which define the trivial representation of L; indeed
they must satisfy the conditions:

Vie L, eRl=] o Ri= 2y, v € Z. 1(2)

The vectors K which satisfy these conditions form the reciprocal lattice, i.e. the lattice
2mL*, where L* (called dual lattice) is the lattice generated by the dual basis {67} of {b }
defined by:

-

b;

*

b, = 6. 1(3)

-

To summarize: the set of unirreps of the translation lattice L is the set of k’s (reciprocal
vectors modulo the reciprocal lattice); they form a group isomorphic to ur and whose
topology is that of a n-dimensional torus. This group is called Brillouin zone3 (denoted
here BZ) by the solid state physicists and it is called dual group by the mathematicians,
with the usual notation L. We recall a natural coordinate system for L and L:

L>t= angj, Z 707, n; integers, k; mod 2m, k4= ijn]-. 1(4)
J J J

For any unirrep of a group it is useful to know its kernel and its image; for the unirrep k
of L we have:

t"—»

Kerk = {fe L,ki=0}<L; Imk={e*% fecL}=L/Kerk. 1(5)

The invariant subgroup of translations of G acts trivially on BZ, so the natural action
of G on the BZ defines an effective action of the point group P; this action depends only
on the arithmetic class. We denote by Py the stabilizer*of k. We will have also to consider
the stabilizers Gy of k by the actions of the space groups of an arithmetic class. The
stabilizers Gy, contain all translations of L <G, so they are space groups which, for a given
Py, are different subgroups of the different G’s of the arithmetic class we study.

3 There is an interesting representation of this group by the Voronoi cell of the reciprocal lattice with
the opposite faces identified; we call it Brillouin cell. We shall not need it here.
4 Physicists often use instead the expression “little group”. We prefer stabililizer because this word

indicates the definition of the concept.



Let us recall the definition of the group P(k) introduced by Herrmg [HER42]. It is easy
to show that Ker k < Gk, the Herring group is simply the quotxent P(/») G/ Ker k. One
shows easily that P(k) is a central extension of Py by Im k:

P(k) = Gi/Kerk = Imk < C(P(k)) and P(K)/ImFk = P. 1(6)
In the particular case of a symmorphic space group G:
Gy = L > Py, then P(k) = Imk x Py. 1(7)

Beware that the Herring group may also be of this form for non-symmorphic G or Gy.

In solid state physics one calls allowed representations of G those unirreps of G whose
kernel contains Kerk so the images of the allowed representations of Gy are unirreps of
the Herring group. From [SEI35] it is known that all inequivalent unirreps of the space

groups are obtained by inducing the allowed unirreps of Gy; we denote the latter by X(a)

and the corresponding unirrep of G by X(k ),

X =mdg X85 dimy$* = |G : Gyl dim 2, 1(8)

where |G : Gi| = |P : P is the index (= the number of cosets) of Gj in G and P in
P. When there is no confusion we use the same symbols for the representations and their
characters.

§2. Already known energy degeneracy in bands.

Electron bound states play a great role in physical properties of crystals. Their energy
spectrum is a union of continuous segments separated by gaps. A better knowledge is
obtained by the “band structure” i.e. the functions (labelled sequentially by the integer
m) Em(E) of the energy over the Brillouin zone. These functions are continuous; this
property is already proven in the one-electron Schrédinger problem with a potential which
has the symmetry of the space group G e.g. [BOU36]. Note that the derivative may
have discontinuities (a general study was made in [VHO53]) for the mathematically similar
problem of the vibration spectra). The set of these energy curves must be invariant by
the space group G of the crystal; beware that each curve separatly need not to have this
symmetry.

