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The Demazure-Tits subgroup of a simple Lie group G is the group of invariance of Clebsch~
Gordan coefficients tables (assuming an appropriate choice of basis). The structure of the
Demazure-Tits subgroups of 4,, B,, C,, D,, and G, is described. Orbits of the permutation
action of the DT group in any irreducible finite-dimensional representation space of 4,, C,,
and G, are decomposed into the sum of irreducible representations of the DT group.

. INTRODUCTION

The purpose of this paper is to study a certain finite
subgroup of any simple compact Lie group G. We call the
subgroup the Demazure'-Tits’ group and denoted it by DT
or DT(G).

The maximal tori (called the Cartan subgroups) of a
compact semisimple Lie group G are all conjugate. They are
isomorphic to U(1)’, where / is the rank of G. The centra-
lizer C; (g) of g in G contains a Cartan subgroup; the ele-
ments geG, whose centralizer is exactly a Cartan subgroup,
are called regular. They form an open dense set in G.

Given a Cartan subgroup HC G, one considers its nor-
malizer Ng (H) (the largest G subgroup containing H as an
invariant subgroup). The quotient N, (H)/H = W(G) is
the Weyl group of G. This is a finite group with a natural
action on the Cartan subalgebra h (the Lie algebra of H) of
G generated by reflections along the simple roots. The im-
portance of the Weyl group in the theory of Lie algebras, Lie
groups, and their representations is well recognized. How-
ever, the exact sequence

5

1-U()/'=N;U()/'-W(G) -1, (1.1)
in general does not split, so W is not a subgroup of G, where
G is simply connected compact. Among the finite subgroups
of the normalizer N;(U(1)’) that are mapped by « onto W
there is a natural one DT(G), defined by (2.15) below, that
has been first pointed out by Demazure' and Tits.? Its inter-
section with U(1)’ is the group of square roots of 1, hence it
is the extension

¢
1-Z,-DT(G)->W(G)-1, (1.2)

@
which is naturally deduced from (1.1).

Physicists’ interest in the Demazure-Tits group DT (G)
is most likely to originate either from the similarity of its
action in representation space to the action of the Weyl
group in weight space, or from the fact that it permutes
(with some changes of sign) the physical states of a G-irre-
ducible space, thus making it possible to keep the same states
even without the full Lie group symmetry. It is a finite sub-

group of G that preserves the root space decomposition
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(Cartan decomposition) of the Lie algebra of G. The group
DT(G) has occasionally appeared in mathematics litera-
ture; however, recognition of its usefulness in applied prob-
lems relevant to physics is quite recent (cf. Ref. 3, where the
group DT is denoted by N). A systematic use of DT(G) has
been made as the group of invariance of table of the Clebsch—
Gordan coefficients (relative to an appropriate basis
choice). In computing Clebsch-Gordan coefficients for
G =SU(5),0(10), and E, (cf. Refs. 4-6) DT was used as a
group of transformations among CGC of the same values.
Practically it allows a small fraction of nonzero CGC to rep-
resent all.

In this article we give in Sec. II the structure of DT (G)
for the classical groups 4,,B,,C,,D,, and for G,. Section IIT
contains some examples of the DT group in lowest represen-
tations. In general, it is very interesting to decompose an
irreducible G-representation space ¥, (A is the highest
weight) into a direct sum of subspaces irreducible with re-
spect to DT(G). For groups G of rank / =2 we describe
DT(G) in detail in Secs. IV-VI. Namely, we find its charac-
ter table, decompose any ¥, into DT-invariant subspaces,
and identify each DT-conjugacy class as a G class of ele-
ments of finite order (Sec. VII). The last step opens the
possibility of using the powerful computing methods”'°
with elements of finite order in G for the study of conjugacy
classes of DT in all representations of G. The simple Lie
group G in this article is always the simply connected one.
Section VIII contains a summary of our results and some
open problems. The Appendix contains a summation for-
mula, which, as far as we know, does not appear in literature.

We denote a group (finite or continuous) by bold capi-
tal letters; for a Lie algebra we use lowercase bold symbols
except for groups or algebras of specific types like 4, or
SU(3), etc. The symbols W(g) and W(G), DT(G) and
DT(g), etc., where g is the Lie algebra of G, are used as
synonyms.

Il. THE STRUCTURE OF THE DEMAZURE-TITS
SUBGROUPS OF THE SIMPLE SIMPLY CONNECTED LIE
GROUPS

Wedenote by (4.u) the Cartan—Killing positive definite
scalar product on the compact semisimple Lie algebra g, and
let the roots be a, €4, its root system in a chosen Cartan
subalgebra h; A is the root system of g. If / is the rank of g
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then the Weyl group W(g) is generated by the reflections 7, ,
i = 1,...,], along the simple roots «,,

rdA=A4—2aA)(a,a) 'a,. (2.1)
When A itself is a simple root, say «;,

ra, =a; —a;d;, (2.2)
where

A; =2a,a;)(a,a;) " (2.3)

are the matrix elements of the Cartan matrix of g.

Wedenote by / = dim h the rank of g. Let {r,, 1 <i</} be
aminimal set of generators of W(g) (the corresponding sim-
ple roots ; form a base of h); this group is completely char-
acterized by the relations

1<, j<l, (rnr)™ =1, m,=1, 2<m

(2.4)

Note that 7,7, = r;r, when m, = 2. The list of possible values
of m,; was given by Coxeter and is summarized in the Cox-
eter—Dynkin diagram of g. Namely, m, = (1 —6,/7) ",
where 6 is the angle between a; and «;; it is 2, 3, 4, or 6
according to whether there are zero, one, two, or three lines
joining vertices i and j. To specify the structure of W(g), we

define first a family of matrix groups (see, e.g., Ref. 11).

A. The groups G(m, p, n)

Let m, p, n be integers with p dividing m; we denote by
A(m,p,n) the group of diagonal n X n unitary matrices a that
satisfy the relations

(a)m=1, det(a)™” =1. (2.5)

Let IT, be the group of n X n permutation matrices; they
have one | in each row and each column and zeros else-
where. It is a faithful representation of S, , the group of per-
mutations of # objects. The determinant of a permutation
matrixis + 1according to the parity of the permutation. We
denote by G(m,p,n) the matrix group generated by the
groups A(m,p,n) and II,, . Obviously, G(m,p,n) is the semi-
direct product,

G(mp,n) =A(mp,n) &I, . (2.6)

All the matrix groups G (m,p,n), except G(1,1,n) = II, and
G(2,2,2) are irreducible over C. The only pair of conjugate
groups is G(4,4,2) and G(2,1,2). For a finite group G, we
denote by |G| the number of its elements. Then 9

(2.7)

The linear action of the Weyl group W(g) on the Cartan
subalgebra h is represented by

W4,)) =G(LLI+ 1), W(B)=W() =G,
W(D,) =G(2,2,)), W(G,) =G(6,6,2) . (2.8)
Exceptionally, for 4, ~SU, , ,, we have used the Cartan al-
gebra of U, _,; in it the Cartan algebra of 4, is the hyper-
plane orthogonal to a vector with all coordinates equal.
Fora matrix group G we denote by SG, or sometimes by

G, its unimodular subgroup (i.e., the group of matrices
with determinant 1). Note the isomorphism,

SG(2,1,3) = W(B,) " ~S, .

1<ign,

|G(mp,n)| =m"p~'n!.

(2.9)
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We recall now, at least in a particular case, the definition
of the wreath product: given a group K, the wreath product
by S, , which we denote by K 11, is the semidirect product

Kin =K"'&S, (2.10)

of S, by n copies of K, S, acting by permutations on the »
factors of K". For a finite group K,

Ktn| = |K|"n!. (2.11)
Let us point out that
G(m,l,n)~Z, tn; eg., W(B,) ~Z,11. (2.12)

We will need the following properties of Weyl groups. The
Lie algebras of types B, and C, have roots of two different
lengths; the corresponding reflections form two conjugacy
classesin W(B,) = W(C,) with, respectively, /and /(/ — 1)
elements. The elements of the conjugacy class with / ele-
ments are the reflections of A(m,1,/). They commute and
generate the Abelian group A(m,1,/). Here W(D,) is an
index 2 subgroup of W(B,); when / is odd, — 1sW(D,).
That is, ‘

W(B,) =W(D,)xXZ,( —1I), for/odd. (2.13)

While the Weyl group W(g) is the same for all groups G
that have the same Lie algebra g, the Demazure-Tits group
DT(G) does depend on the choice of G; here we consider
only simple simply connected compact Lie groups G. We use
the notation

(2.14)

for a product of n factors, alternately x and y. Tits> defines
DT(G) by its generators g, and their relations

prod(n,x,p) = xyxy---,

I<i<l, ¢*=1, q,.ijzzqfq,-z, (2.15a)

prod(my.q,,q;) = prod(m;,q,,q;),

. (2.15b)
q9:9,°9;

1 2 24,

=49 .
The g7 are the square roots of 1 in the Cartan subgroup, they
generate the kernel of ¢ in Eq. (1.2). The presence of the
exponent 24; in (2.15b) implies that DT(B,) and DT(C))
are different although W(B,) = W(C,). Since we will use
these relations often we give them more explicitly:

9'=1 qq=q4q, (E)
m; =2: q,q, =q,q;, (E2)
my =3 4:9,9; = 4,99 99" =9,°9, ", (E3)
my; =2k: (q,q,)" = (g,9.)%

9.9,°9, ' =g, (E4)

Consider two semisimple Lie groups G and G’ both of
rank /. If the Coxeter-Dynkin diagram of G is a subdiagram
of the extended Coxeter-Dynkin diagram of G, then one has
for the corresponding DT groups,

DT(G)CDT(G') . (2.16)

Clearly G and G’ have the same Cartan subgroup ~ U | and
NG (U{)CNg (UY). Since the corresponding DT groups
have the same kernel Z,, (2.16) holds. If the rank of G’ is
lower than/, (2.16) still holds provided the Coxeter—Dynkin
diagram of G’ is a subdiagram of the (nonextended) dia-
gram of G.
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Let C(G) be the center of G. The intersection
C(G)NDT(G) is the group of square roots of C(G). We
recall the nature of C(G) in Table I.

B. The DT subgroup of A4,

In the natural (/+ 1)-dimensional representation of
SU, , ,a Cartan subgroup is represented by diagonal matri-
ces; its subgroup of square roots of the unit is
A(2,2,/ +1)~Z,. The Weyl group ~S,, , permutes the
elements of these diagonal matrices; it can be represented by
the group of permutation matrices I, ,. The reflections
correspond to permutations of two elements, the », corre-
sponding to the permutations of neighboring elements. In
IT,, , their determinant is — 1. The unimodular matrices
that represent themin DT (SU, , | ) have been given in Ref. 3
(where they are denoted R, ). They are

0 T)
=], I .,
a; Ix——l®(1 0 bL;_

where 7, is the & X k unit matrix.
Let us introduce the (/ + 1) X (/4 1) diagonal matri-
ces:

(2.17)

o= —lel, (2.18)
i—1
v,=1_ e —1el,_, ., =v [] ai, 2<i<I+1.

k=1 .

(2.19)

They are the reflections of the group A(2,1,/ + 1) that they
generate. For 1<i</, the matrices v,a; belong to I1,, , and
generate it since they represent the permutations (i,/ + 1).
Hence we have shown that v, and the a,’s generate
G(2,1,/ + 1). Since det(a;) = 1 = — det(v,), the a,’s gen-
erate the unimodular subgroup SG(2,1,/ + 1). This proves
that

DT(4,) = DT(SU,, ,)
=SG(2,1,/+1)~W(B,, )" . (2.20)

When /is even, det( — I, , ;) = — 1, so we obtain a uni-
modular representation II,, , of S, by multiplying by
— 1 the matrices representing odd permutations; since
II,, , ©SG(2,1,/ + 1), this shows that the exact sequence
(1.2) splits for / even,

DT(4,) = Z, W (4,) (2.21)

This is not the case for odd /; e.g., for / = 1, DT(4,) =12,
(see also at the end of this section). When / is even, we can
write explicitly a choice of representatives a; of the a,’s that
realizes the splitting (2.21). We define the a; s using the sets
of indices

(/ even) .

TABLE I Structure of the center of a classical simple Lie group G.

Algebra A, B, C, D,

G SU, L Spiny, , Spa Spiny,

C(G) Z, ., Z, Z, Z,x2Z, (leven)
Z, (lodd)

779 J. Math. Phys., Vol 29, No. 4, April 1988

F(i,l) = {k,(0<k odd <i)U (i<k even<l)}, (2.22a)

; a; .
keF(i,0)
These @, generate a subgroup of DT(A4,) isomorphic to
W(A, ) ~SI+ 1

The center of 4, is the cyclic group Z, , , . When /is odd,
the center has a nontrivial square root of unity that is in
every Cartan subalgebra and therefore in DT(4,). Indeed,
the irreducible matrix group SG(2,1,/ 4+ 1) has a nontrivial
center C(SG(2,1,/ + 1)) only when it contains the — I ma-
trix, i.e., for odd /. Thus

3 =a (2.22b)

C(DT(4,))=1 or Z,(a), forlevenorodd;

a= T[4 (2.23)

k odd

C. The DT subgroup of C,

Next we consider the DT of the symplectic group Sp,,.
We denote by c; the generators of this group. The equations
(E) applied to them become

4 2.2 2 2 2 2, —1
¢ =1, CiC; =C5C%, ¢ T=c ¢,

(I<i<i - 1),

Cr—1CiC 1€ =C1C_ €€y,

CiCiy1Ci =€ 1CiCi
(2.24)

2__ .2 —1 2 _ 2
CraC=¢C7C_y , CC_ T =¢C_,7¢C.

According to (2.16), for 1<i</—1, the ¢;’s generate
DT(4, ,)CDT(C,). Inorder to complete our study of C,,
our strategy is to consider its / elements s;, 1<i</, “above”
the / commuting reflections r; generating A (2,1,/) CW(C,),
ie.,

o(s,)=r,, I<i<l— 1,

L (2.25)

s, =u;s;u;” ' with u, = IT < -
k=i

S =cy,

(In the IT symbol, when the factors do not commute, they
always are assumed to be placed in order of increasing index
value:u;, =c;c;, ;**'¢, _,c¢,_,.) Weknow that these reflec-
tions commute among themselves. We now prove the follow-
ing lemma.

Lemma I: The elements s, commute among themselves.