When we consider a given point k of the Brillouin zone, the one electron Schrédinger
problem has symmetry Gy; its study is similar to that of a molecule. The Hamiltonian
commutes with G and the space of its eigenfunctions carries a unitary representation g,
whose decomposition into unirreps give quantum numbers for the electron states. To an
unirrep Xg“v) of dimension d corresponds a degeneracy of d states with the same energy.
What is dlfferent in crystals is the continuity of the energy on BZ and the topology of BZ
itself. There exists in a neighbourhood V(k(s) C BZ of a given k(o) such that the groups
G’s are, up to a conjugation, subgroups of G, (that we also denote by < Gr,) and
[BOU36] established the “compatibility conditions”:

. - Gigg,
k€ V(kwo) CBZ = xa, C Resg, XGi g, 2(1)
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where Res means “restriction of the group representation to the subgroup” and C indicates
a direct sum of components appearing in the decomposition into unirreps of the represen-
tation to which it applies.

The electron bound states of an energy band are invariant under time reversal 7. This
symmetry changes k into —k. The 7 invariant points of BZ are not only the C-element of
this group, but all elements which satisfy: :

-

k= —kmod2rL* & 2k =0mod2rL* & 2k; =0mod 27 < kj =0 or 7 mod 27 2(2)

in any coordinate system of type 1(4); so there are, including 0, eight such points of the
BZ. For them the co-stabilizer G = (G, T) is generated by G and 7. The physical
representation of G, uses an antiunitary operator for 7 and it is called a corepresentation.
If the d-dimensional unirrep x( ) is not equivalent to a real representation, the irreducible

corepresentation, x(a) &) )Zg)‘ ), has double dimension, so time reversal introduces a new

type of degeneracy. Herring, in [HER37]a, studied the more general case in which Gy is
generated by G and a product r7, r € G) and obtained a nearly complete set3of the
degeneracies occuring for specified k. In the second part of his thesis, [HER37]b, Herring
studied the accidental degeneracies® . He showed that they can be moved by modifying
the potential in the Schrodinger equation; physically that can be obtained by varying
the pressure, temperature, etc... (or moving in a column of the Mendeleev table). That
explains the reversible transition from metal (with accidental degeneracy between two
bands) to insulator (in which the degeneracy is removed).

In [MIC97)], fig. 2 we showed an example of removable accidental degeneracy. In this
paper we shall show that symmorphic group symmetry may require a new type of accidental
degeneracies: they can be moved but not removed!

§3. FElementary energy bands of a crystal.

Obviously, the first step for studying the complicated “band structures” obtained in
experiments is to try to decompose them into simpler systems by “removing” the accidental
degeneracies until one obtains “indecomposable elements” which are so simple that one
can classify them. It is a long story partly told in [MIC97]; here we just recall very few
steps. There has been a feeling that the quantum numbers of band representations (i.e.
the G representation acting on the Hilbert space spanned by the wave functions of the
infinite set of bound states belonging to a band) were related to the quantum numbers
of the electronic states of the atoms but it became clear on examples that this was not
always true. For the similar case of vibration spectra, a straightforward generalisation
of the problem for molecules [BUR61] showed that band representations of G are induced

5 For instance when r is a screw rotation 2; (of angle 7) around an axis defined by k # 0, 2k = 0, then
k is the center of a face of the Brillouin cell and the degeneracy extends to the whole face.

6 In general these degeneracies occur on a two dimensional subspace of BZ. Indeed the energy function
over BZ of a branch is represented by a 3-dimensional hypersurface in a 4 dimensional space; so the

intersection of two function graphs is most often of dimension 2 when it occurs.
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from a the vector representation of the stabilizers G, of the atom positions” . For the
electron energy bands, their band representations could be induced from any representation

(p ) of the stabilizer G, of any point of space. For example, this was consider by de
Clmzeaux [CLO63]; moreover in p. 561 of this paper he gave the obvious definition for the
indecomposable multi-branch bands: their energy graph should always be connected. In
1980, as “building bricks in the symmetry definition of bands in solids”, Zak proposed
n [ZAK80], the band representations which cannot be decomposed into a direct sum of
band representations. We call them the elementary band representations and we simply
say that they give the symmetry of elementary bands. Moreover Zak established the
natural necessary conditions that elementary band representations must satisfy: they are
induced from 1rred ucible representations of a stabiliser G, < G maximal among those of the
points of space® . These necessary conditions are not sufﬁment In [BACS8] we established
the complete clasmﬁcatlon of elementary band representations. All band representations
satisfying the necessary conditions are elementary except 40 of them belonging to 25 space
groups: they all occur for the two dimensional representations of 7 stabilisers G, (out of
73)

P422, P4m2, P42m, R32, P321, P312, P622. 3(1)

Among the elementary band representations there are 152 equivalent pairs: 57 at the same
g and 95 at different ¢’s. Among the last ones, 63 occur for all G4 unirreps of 17 pairs of
Wyckoff positions in 14 space groups. For this last class of equivalent representations a
(Berry phase like) topological invariant seems®to distinguish them [MIC92].

Those results have been obtained with the assumption that Frobenius reciprocity

is still valid for the band representations although they are infinite dimensional induced
(k, 0c)

representations!® . In that case we have only to study the restriction ResG XG its
components on the different unirreps of G, are
ResG X&) = @pm’;,;‘xg’), mpe = (Resgq ng Q)IX(P))Gq, integer > 0. 3(2)

The unirreps of G and of G, are ﬁnite dimensional and well known to physicists; so we
can compute easily the coefﬁmen’c m . We have shown that Gy, is the symmetry group of
the problem at each point ke BZ. It is very mterestmg to introduce the local symmetry

group on BZ Gy in the expression giving m* q'p; We simply replace in 3(2) x (k ) by its
expression given in 1(8)):

mee = (Resgqlndglc )|x(p)> 3(3)

q,p

7 That is less clear for some molecular crystals.

8 All strata of the G action on space of the 17, 230 space groups are tabulated in 1rc} under the
heading “Wyckoff position”. The G4 selected by Zak are those of the strata with maximal symmetry.
They are the maximal finite subgroups of G. The corresponding strata are topologically closed.

9 See also P. Zeiner, R. Dirl and B.L. Davies: “Generalized Berry Phases” in these proceedings.

10 We do not know a relevant mathematical reference justifying this assumption. The usual mathemat-
ical theory for the induced representations of locally compact groups is measure theoretic and do not take

in account the analyticity properties that we meet in this physical problem.
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To find the value of these coefficients we use a relation due to Mackey whi~h tells how
to commute Res and Ind (see e.g. [SER67] §7.4 and §7.5). Before introducing it, we have
to recall very elementary facts on groups.

Let H, K be subgroups of a group G. We denote by HK the set of G elements obtained
by multiplying any element of H by any element of K. We leave to the reacler the easy
proof of

Proposition 1. H, K subgroups of G and HK = KH = HK is a subgroup of G.

From the definition of invariant subgroup, K <« G, & Vs € G,sK = Ks, we have as
corollary of proposition 1:

Corollary 1. H subgroup of G, K invariant subgroup of G = HK = KH and, by
proposition 1, it is a subgroup of G.

We denote by G : H the set of (left-) cosets of H in G and by |G : H| their number.
For a space group G' we will have to use the double cosets of G for G, and Gy; they are
the subsets G¢sG C G for arbitrary s € G. We denote by G, : G : G, the set of distinct
double cosets; to be in the same double coset is an equivalence relation!! , so we can choose
a set of representative of cosets (with 1 for G,G\) that we denote by [G, : G : Gy].
Since L < G, from corollary 1, LG, = G,L is a subgroups of G; remark that LG, is itself
a symmorphic space group. We also verify easily that LG, : G : Gy = G, : G : G.
Finally we remark that if either LG, or G, are invariant subgroups!?of G then G,Gy, is a
G subgroup and LG;sGy = either sG Gy or G,Gys; i.e; the double cosets become cosets
of the subgroup GGy in G.