We first verify it fors, |, ands,. Indeed from (2.24) and
(2.25), we compute

—1
St S =C_ 16y ¢
» )
O €€ 166 T
. L 996
=0 CC T =885 . (2.26)
Because ¢, and ¢, commute when |i—j|>1, with
a, =11, _"¢c,, we have
S8 = s, ;s
— 7 P
=u;s, ,su,
=5 u, "
=S5, 0, '=s5 (i<l—2). (2.27)

We need the relation [use (2.24) twice]
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(1<i<l —2) (2.28)

to prove by recursion thats,; ands, , ; commute. It is true for
i=1-2

— — 1
Sp—2S 1 =6 08,86,

1
Si = Ci 15y

_ 1
=C oSS 26y

(2.29)

Assuming that it is true for i = k, we prove it for i = k — 1,

— — 1 —
=C_aSC S =885,

—1
Sk~ 185k = CkSp 1 Cr Sy

=ChCh o 1SkCh 1 Sk 0!
= CCh 1 SkSk 1 Gy ey !
= CrCr Sk 1 SkCk ey !
= CSk 1Ch— 1 SkCh e !
=CpSk 1Sk 10k
=Sk 1 Cr NSk =SS (2.30)
Finally when i< j — 2, we define as before y = wu, !
Then
5,8, = us; _u"'s
=us;_ Su” ' =us;s, u~!
=sus; u”'=s5, . (2.31)
Using (2.24), we find
I
5= 11 ¢, (2.32)
1

k=

and remark that all the squares are different. Similarly,

c‘.zzsizs,,_#_lz, (Ii<i—1). (2.33)
Hence the s; commute also with the ¢;”. They generate an
Abelian group containing the kernel in (1.2) of DT(C,).
Moreover, the commutation of the s;’s shows that the cover-
ing of A(2,1,)) CW(C,) in DT(C,) is

dARLD)=2Z,. (2.34)
When 1<i</ — 1, we choose other representatives ¢, of the
r;’s,

2
C[Z = §,°

3(e) =) =r,
¢ =sc=c¢5.,,> (l<i<l—1),

where the last equality is obtained by a repeated use of Eqs.
(2.24). We verify that

I1<i<l — 2,

(2.35)

(I<i<l—1).

(2.36)
This shows that DT(C, ) contains a subgroup isomorphic to
W(4, ) ~S,. We verify that it acts on the 5, by permuta-
tions

E'll:l’ (ér’&lél)zz:l

~ -~ 1

CiSi 1€ =3, E"[Sr E‘i =S
. o (2.37)
¢s,¢ =y (i<jorisj+1).
This completes the proof of the isomorphism
DT(C)) ~Z,11~G(4,1.]). (2.38)

[he center, C(DT(C))) = Z,(s). of this group is the diag-
onal subgroup of Z,. It is generated by
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!
s = H s . (2.39)
k=1
Observe that
C(Sp,,) NC(DT(C))) = Z,(5%) , (2.40)
where « has been defined in (2.23),
5t = I[I e’ =c. (2.41)
k odd

The matrices representing ¢;’s in the 2/-dimensional
faithful representation of the symplectic group C, are shown
in Sec. ITI. All equations of this section can be thus verified.

D. The DT subgroup of B,

Let us now consider the DT of Spin,, , ,. We denote by
b, its generators. For 1</</ — 1, like the ¢;, these satisfy
(2.24) and (E1). But the last line of Eq. (2.24) is replaced
by

b1- 1b1b1_1b1 = blbl— 1b1b1~ 1

(2.42)
b1b1_12b1 zblqzbl-l, bl—lblzzblzbl-l ,
and m; =2 when |/ — j| > 1, so (E2) applies
bib, =bb, (|li—j|>1). (2.43)
From these equations we obtain
Z,(n) CCDT(B)), n=»b. (2.44)

Here Z,(7) denotes the Z, group generated by 7. The group
Z,(n) is exactly C(Spin,,, ). As we will see later,
C(DT(B,)) might be larger.

Since W(B,) = W(C,), we follow the same strategy as
for the study of DT(C, ): we introduce the representatives 7,

of the / — 1 reflections conjugate to b,,
t,=b (1<i<h),

(2.45)

where the u, are defined as in (2.25). This time we find that
the ¢,’s all have the same square,

_ -1 _ 1
1, =b, it b T =ubu,

2=, (2.46)

and, instead of commuting among themselves, we demon-
strate that they “anticommute.” More precisely their com-
mutator is 7,

”=1,

1y, -
UL

(1<, j<iy . (2.47)

For this we follow the same path of computations as in Eq.
(2.26)-(2.31):

ot =b®,bb, Vlb/
=b,_bb,_bb, *y
=bb, \bb, |, =t . (2.48)

Replacing the s5,’s by #,’s and (2.26) by (2.48), Eq. (2.27)
carries through:

(1<i<l —2) . (2.49)

Equation (2.28) depends only on (2.24) which is common
for both DT(C,) and DT(B,). It reads for the latter group,

t=b, b (lsisl - 2). (2.50)

To prove by recursion that 7, and ¢, |, anticommute, we

[rtl = )711"1
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prove it first for i =/— 2. For this we use (2.50), then
(2.49),

~ 1
bty =b_t, b,

=nb,_\4t;_,b,_,

1
=nb,_ 4,6, 7', =yt

(2.51)

Weassume it true for/ 4 1 and prove it for 7. For this replace
the s and ¢’s of (2.30) by r and b°’s; use (2.51) instead of
(2.29). An 77 will appear and this will conclude the proof of
(2.47).

The group defined by Eqs. (2.46) and (2.47) is called a
Clifford group. It is also called the extra special two-group in
mathematics literature. We denote it by CL,. Its elements

are the monomials of the symbolic polynomial
(1 + )M _, (1 +1¢,). Thus its order is
|CL,| =2""" (1<i,j<l). (2.52)

The group CL, is the quaternionic group, generated by two
io,, where the o, , kK = 1,2,3, are the three Pauli matrices.
We define

1
t=]] % (2.53)
k=1
From Egs. (2.46) and (2.47) we get
t=1un'""' t*=n, for I=1.2 4
tt=1tm n, for mod (2.54)
t?=1, for /=03 mod 4.

We have seen thatin W(B, ), the subgroup W(4, ) gener-
ated by the r,’s, 1<k</ — 1, acts as the group of permuta-
tions S; on the / reflections in A(2,1,/)<IW(B,) (< reads
“invariant subgroup”). The corresponding action of b,
1<k</ — 1, on the ¢, will be, by permutations modulo ele-
ments in Ker, DT(B,) = II]_  Z,(b,). By computation we
find that this action is only modulo »; explicitly,

b~ =1, AR b (2.55)
J=1i Jj=i+1, j>i+1.

This also shows that CL,<IDT (B, ). Moreover, since the two
subgroups CL, and DT(4, ) generate DT(B,) and their

intersection is only 1, this proves that
DT(B,) ~CL,&DT(4,_,)~CL,&SG(2,1,/) , (2.56)

with the action defined in (2.55). From this equation we
obtain theaction of the b,’son  defined in (2.53); it is trivial:

bith, "' =1. (2.57)

From (2.54), we see that when /is odd, /eC(DT (B, )). Final-

ly, with (2.54) we obtain

C(DT(B))) =Z,(n), Z,(t), Z,(n)xXZy(1),
/ mod 4=0,2, 1, 3.

We recall that for all values of /, C(B))=2Z,(7).
In Sec. Il we give an explicit representation of the b,’s

in the 2/ -dimensional faithful representation of Spin,,  ,.
We denote by ¢ the homomorphism from Spin,, ,

onto SO, , | ~Spiny, . /Z,(1). These two groups are the

images of the nontrivial irreducible representations of B,. In

the tensorial representations, DT(B, ) is represented by the

splitting image

when <,

(2.58)
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@ (DT(B)) =2, "&W(B,) ~ (Z,) ' X Z,) &S, .
(2.59)

E. The DT subgroup of D,

We denote by d, the generators of DT(D,) CSpin,,.
Since D, = Spin,, is a maximal subgroup of B, = Spin,, , ,
with the same rank /, we know from (2. 16) that

DT(D,)CDT(B,), (2.60)

and that it is of index 2, i.e., the same as W(D,) in W(B,),
since we pass from the latter group to the former one by
replacing A(2,1,/) init by its subgroup of unimodular matri-
ces A(2,2,/) = SA(2,1,/). It contains only the products of
an even number of reflections r,. We will write the genera-
tors w; of ¢ ~'(SA(2,1,/)) as products of pairs of the ¢,’s.
More generally, it follows from the structure of W that we
can write the generators of DT(D,) in terms of those of
DT(B,). Namely,

dk =bk) d]zblb[_lb,_l (1<k<l—1). (261)
We can verify that the d, s satisfy the equations correspond-
ing to (E2), and (E3). In particular,

d,_,d, =dd,_, . (2.62)

Since 7eC(DT(B,)), it is also in C(DT(D, )). It can now be
defined by

n=d,_,’d’. (2.63)
We can choose for the generators of SA(2,1,/),
w, =5t =vd,_, " 'dw, ",
W=t _ty=d,_,"'d,, (2.64)
1—2
v, = H d, (1<i<l—=2).
k=1

From Egs. (2.46) and (2.47) we find immediately that the
I — 1 w’s satisfy the same equations so they generate a sub-
group ~CL,_ . This is an invariant subgroup of DT(D,)
that has a trivial intersection with the subgroup DT (4, ).
These two subgroups generate DT (D, ). Hence

DT(D,) =CL, ,&DT(4, ,), (2.65)

where the action of the d,’s on the w;’s is defined implicitly
by (2.55) when the d,’s and the w;’s are expressed, respec-
tively, as functions of b, and t; [see (2.61) and (2.64)].
Let us now consider the center of DT(D,). Asin (2.53)
we define
1 —1

w = w, =1t, for / s )
an k .or even (2.66)
=mntt;, for / odd .
Similarly to (2.54) we obtain
ww; = w,w, w:’ =1, tjor /=0,1 mod 4, (2.67)
w” =1, for /=2,3 mod 4.
When / is even,
a = H d.’, (2.68)

A odd
already defined in (2.23), is in C(DT(4, ,)). It anticom-
mutes with b;, so it commutes with d,. Hence it is in the
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TABLE II. Structure of the center of the Demazure-Tits subgroup of the simple Lie group D, and its intersection with the center of the Lie group. Z, (y)

denotes a cyclic group generated by y.

[ (mod 4) 0 2 3
C(DT(D))) Z,(a) XZy(n) XZy(w) Z,(n) X Zy(w) Z,(a) X Z,(w) Z,(w)
(D) z,’ z)} zZ,
C(DT(D))N (D) Z,(a) X Zy(n) Z,(n) Z,(a) XZ,(7) Z,(n)

center of DT (D, ). We summarize the description of the cen-
ter of DT(D,) and its intersection with the center of G in
Table II.

For / even, there are no faithful irreducible representa-
tions of D,. We denote again by ¢ the homomorphism from
Spin,,; onto SO ,, ~Spin,, . ; /Z,(7). In the tensorial repre-
sentations, ¢ (DT (B, )) is represented by the splitting image,

@ (DT(B)) =2, '"GW(D,) ~(Z,) " "< Z,) 1) &S, .
(2.69)

F. The DT subgroup of G,

The Weyl group of G, is the dihedral group of 12 ele-
ments isomorphic to S;XZ,. Therefore the order of
IDT(G,)| is 48. From (2.16) we know that DT(SU,)
CDT(G,) and it has index 2. Note that DT (SU,) is isomor-
phic to S, [see (2.20) and (2.9)]; so it is complete. That
means it has no center and no outer automorphism. Hence
from a known theorem'' one has the isomorphism

DT(G,) ~S, X Z, . (2%40)

We have seen that DT(4,) ~Z,”XS;~S, splits. Since
W(G,) = S;XZ,, (2.70) implies that DT(G,) also splits,

DT(G,) = ZXW(G,) ~Z,*6S; X Z, . (2.71)

We recall that C(G,) = 1; however, C(DT(G,))~Z..

In his paper Tits” asks the question: What is the smallest
subgroup W' of DT(G) that covers W(G), ie.,
FHW') = W(G)? With the knowledge of the explicit struc-
ture of the DT (G) groups we can give the answer. It is found
in Table IIIL

To end this section we summarize in Table IV the infor-
mation obtained on the structure of the DT(G) and their
centers.

TABLE III. The smallest subgroups of the Demazure-Tits group DT(G)
covering the Weyl group W(G). K = ker ¢. The exception for DT(4,) is
due to the solvability of S,~Z,? X S,; the result can be understood from
Ay~ D;.

G rank / w W' NK
A, | even ~W 1

3#/ odd DT(A4,) z,

[ =13 CL,GS, Z,(a)
C, DT(C)) z,
B, CL, &S, Z,(m)
D, CL, &S, Z,(n)
G, ~W 1
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I1l. REPRESENTATIONS OF THE DEMAZURE-TITS
GROUPS AND EXAMPLES

Let us underline some common features as well as differ-
ences between the well-known group W(G) and the group
DT(G) that are used subsequently and provide some exam-
ples of elements R,, / = 1,...,/, generating DT(G) in some
low-dimensional representations of G of several types and
many ranks. The rank /=2 cases are studied in much
greater detail in Secs. [IV=VI. Other properties of DT(G) can
be found in Sec. III of Ref. 3.

The fundamental weights w,,...,w, are defined by

(3.1)

The weight lattice Q is the Z span of the fundamental weights
of G,

(a;,w,) =06, (a,,a,)/2.

Q={u=(a,.a)lp=aw,+..+aw, acl}.
(3.2)

The sector of Q containing only dominant weights (all
a,>0) isdenoted Q *. Each orbit of W in Q is a set of weights
that contains precisely one dominant weight, say 4 *. By
definition, the set of lattice points

O ™) ={ulu=wd*, weW}, (3.3)

is a W orbit, it is W invariant and is usually specified by its
dominant weight 4 *. Subsequently, when no ambiguity
could arise, we often use A * for O(A *); similarly O(A4 ) is
often denoted by WA *. The number of elements of O(A4 ) is
equal to the ratio

|O(4 *)| = |[WA *| = |[W|/|Stab, A *| (3.4)

of the order of W to the order of the stabilizer of A * in W. It
is tabulated in Ref. 13:

Staby, A * ={wjwl " =1 * and weW}. (3.5)
Staby, A ™ is the Weyl group of a (semisimple) Lie algebra
obtained easily as follows. Take the Coxeter-Dynkin dia-
gram of G (W is the Weyl group of G) and attach the coordi-
nates of the dominant weight 4 * in the basis of the funda-
mental weights to the corresponding nodes of the Coxeter—
Dynkin diagram. Remove nodes with nonzero coordinates.
What remains is the diagram of a semisimple Lie subgroup
of G whose Weyl group is Stab,, 4 *

An irreducible representation is specified up to G conju-
gacy by its highest weight AeQ ™. Therefore a representation
is usually denoted by A. An efficient algorithm for finding all
A T in Q(A) is given in Refs. 12 and 13. For most cases of
interest, 4 * have been tabulated in Ref. 13 together with the
multiplicity of their occurrences in 2(A).