To permute Res and Ind in 3(3) we will have first to restrict the representation ngk) to
a subgroup K < Gy and induce this representation from a conjugate subgroup sKs™! < G,
to G4. This is possible by choosing successively s in the different double cosets G, : G : G.
With the definition K, = G, N s™1G,s, starting from 3(2), Mackey’s formula yields:

mq o (ResG Inde x;k)|x(p)> = Z (IndsK o ResK ng)lx(p)) =
Ss€[G4:G:Gy]
= 2 (ResZ X6 IRes s X, = KT D X (o) (o0s™) 3(4)
geK,
For instance on the generic stratum of the BZ, P, = 1 so G, = L and 3(4) gives simply:
1Pl

b = number of branches of the band = dlmx ) 3(5)

When k = 0, P, = P, so Gy = G, the translations are represented trivially, so the
allowed unirreps of Go = G are simply the P-unirreps. Then 3(3) gives the well known
result:

. de
with P, " 0(Gy) ~ Gg, mS = (Resh & (x¥)p, = (&) Indf xE)p  3(6)

11 Tndeed, let us study the double cosets H : G : K with s,s1,52 € G, h,h' € H, k. k' € K. If s; = hsk,
then s = h~1s;k~!; moreover if so = h's1k’ then sg = h'hskk’.
12 Equivalently: either Py = 6(G4) or Py are invariant subgroups of P.
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In §5 we will need the case (solved by 3(4)):

GG =G, GgNGr=1 = mke = (dimy%))(dimx (). 3(7)

84. The monodromy over BZ of the unirreps of non-symmorphic space groups.

We refer again to [MI1C97] for more details. We want first to give here more equivalent
definitions of the non-symmorphic elements of a space group. For this we first reproduce
here what was said about the Euclidean group. To write the group law of the of the
Euclidean group Fu, = R™ >10,,, we choose an origin o in the Euclidean space &£,,. Then
every point z € &, can be labelled by the vector & which translates o to . Then every
element of Fu, can be written as the product of first, an orthogonal transformation A and
second, of a translation §. We write such an element {3, A}. Its action on the point = € &,

1S:
(5, A}.3 = §+ AZ. A(1)

The group law of the semi-direct product: Fu, = R" >0, is:
{5, A}{t, B} = {5+ At,AB}, {5, A} '={-A"15A47"} A(2)

To to obtain the form of the elements of Eu, with the origin o’ of coordinate we conjugate
the elements by the translation o’o. Explicitly the conjugation by the translation ¢ gives:

{t, 1}{5, AY{—t,I} = {Dat + 5, A}, with Dy = — A. 4(1)
From A(1) we obtain the condition for z to be fixed point of {5, A}:
{§A} =7 & §=(I—- A)Z, i.e. §5€ImDy. 4(2)

When this condition is satisfied, 4(1) shows that by a change of origin we can transform
{3, A} into {0, A}. It is a trivial remark to say that any non trivial coset of translations in
Eu,, contains elements with fixed points; that is no longer trivial for a space group since
the subgroup of translations, L, is discrete and it leads us to make the

Definition: In a space group G, if no elements of a translation coset gL = Lg leaves fix
a point of space, the coset elements are called non-symmorphic!3 .

Since the space groups are subgroups of Fu,, the orthogonal component A of an element
of a space group is defined; it has a finite order v (it is the smallest positive integer such
that A = I). it is useful to introduce the Herbrand operator N4 (acting on the real vector
space E,):

v—1
order(A) =v, Na =T+ A+ A% +.. .+ A1 =D A} ANp=Njp=NsA.  4(3)
71=0

13 That corrects the definition made in [MIC97] before 1(10) which was too weak in some cases.
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With D4 defined in 4(2) we have the relations:
NaDgp=0=DsyNy & ImDy CKerNy, InNy C Ker Dy. 4(4)

By definition Ker D4 is the eigen space of A with the eigenvalue 1; for any vector ¥ in this
eigenspace Na¥ = v¥, so from 4(4), In Ny = Ker D4. For any linear operator X on F,
we have dimKer X + dimIm X = n. With 4(4) we can finally write:

Ker Dy =Im Ny, ImDy = Ker Ny. 4(5)

Let {#(A), A} be an element of the space group G written as an element of the Euclidean
group for a choice of origin. Then

order(A) = v, G 3 {#(A), A} = {N4#(A), I} < Nai#(A) € L. 4(6)

With 4(3) and the last equality of 4(5) we have proven:

Proposition 2. The element {#(A), A} € G has a fix point for its action on the Euclidean
space if, and only if Nav(A) = 0.