The weight system 2(A) of a representation A is in-
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TABLE 1V. Structure of the Demazure-Tits subgroups of simple Lie groups. Symbols a, s, 7, 1, w, are, respectively, defined by the following equations: a:
(2.23), (2.41),5: (2.39), 7: (2.44), 1:(2.53), w: (2.66). Here Z, () denotes a cyclic group of order n generated by y. The Clifford group CL, is defined by

(2.53) and (2.54).

G ! mod 4 DT(G) C(DT(G)) C(G) C(DT(G))NC(G)
A, 0,2 7,8, , 1 Z ., 1
1,3 ~W(Bl+l)+ Z2(0) Zl+l 1
B, 0,2 CL,&DT(4,_,) Z,(n) Z,(n) Z,(1)
B, 1 CL,&(Z,'&S, ) Z,(1) Z,(n) Z,(n)
3 CL,(X(ZZ'@S(_ ) Z,(n) XZ,(1) Zz(’]) 21(77)
CI Z,(s)1l Z,(s5) Z,(a) Z,(a)
D, 0 CL, _,&DT(4,_,) Z,(a) X2,y (1) X Zy(w) z} Z,(a)XZ,(n)
1 .CL1~|CX(22/Q‘S/_1) Z,(n) XZy(w) Z, Z,(n)
2 CL,._ |<"DT(A/-| ) Zz(ﬂ)XZ,a(w) Zzz Zz(d)XZz(ﬂ)
3 CL,_,&(Z,)&S,_ ) Z,(w) Z, Z,(7)
G, S, xZ, Z, 1 1

variant under W and decomposes into several W orbits
O ) =0(WA1"):

Q(A) =,1U+O(/1 ). (3.6)

The same orbit O(4 ™) often occurs with multiplicity
mult, (1) >1in Q(A). We use n for the multiplicity
mult, (4 ) of A ¥ in Q(A) whenever there is no ambiguity
as to what A and A * are. The orbit O(A) of the highest
weight A is always unique in Q(A), i.e.,, mult, (A) = 1.

Consider the representation space ¥, and its decompo-
sition

A *eQ(A)
parallel to the decomposition (3.6) of (A ), where the sub-
space ¥y, (4 *) corresponds to O(A4 *). Indeed ¥y, (1 *) is
the direct sum of weight subspaces ¥, (1), ueO(A *). The
dimensions are given by

dim Vy (A ) = |WA *|dim V, (1)
= |WA *|mult, 4+ .

The permutation of weights

n=rp, pup'eQ(A), rew,

by r;’s of (2.1) exactly corresponds to the permutation of
weight subspaces V, (x) by the elements R,eDT. Namely,

& Vy(w) 3.7

A TeQ(A) peO(A*)

(3.8)

RV (u)=V,(ru)=V,(u), ReDT, 1<i<l
' (3.9)

In Ref. 3 the elements R, are called charge conjugation oper-
ators. In practice one is more interested in the transforma-
tion properties of individual vectors v, €V, (1),

Ry, =v, =v,,, v,eV, (), U, J€VA(r ), (3.10)
rather than in (3.9). Since there may be n, 1>0, linearly
independent vectors v, , it turns out that the action of R, on
Vs (@) is quite nontrivial even if 7, acts trivially on y, i.e., if
ripe = p. Although one still has (3.9), it does not imply that
v, = v, . Forexamples see Ref. 3 and Appendix C of Ref. 14.

It follows from (3.9) and (3.10) that one can write sym-

bolically
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DIV, (A ") =Vy(A*) = emWV(T,), meL, .

(3.11)

The action of DT is necessarily reducible in subspaces
Vw (4 ) of ¥, . Indeed, DT, being a finite group, has finitely
many irreducible representations I';, i = 1,2,...,k < o0, while
the dimension of ¥y, (4 *) has no upper limit; it grows with
A. The summation in (3.11) extends over the irreducible
representations of DT.

Before turning to specific examples let us recall some
notations and conventions. Consider / isomorphic copies of
the complex Lie algebra sl(2,C),, 1<i</, in 1-1 correspon-
dence with the simple roots of G. The basis elements
e;, f;» h; of each sI(2,C), are chosen to satisfy #

[ei:f;'] =h,, [hi’ei] = 2e,,
[An fi]= —2f,, 1<i<l.
The generator of G can be written as linear combinations of

e, —fiand{ — 1(f; +e¢;) for ie{1,...,/} and their commu-
tators. Since we make no direct use of these other generators,
there is no need to write them down here. However, we al-
ways assume that a Chevalley basis'' of G has been chosen. It
amounts to having the structure constants integer.

The charge conjugation operators® R, G can be written

(3.12)

as

R; =exp( f;)exp( — ¢;)exp(f;)
=expir(fi—e), I<i<l. (3.13)
They generate the Demazure-Tits group DT. It has been
shown in Ref. 3 that
RA=1, Ru,=(—-1DN"2% . veV, (1),
(3.14)

where A ( = twice the angular momentum) denotes the ir-
reducible representation of 4, of dimension A + 1and A isa
weight of its weight system Q(A) = {44 —2,..., — A}.

Let us consider examples of R; in the lowest representa-
tions of simple Lie groups of different types.

(4,) The faithful representation A = (100---0) of di-
mension / + 1
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0 1
1 0
Here I, is the k X k identity matrix. In matrixlike symbols
we write negative signs over the digits.

(B,) The matrices R,, 1<i</ — 1 (denoted by b, in Sec.
IT) corresponding to »,€W in the (faithful) 2’-dimensional
spinor representation of Spin,, , | are

Ri=1i_l@( )@I,_i, 1<i<!. (3.15)

Ri=(a' 'h)ePs(e''~'I,), 1<i<i—1,

0 1
— (eI, , 3.16
R, = (8 I“)®<l 0) (3.16)

where P is the matrix

P=1(Lol, +0,00, +ioy®0, —io,®0,)

1 0 0 0
001 0
o 1 0 o
00 0 1

In particular, one has for / = 3 the B, representation of di-
mension 2* in a direct sum form, as

&=ta(] Jo(] J)or.
Rz=11€9((1) (1)>$12€B<(1) é)@l,, (3.17)
000 1 0
01 0 0 0 1 01
R3=(1 0)@ 1 0 0 0 eB(l o)‘
01 0 0

Similarly one has the B, representation of dimension 2/ + 1
that is not faithful (trivial center),

0 1 (01
R, = i_1®<1 0)@12“2.'»1@(1 O>@Ii—1:

I<i<l—1,

0 0 1
R =I_,0|l0 1 0|al_,, I>2. (3.18)
1 0 0

(C,) Representation of dimension 2/,

01 01
R,:]ul@( )&312/-2,;2@( )@I,,_,,

1o 1 0
0 1
R’:["‘@(l O)aa],,l. (3.19)

Note that, for / = 2, B, is identical to C, up to a renumbering
a <>, of simple roots. In this case (3.18) and (3.19) refer
to the same group in representations of dimension 5 and 4,
respectively.

(D;) When [ is even no irreducible representation of
D, = Spin,, is faithful because the center is not cyclic,
C(D,) = Z,*. In order to have a faithful representation one
can consider the direct sum of the two 2'~ ' -dimensional
spinor representations. It can be obtained from the 2’-di-
mensional representation of B, = Spin,, , ,. The matrices R,
corresponding to »,€W are
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R; asin (3.16), for 1<i</—1,
Rl:(®[h212)®Q9
with

(3.20)

Q=i,el,— 0,80, +io,®0, —i0,®0,)

00 0 1
01 0 0
o o 1 0
1.0 0 0

The D, representation of dimension 2/ has

0 01
szli_x@(l 0)812’“2"“269(1 O)eli—l’
(3.21)

Somewhat special is the case / = 4. There are three represen-
tations of dimension 8. They differ by the following permuta-
tions of R,’s,

0
100 asin Eq. (3.21),

0

00, Ry-R,, » (3.22)
1
OO0 R, <R, .
(G,) Representation of‘ dimension 7,
0 1 0 1
R‘=1‘®(1 o>®1‘®(1 o)el"
(3.23)

IV. THE DEMAZURE-TITS SUBGROUP of 4,

In Secs. IV-VI we consider each of the simple Lie
groups of rank 2. The description of the Demazure-Tits
group DT in these cases is carried much further than for
higher ranks because one may expect that the lowest ranks
will be used most frequently; also, the derivations and results
are simpler. Our analysis serves as a model of what can be
learned, at least in principle, about each case, besides being a
particularly useful illustration.

Each of the three groups is specified up to an isomor-
phism by its simple roots a, and «a, or, equivalently, by the
Cartan matrix

2a, @, 2
(4,) = 2% “i:( /’), (4.1)
(a,a;) \— B 2
where
A=RB=1  for 4,,
A=2B=2, for B,, (4.2)
A=3B=3for G,.
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The Weyl group W acts on the weight lattice Q, which is
the Z span of two fundamental weights @, and w,. In particu-
lar,

a, =20, —Aw,, a,= — Bw, + 2w, , (4.3)
and therefore
w,=[1/(4—A4B)] 2a, + Aa,),
1 [ 1 2 (44)

@, = [1/(4 —AB)](Ba, + 2a,) .

The elements r, and 7, generate W by their action (2.1) on
the weights 4 = aw, + bw, = (a,b)eQ, where a,beZ. Name-
ly,

ri(ab) = (—a, b+ A4a), r(ab) = (a + Bb, — b) .

(4.5)

In particular, one has for the simple roots, ra,
=r2,-4)=(—-2,4) = —a,, rsy =ry( — B,2)
= (B, —2) = — a,. A weight is called dominant if a,56>0.

The “lifting” of the action of W on Q to the action of DT
on ¥V, i.e., the homomorphism DT —W, can be set up in
several equivalent but not identical ways. To avoid possible
ambiguities, we adopt from now on the following prescrip-
tion. The elementary reflections r,,7,eW of (3) are lifted into
R, R, as given in (3.13) and (3.14). Any other weW is
expressed asaword 7; r, - -+ of minimal length in elementary
reflections. Then as it is lifted we take the result to be
R; R, - .Thegroup W also contains one element (opposite
involution) of maximal length k,,,, = number of positive
roots of G.

The decomposition of ¥y, (4 *) into DT-irreducible
subspaces in the three cases of rank 2 is the main problem
solved in the rest of this article. Our task is to find the multi-
plicities m; of occurrence of the subspaces V(T, ), irreduci-
ble with respect to the representations I', of DT in the direct
sum [cf. (3.11)],

V(A7) =e mV(,), meZ, . (4.6)
Unlike the W orbit O(A *), which is independent of the rest
of a weight system Q2 (A) to which it may belong, the decom-
position (4.6) depends on A and the multiplicity

n =mult, A *. For simplicity of notation we write (4.6) as
A+t =emT,. (4.6")
Let us now turn to the particular case of the Lie algebra

A, [or Lie group SU(3) ]. The multiplicity » of a dominant

weight A * = (a,b) inan SU(3) representation A = (p,q) is

the coefficient of the term P?Q 4 “B* in the power expan-
sion of the generating function'

1 1

(1—=PQ)* (1 —PA)(1 —QB)(1 — P’B)
+ Q4
(1 —PAY(1 —QB)(1 —Q%4)
+ PJ
(I —PAY(1 —P3B)(1 — P
Q (4.7)

Ta-oB( -0 —onl

From (4.7) we deduce that n =Qunlessp — g + b —a =0
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TABLE V. The character table of the DT(4,) and W(4,) groups. Sub-
script of the class symbol indicates the order of its elements. EFO denotes
the conjugacy class in SU(3) and IR means irreducible representation.

Weyl group
Number of
Class i 3 2 ;)ements -
epresentative
I ™t "2 elepment
IR c, c, Cq
T 1 1 1 1 1 Ty
T'2 1 1 -1 -1 1 l'z
Ty 2 2 0 o -1 Ty
3 -1 -1 1 0 F,'
3 |- 1 -1 0 Ts
'
G % |G |6 |65 IR
Representative 2 2
element I Ry |RR2 | Ry | R{Ry
EFO [100]{ [o11]{[o11]{[211]] [111]
Class
Number of 1 3 6 6 8
elements
Demazure - Tits group

4
mod 3, 2p + g>2a + b, and p + 2g>a + 2b. Then the orbit

multiplicity # is given by
n=min|[p,g3(2p + q — 2a — b),

{p+29—a—-20)] +1. (4.8)

The four expressions in the minimum symbol arise, respec-
tively, from terms 4, 3,2, 1 in (4.7); there is no overlap (i.e.,
for given p,q,a,b at most one term contributes, namely the
one giving the smallest value).

The Weyl group of 4, is isomorphic to S, the group of
permutations of three objects. It is also the dihedral group
D,. Its character table is given in Table V. That table con-
tains as well the characters of the DT(4,) group, the homo-
morphism between the classes of elements of W and DT
groups, and the SU(3)-conjugacy classes of elements of DT.

The character values afforded by the three conjugacy
classes of W are easily deduced using the action of represen-
tative elements on the points of a generic orbit (a,b), illus-
trated on Fig. 1.

The decomposition of Weyl group orbits on the A4,
weight lattice into direct sums of irreducible representations
of W is presented in Table VI.

The structure of the Demazure-Tits subgroup
DTCSU(3) isfound either from the SU (#) case of Sec. I or
by a direct computation.® It turns out to be the octahedral

® ® D P A
L
o<
| ~L
A AN
L] ¢ e > & | o >
® ® Pa— - 14 iE

eC, nreC,

FIG. 1. Action of representative elements of conjugacy classes of the Weyl
group of A, on weights of a generic orbit.
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TABLE VI. Decomposition of the orbits of the Weyl group acting as a per-
mutation group on the A, lattice. Character of each class on the orbits is
shown.

Characters
W orbit

W orbit Shape E C, C, decomposition

(a,b)
ab>0 hexagonal 6 0 0 rar,s2l,

(a,0)

or )

0.6) triangular 3 1 0 rer,

a,b>0
#
(0,0) point 1 1 1 r

group. Its character table is in Table V. Each element of W
corresponds to four elements of DT. The correspondences
are shown in Table V. The irreducible representations I,
['5, and I'; of DT coincide with T';, ', ', of W. Our nota-
tions I';, 7 = 1,...,5, for the representations of the octahedral
group are taken from Ref. 16. Table V contains as well a
sample element of each conjugacy class of DT and W, and its
SU(3) conjugacy class is identified” in the case of DT.