Indeed if {#(A), A} has a fix point, it is also fixed for {v(A), A}Y = {NaT(A),I}; if
N4v(A) # 0, it is a translation and it cannot have a fix point. We can now give a test for
determining the non-symmorphic elements of a space group G.

Corollary 2. The element {t(A), A} € G is non-symmorphic if, and only if, Nov(A) ¢
Ny L.

Indeed this requires N4#(A) # 0; assume on the contrary that there exists £ € L such
that Nao#(A) = Nal; that is equivalent to say, from proposition 2 that {#(A) — 7, A} has
a fix point and therefore {#(A), A} which is in the same L coset, is not non-symmorphic.
In the appendix we study the nature of the non-symmorphic elements.

So if a space group has a L-coset of non symmorphic elements, it cannot have a
stabilizer isomorphic to the point group P; hence this space group is non-symmorphic.
Indeed, from the definition of a symmorphic group as semi-direct product L > P, it has
P as a subgroup and stabiliser. Note that the converse is not true: among the 157 non-
symmorphic groups, there exist two: 272,2; and /2,3 without non-symmorphic elements.

The fact that the power v of a non-symmorphic element r € G is a pure translation
is the key of the monodromy of the unirreps of G, when k is in the reciprocal direction
of Ns#(A) = t. Then Gy is Abelian so its unirreps are one dimensional. We can choose
the shortest (up to a sign) lattice vector b colinear to { as basis vector; the component
of tis u satisfying 1 < p < v. Let k’ be the corresponding component of k. Then the
translation £ is represented by exp(ik’y) for all the G unirreps and r is represented by
expi(2mp + k'n)/v where p = 0,1,...,v — 1,modv labels the v inequivalent unirreps of
Gr. When k' goes a full period, parametrizing the circle I' on BZ, r is represented by
expi(2mp + (k' + 2m)u)/v = expi(2n(p+ p) + k') /v. In plain words, after each turn on
I" the v unirreps of G, which are labelled by p, have been permuted according to p — p+pu.
After v turns the cycle of permutation is closed and the number of permutation orbits is
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equal to the greatest common divisor of x and v. This monodromy phenomenon for the
unirreps of Gy and G over BZ was discovered by Herring in the paper [HER42] in which
he made the first computation of the allowed unirreps of G and the unirreps of G for two
non-symmorphic space groups: that of diamond, F'm3d, and that of the closed hexagonal
packing, P63/mmec.

This monodromy phenomenon is the essential tool for proving for 155 non-symmorphic
groups our conjecture on the connexion of the branches of elementary bands, as we showed
on simple examples in the 1996 lectures [MIC97]: the representation of G for an elementary
band is the direct sum of those belonging to a monodromy orbit. The points of contact are
those imposed by time reversal. It is easy to see on the examples we have studied that these
symmetry conditions alone are not sufficient for proving the connection of all branches.
However, the usual symmetry conditions are sufficient for the proof of the conjecture for
the two non-symmorphic space groups without non-symmorphic elements (12;2,2; and
I2,3) as shown in a paper with Zak (to be published in Phys. Rev.).

§5. Proof of the conjecture for the 73 symmorphic groups.

The symmetry under the space group G and time reversal 7 are sufficient in some

cases. For instance for the bands with G, ~ P; their number of branches is b = dim X(qu).

This is the dimension of the representation of G = G at the BZ point k = 0 (see 3(6), so
the b branches meet at this point.
Among the 34 Abelian arithmetic classes, there are 19 corresponding symmorphic

groups:
P1, P1, P2, C2, Pm, Cm, P2/m, P222, F222, 1222, Pmm2, Amm2, Imm2,

Pmmm, P4, Ii, P3, R3, P8, 5(1)

with all maximal stabilizers satifying G, ~ P. So they have only simple (= one-branch)
elementary bands. There are also 8 non-Abelian symmorphic groups with only G4 ~ P
maximal stabilizers. They are:

I4m2, P312, R32, P3ml, R3m, Pém2, F23, F43m. 5(2)

The number of branches of each of their elementary bands is dim X(Cé’q) and these branches

meet on BZ at k = 0. For the 46 other symmorphic space groups we have to study the
elementary bands corresponding to their 97 Wyckoff positions with (G,) = P, < P.
We begin first by a simplest case of two branch bands for which time reversal is

sufficient for requiring a contact between them. We consider the space group p4 in 2

dimensions. The point group is the cyclic group Z4(R) with R = ((1) _(1)> (the rotation

by m/2). The maximal stabilizers and the corresponding Wyckoft positions are:

e - ) o= ()= ()

9



B={LR}, y={LR*), (= (;) 5(3)

To the Wyckoff position ¢ correspond two elementary bands: (¢, () with () == +1 which
labels the two representations '“of the stabilizer G. = Z,(7).