Table VI contains the decomposition of W orbits in the
weight lattice Q into direct sums of irreducible components.
Let us point out that the action of W is reducible under a
general linear transformation but cannot be further reduced
when it is confined to permutations of the lattice points.

We now consider the decomposition of the DT orbits
into direct sums of irreducible representations of DT. The
results are summarized in Table VII.

The analysis is simplest for the generic (hexagonal) or-
bit; we need to consider only the classes C, and C, that corre-

spond to Weyl class C,. We use R,* as the representative
element for C,. Its eigenvalue is ( — 1)™, where m, is the
SU(2) weight in the a, (horizontal) direction; thus the
eigenvalueis ( — 1)%( — 1)? ( — 1)?*? each for 2 states
of the orbit and the trace (character) for C, is 6n for a,b both
even, — 2n otherwise, as given in Table VII.

We can treat the two types of triangular orbit simulta-
neously by letting () stand for (0,b) or (5,0) according as b
is positive or negative. Then & is the second weight compo-
nent of the states of the orbit for which m, = 0. The classes
C,and C, are treated as for the hexagonal orbit and have the
characters given in Table VII. We must consider in addition
the classes C, and C," whose representatives we take as R,
and R R, respectively. Only the m, = 0 states contribute
to their trace; for them the eigenvalue of R, is ( — 1)” and
thatof R, is ( — 1)*/?, where s, is the representation label of
the SU(2) group in the «, direction (s, is even for such
states).

We will now derive a generating function for the char-
acters of the classes C, and C,’. The generating function for
SU(3)DSU2) xU(1) is

F(P,Q,S,Z) = [(1 =PSZ)(1 — PZ %)
X(1—=QSZ ""H(1L—0Z*] .

In the expansion of (4.9) the coefficient of PPQ4S*Z “is the
multiplicity of the irreducible representation (s,z) of
SU(2) xU(1) in (p,g) of SU(3). To convert (4.9) toa gen-
erating function for the C, characters we retain only the part
even in S [only even s representations of SU(2) contain an
m =0 state], set S?= — 1 [the eigenvalue of R, is
(—1)7%],setZ = \/—Bv and separate the result into non-neg-
ative and negative powers of B. The non-negative power part
turns out to be

(4.9)

TABLE VII. Decomposition of orbits of the Demazure-Tits group in an SU(3) representation (p,g) into the direct sum of irreducible representations
[y,...,['s of DT. A DT orbit is specified by an SU(3) dominant weight (a,b); n is the multiplicity of (a,b) in (p,q). It is known that for (0,0) weight

n =1+ min{p,q}; k = p — g mod 2.

DT orbit in (p,q)

Decomposition

Characters Multiplicities of irreps of DT group
Dominant
weight C, C, C, Cy C, r, r, r, r, s Restirictions
(a,b) 6n 6n 0 0 0 n n 2n o X a,b even
a,b>0 6n  —2n 0 0 0 e o : n n a,b not both even
3n 3n 0 0 0 n/2 n/2 n e = b, even
(0,6) In —n 0 0 0 e s s n/2 n/2 b odd, n even
for b>0 3n In 1 1 0 (n+1)/2 (n—1)/2 (n+1)/2 (n+1)/2 (n+1)/2 beven, nodd, p — q even
3n n —1 -1 0 (n—1)/2 (n+1)/2 " e ces b even, n odd, p — ¢q odd
(—5,0) 3n —n 1 1 0 s (n+1)/2 (n—1)/2 b,n odd, p — g odd
forb <0 3n - n 1 -1 0 (n—1)/2 (n+1)/2 b,nodd, p — g even
" n 0 0 0 n/6 n/6 n/3 n=0 mod 6
n n 0 0 ~1 (n—2)/6 (n—2)/6 (n+1)/3 n =2 mod 6
n n 0 0 I (n+2)/6 (n+2)/6 (n—1)/3 n=4modé6
n n 1 1 1 (n+5)/6 (n—1)/6 (n—1)/3 n=1mod6, k =0
(0.0) " n ~ 1 -1 1 (n—1)/6 (n+5)/6 (n—1)/3 n=1mod 6, k =1
n n [ I 0 (n+3)/6 (n—3)/6 n/3 n=3mod6, k =0
n ] 1 - 1 0 (n-13)/6 (n+3)/6 n/3 n=3mod 6, k =1
n n 1 1 ~ 1 (n+1)/6 (n—5)/6 (n+1)/3 v ne=5mod6, k=0
n n 1 - | -1 (n—5)/6 (n-+1)/6 (n+1)/3 o n=5mod®6, k =1
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1 1
(1—P?*Q? ((1+P3)(1+P23>
+ OB B Q’ )
(1+P?’B)(1—QB) (1— QB)(1+ Q%)
(4.10)

The coefficient of PPQ 9B * in the expansion of (4.10) is the
character of the class C, in the orbit (0,6) in (p,g) of SU(3).
The three terms in (4.10) never overlap (at most one con-
tributes to the character in each case) and the character is
(— 1) 9% forn odd, O for n even, as shown in Table VII.
To get the C,’ character, replace Bby — B in the generating
function, or equivalently, multiply the C, character by
( —1)° The characters for ( — 5,0) orbits are obtained
from the negative power (in B) part of the generating func-
tion with similar results, found in Table VII.

Finally we come to the (0,0) point orbit. The characters

ie, lforp=¢g=0mod3, —1 forp=¢=1mod3, 0 for
P =4q =2mod 3, as shown in Table VII. There is no point
orbit for p — g#0 mod 3.

V. THE DEMAZURE-TITS SUBGROUP OF B,

The irreducible representation (p,q) of the Lie algebra
B, [or Lie group Sp(4) and also O(5)] has the highest
weight po, + gw,; in particular, (1,0) and (0,1) are the rep-
resentations of dimensions 5 and 4, respectively. Similarly
(a,b), a,b>0, denotes a dominant weight or the Weyl group
orbit of the B, lattice containing (a,b); the multiplicity of
(a,b) in the weight system of (p,q) is denoted by n.

The multiplicity » of a dominant weight A" = (a,b) is
the coefficient of the term P?Q 94 “B* in the power expan-
sion of the generating function'®