Similarly the points of maximal symmetry on BZ and their stabilizers G, (which are space
groups) are:

GA=p4:A=(g); G3=p4:B=<"); Gc:pQ:C:(g),C':(O>. 5(4)

As we know from 3(6), the allowed unirreps of G4 = G are the four unirreps of the point
group. We label them by p = 0,1, 2,3, mod4 and define them by p(R) = expi27p/4 = i*.
Since the translations are trivially represented, p(y) = p(R?) = (—1)? we deduce that the
the two branches of the elementary band (¢, 1) have the G symmetry p = 0,2 and that
of the elementary band (¢, —1), the Gy symmetry p = 1,3. By time reversal these two
complex representations p = 1,3 form a unique corepresentation, which implies the contact
of the two branches of (¢, —1) at the point k = 0 of BZ.

The 4 allowed representations of G g have the same translation part and we keep for them
the same label p; it is easy to compute

= (") oD =, R = = ) = (-1 5(5)

n2

The two bands of the elementary band representation (c,1) have the symmetry of the
complex conjugate G representations p = 1,3: so they meet on BZ at the point B of
coordinates (7, 7). That concludes the proof for the group p4. To transpose the proof to
the space group P4 in 3 dimensions, is trivial. Instead of points, the Wyckoff positions are
axes parallel to the third basis axis; but the stabilizer G, does not depend on the third
coordinate of ¢g. Similarly, on the Brillouin zone, the high symmetry strata are circles
instead of points, e.g. A = (0,0,k3), B = (0,0, k3). The same results are obtained for
ks = 0 or 7 (that is sufficient for the proof) while, for the other values of k3 time revesal
does not require contact between the two branches of one of the (¢, () bands.

We emphasize the phenomena of change of sign of ( between A and B is quite general.
It is due to the fact that v € G. contains the translation £. To contain a translation has
to be so for some elements of every stabilizer G, when q is not the origin; the change of
sign also depends on the choice of the pairs of k£ on BZ.
We will treat now an exemple which seems hopeless from the knowledge of occurence of
degeneracies recalled in §2: P is Abelian so all P(k) are Abelian, hence all G}, allowed
unirreps are one dimensional; morover they are all real at the BZ points 2k = 0 and no
time reversal degeneracy appears. However, we will establish the proof by the only use of
the compatibility relations 2(1) explained in [BOU36); remark that we will use them not
only “locally” but also “globally” .

14 We can choose arbitrarily one point of a Wyckoof position; the other points give the same results.
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The simplest such example is the 2-dimensional space group emm2: in the basis of two
vectors of the same norm, we list the matrices of the four elements of the point group P
and their characters for the four 1-dimensional unirreps of this Abelian group:

0 1
12,-12,cm=<1 O),cm'=—cm; p(l2) =1, p(—=I2) =&, p(em) =n, p(—cm) = En;

& =1=n% 5(6)

i.e. the four unirreps p are labelled by a pair of signs £,1. The only Wyckoff position
generating multi-branch elementary bands is labelled ¢ in [ITC]:

e=(2) 0= (}) Gmmtn =iy 7= (1), 5(7)

We label the two elementary bands (¢, ¢) where ((7) = ¢ = +1; each one has two branches.
In BZ with the dual basis (see 1(3)), we will use the two points A, B whose coordinates
mod 27 are A : (0,0), B : (m,7) and two closed curves M : (k,k) and M’ : (k, —k) which
correspond to the 2 symmetry axes of the lattice and of the reciprocal lattice. These
curves meet'®at A and B. The correspondmg Py’s are Py = Pg = P, Pyy = Z3(em) and
Py = Zy(—em). We denote by o, o the unirreps of Py, Py and label them by the value
+1 of ¢ = o(em), o' = '(—cm). We recall from 1(7) that the unirreps of G}, are given by
Imk for the translations and by those of P;. By the restriction of the unirreps of Gy, for
A, B we obtain that the two branches of the elementary band (c, ¢) belong to the unirreps

at A: (E=(m), at B: (§=-(n). 5(8)

On the axes M and M’, we are exactly on the case G ¢Gr = G, GyN Gy = 1, studied in

3(7), so mMC“ = 1, 1.e. the two unirreps o of Py and ¢’ of P}, are the symmetry of the
two branches over these lines of BZ, for each elementary band (c,¢). But ¢ and ¢’ must
satify the compatibility conditions 2(1); we use 5(6)) for the notations and incorporate the

results of 5(8):
at A: o=mn, o =&n=_n; at B: a=mn, o' =&n=—(n. 5(9)

The change of sign for ¢’ is the crux of the proof; indeed in table 1 we follow each branch
for each elementary band (c, £1) by giving the value of their quantum numbers.

Table 1 shows that for each of the two elementary bands (c,41), each branch starts
from one state at the point A of BZ and after a full turn on the closed path (4, M, B, M’, A)
it reaches the other state at A; so their must be a point of the cycle at which the two bands
cross. That proves the connexion of the two branches. A second turn completes the full
cycle.

15 Moreover we can check that the closed curve AMBM'A cannot be shrinked to a point by continuous

deformation.
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band | A M B M’ A M B M’ A

(¢, Q) | €n o £n o’ €n o €n o’ €n
(c,1) |++ - —t - +- - - + ++

(c,-1)| -+ + ++

- - |+- - —+| o+ |4+ + -

Table 1. Connexion of the two branch elementary bands of cmm2.

For each of the two elementary bands (¢, +1) each branch starts from one state at the
point A of BZ and after a full turn on the closed path (A4, M, B, M’, A) it reaches the
other state at A; so their must be a point of the cycle at which the two bands cross. A
second turn completes the full cycle.

The stability of a crossing under perturbation in quantum theory has been studied
by von Neumann and Wigner [NEU29]; the instability is due to the possibility of an off
diagonal term between the two bound states. In the present case the two states have
opposite parity, so the crossings are stable.

We emphasize that this contact is imposed by symmetry but its position on the closed
cycle is not determined by symmetry. By varying the potential in the Schrodinger equation,
this contact can be moved but it cannot be removed! This is a completely new
concept in band theory.
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§7. Appendix: Non-symmorphic elements.

The aim of this appendix is to establissh the list of non-symmorphic elements in
dimension 2 and 3. As elements of the Euclidean group, these elements can be written
U(A), A}. From Corollary 2 they must satify:

L5 NA#(A) ¢ NsL. A(1)

This requires N49(A) # 0. From 4(4) and 4(2) this is impossible if In N4y C Ker D4 = 0
which is the case when A has no eigenvalue =1. From the list of arithmetic elements
given in [MIC95] equ. 2(31), 4(5) this eliminates (outside the trivial elements p1, P1) the
rotations p2, p3, p4, p6 for d = 2 and P1, P3, P4, P6, R3, I4 for d=3; indeed, each of these

arithmetic elements does not leave invariant a vector # 0.
1

Equation A(1) eliminates also cm, C2, R3. For em: N, = ( 1 i), then the vectors
Ncm@(em) are of the form (::) with m integer. But these vectors are in N, L; indeed
New (2) = (7). For C2, R3:

m

0 1 0 m m m
c2=(10 o], LﬂImNm:{ m ,mez}, Neal 0| =|m]. 4@
00 -1 0 0 0

So, for instance, the arithmetic classes C2,C2/m have no non-symmorphic space groups.
Note that in the non-symmorphic space group C222; which contains 3 rotations by =
around three orthogonal axis, the first two are of C type but the last one is the non-
symmorphic elements P2;. The space groups of Bravais classes I contain C2 but the two
whose symbols contains 2y, i.e. 12;2,2; and 72,3 have none non-symmorphic elements;
that was a (non explicitly explained) way for the [ICT] to signal that these groups had no
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fixed point G, = P so there is no origin for which all #(A) can be simultaneously removed
(note that 12,3 is automorphism group of 72;2,2;).

0 1 0 m m m
Ri=[0.0 1]; LnImNR;;:{ m ,mez}, Nes[o)=[m]. 4@
1 0 0 m 0 m

So the only arithmetic elements which can produce non-symmorphic elements are
pm, P2, P3, P4, P6,14, Pm,Cm (8 out of 7+16=23). Let us begin by the first five of
them. They have a 1-dimensional eigenspace with the eigenvalue 1, i.e; Im N4 = Ker Dy
are an axis. It contains a 1-dimensional sublattice generated by the lattice vector b (we
choose arbitrarily its sign); so No#(A) = ub. For these p, P lattices, this axis of fix points
is orthogonal to Ker N4 = Im D4; by a choice of origin of coordinates we can bring to
zero the component of #(A) in Im D, so it becomes #(A) = v=!pub. On the other hand
NusL = {umi;, m € Z}. So we obtain the complete solutions of A(1) for these five cases:

A=pm,P2,P3 P4, P6, #(A)="L 8 0<p<uw A(4)

Explicitly this gives the following 13 non-symmorphic elements in the notation of [ITC]:
Pg, Pc, P21, P31 ~ P32, P41 ~ P43, P42, P61 ~ P65, P62 ~ P64, P63. A(5)

The case of the arithmetic element Pm is similar: Im Np,, = Ker Dp,, L Ker Np,, =
Im Dp,, but dimIm Np,, = 2. Hence L N Im Np,, is a two dimensional lattice; we say
that a vector ¢ of this lattice is visible if no vector m‘ll?: 1 < m € Z is a lattice vector;
in other words £ belong to the GLy(Z) orbit of vectors which can be basis vectors. Then
#(Pm) = —;— ¢. This non-symmorphic element is denoted by Pc but also one of the following;:
Pa, Pb, Pd, Pn; indeed if the point group has more than two elements, the direction of the
glide vector #(Pm) is constrained by the preferred directions of the other point group
elements. We refer to [ICT] for the definition of the symbols a, b, ¢, d, n following P.

Case Cm:

01 0 m m m
Cm=110 0}, LﬂImNCm={ m ,m,nEZ}, Neml 0 | = m
0 0 1 n n 2n
0
= #Ce)= {0 A(6)
1
2

Indeed this non-symmorphic element is labelled Ce¢ in [ITC]. For instance the non-sym-
morphic space groups of the arithmetic class Cmm2 are Cme2; and Ccc2 (indeed the two
relections belong to the C'm class while the rotation is of the P2 class. There is another
arithmetic class (of the same geometric class'® mm2), denoted by Amm2; its rotation is

16 This geometric class mm2 is the one which has the biggest number of corresponding arithmetic

classes: 5 of them. They are denoted by: Pmm2, Cmm2, Amm2, Fmm?2, Imm?2.
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of the C2 class and the two reflections belong to the different classes Pm, Cm. The three
non-symmorphic space groups are Abm2, Ama2, Aba2. The reflections Cm occur also in
the I classes (where they are denoted by Ca,Cb,Cc) and the F' class (where they are
denoted by Fd). '

The last case to be considered is the arithmetic element 74:

01 0 m om
a= o1 -1}, LﬂImN14={ m ,mez},“ N14'L::{ om ,meZ}
11 0 0 0
1
- a4 = | 1 A7)
0

Indeed this non-symmorphic element is denoted by I4; in [ITC]; its square is symmorphic
(it is C2 up to a lattice translation). Beware to distinguish it from P4, whose square
P2, is non-symmorphic. The non-symmorphic space group 4, is sub-space group of six
of them in the I-tetragonal Bravais class and two of them in the cubic crystallographic
system: F'4,32,14,32.

These notes will be published in the Proceedings of the School without the appendix.
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