.. 1
of C,, C,, C)', C, are found as before. In addition we now get -
nonzero contributions from C;. Since C, contributes nothing (1=P)(1 =P (1 Q%) (1—0B)
L. : . 2
to the characters of other orbits, its character for the point [ 1 + POB " Y
orbitis equal to that for the whole irreducible representation (1—=P°B*)(1—-P?) (1 —P)(1— 0%
of SU(3). It is given by the generating function'’ 04 5.1)
+ . .
(1—PQ)/(1-P*(1—Q%, (4.11) (1—Q*)(1—Q%4)
TABLE VIII The character table of the groups DT(B,) and W(B,). Subscripts of the class symbol indicate
the order of its elements. Here EFO denotes a B,-conjugacy class; IR is an irreducible representation.
Weyl group
Number of
Class 1 2 2 1 2 e:ments
. I r, ry ryraryr, ryr, ef:r;if\i
¢, c, c, c c,
T, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T,
T, 1 1 1 -1 -1 1 1 1 1 1 1 [ -1 T,
Ty 1 1 1 1 [ S T N 1 1 [ - -1 Ty
T, 1 1 1 -1 R IS T | -1 -t 1 1 1 1 1 T,
Tg 2 2 2 0 0 0 0 0 0o |-2 | -2 2] o0 0 Ts
1 [ -1 1 i - i -i |- -1 1 i - T
1 |- -1 ] =i i i i -1 1| =i i r,
1 I 1 -1 i - i -i ] -t -1 1] =i - Ty
1 L 1 -t - [ [ -1 1 i -i Ty
2 | -2 0 0 0 Tei f 10 f~t-i [-14if 2i | -2i | o 0 0 To
2 | -2 0 ] O | Ui | 1#i | =14i |-1-i]-2i 2i | o 0 ) Ty
2 -2 0 0 O | ~t=i | ~t4i | 14i 1-i] 2i -2i Q o] [¢] "
2 2 o] 0 O J~t+i | ~1=i| 1-i 1+i[-2i 2i 0 0 [+] ru
z 2 |-2 0 0 0 0 0 o | 2 2 2| o0 0 Ty
Gl GG e ||| c (2 IS N S O BN ?
Number of | tl2 e af2]2|2]2]; 1 2| 4| 4
EFO (ioo]{torolifoorjtoot}] (110]{[2011{(201] {{021]{[021]| [10] | [110] [olf (g (1)
"Z‘—- ~
o~ o ~
R:E:ievs: " - e o< S | ] T Il :— o« o[ = | Class
element s o< LR T o @ o« <
< < | T
Demazure-Tits group
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reC, (nr)eC, nr,eC,

FIG. 2. Action of representative elements of conjugacy classes of the Weyl
group of C, on weights of a generic orbit.

The character tables of the W and DT groups are given
in Table VIII. The character values of the five conjugacy
classes of W are found from the action of representative ele-
ments on the points of a generic orbit (a,b), a>0, >0,
illustrated in Fig. 2. Thus one finds the decomposition of the
Weyl orbits into the direct sums shown in Table IX.

We turn to the decomposition of DT orbits of an arbi-
trary irreducible representation (p,q) of B,. As usual the
analysis is simplest for the generic (octagonal) orbit (a,b)
witha > 0and b > 0;only the classes C » C5, C,', which corre-
spond to W class C; have nonzero characters. The weight
vectors are eigenvectors of these classes’ representative ele-
ments with the following eigenvalues:

I-1, RP=(—1)™ R2=(—1)™,

1

Here m, and m, are the SU(2) weights in the a; and a,
directions. Thus for R,* one has the eigenvalue ( — 1) for
the two top and two bottom states of each orbit, and
( — 1)** " for the remaining four in the middle of the orbit.
For R,” one has the eigenvalue ( — 1)* for all eight states. In
Table X one finds the decompositions.

For square representations [i.e., highest weights (a,0)
and (0,b), @ >0, b> 0] the eigenvalues of representatives of
the additional classes needed depend not only on the weights
of the states, but also on labels s, and s, of the representation
the SU(2) along the a,,a, directions. We use generating
functions to keep track of these additional labels.

First we consider the orbits (a,0), squares with horizon-
tal and vertical sides. The new classes are C, and C," with
representatives R, and R ,’R,, respectively. The characters
of the classes C,, C,, C," are found as for the octagonal orbits.
Only the upper right and lower left (1, = 0) states contrib-
ute to the characters of C, and C,”, for them the eigenvalues
of R, and R R, are, respectively, ( — 1)* and (—1)a+=,
We now derive a generating function for the characters of
the classes C, and C,".

The generating function for Sp(4)DSU(2)xU(1)
branching rules is

F(P,Q,S,,Z) =

1 Q2 )
(1=PZ* (1 —PZ ?)(1—0S,Z)(1 —QS,Z ) (1—10522 + 1-02)°

(5.2)

In the expansion of (5.2) the coefficient of P?Q S,”Z* is the multiplicity of the representation (55,2) of SU(2) xU(1) in
(p,q) of Sp(4). To convert (5.2) to a generating function for half the C, character (because two states contribute), we retain
the partevenin S, [only odd-dimensional SU(2) representations have even valued weights, in particular, the weight m, = 0].

Then weset S, = — 1 [the eigenvalue of Ryis ( — 1)**],andset Z? = 4 and keep only the positive power part in 4. The re-
sult is
1 1 4 ____P 2
(I=PH(1+P)(1+Q°4) \1—P4 -0

Twice the coefficient of P?Q 94 “ is the character of C; for the orbit (4,0). To get a generating function for half the (o
character substitute 4 — — 4 in (5.3) or, equivalently, multiply the C, character by ( — 1)“. The coefficients of the expan-
sions have been evaluated and the results are summarized in Table IX. We give below the multiplicity 7 of (a,0) orbits,
obtained from the generating function (5.1) with B = 0, for all six cases gisevenand p + lg>a:

(D) D> sg>a, p — aeven, n=1+4pg+p+q—a),
(2) P, i9>a, p —aodd; n=4pg+p+qg—a’+1),

(3) p>azly, p—aeven; n=10g+3) +ip-a)g+1) +1, (5:4)
4) p>a>3, p —aodd; n=10g+3) + (P -a)g+1)+1), -
(5) lg>azp; n=ip+1D(p+qg—2a+2),

(6) aziq, p; n=ip+ig—a+D(p+lg—a+2).

TABLE IX. Decomposition of the orbits of the Weyl group W(B,) acting as a permutation group on the B, lattice. Characters of each class on the orbit are
shown.

Characters
W orbit hape C, C, C; Ccy C, W orbit decomposition
(a.b), ab>0 octagon 3 0 0 0 0 Coel,el,al,e20,
(a,0),a~>0 square 4 2 0 0 0 Fel sl
(0.6Y. b~ 0 square 4 0 2 0 0 Coel, el
(0,0) point 1 | 1 1 1 r,
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TABLE X. Decomposition of the generic (octagonal) orbit of DT( B,) into a direct sum of izreducible representations.

a,b> 0, in the representation (p,q) of B,.

nis the multiplicity of the orbit (a,b),

Nonzero

characters Orbit decomposition Restrictions
C, G (o5
8n 8n 8n n(Cele el e200) a,b even
8n — 8n 0 n(Cyel,el,al,) b odd
8n 8n — 8n nyel,elyeMye2l,,) a odd, b even

For the square orbit (0,6), with diagonal sides, the
classes with nonzero trace are C,, C,, C,, C,, C,”, C,”, and
C,". Thecharacters of C, C,, C,’ are found as for the octago-
nal orbit. We take the representative elements of C,’, C,”,

4", and C," to be, respectively, R,, R,>, R,R,>, R,’R,".
Only the top and bottom (m, = 0) states of the orbit con-
tribute to their characters; the eigenvalue of R, is ( — 1)"
and that of R, is ( — 1)” for these states. We now derive a
generating function for the characters of the classes in ques-

tion.
The generating function for Sp(4) DSU(2) xSU(2)

branching rules is

F(P.Q;S,,U)
= [(1=P) (1= PS,U) (1~ 0S)) (1 — QU)] .
(5.5)

In the expansion of (5.5) the coefficient of P*Q %S,* U “is the
multiplicity of the representation (s,u) of SU(2) X SU(2) in
(p.g) of Sp(4); here s, is the SU(2) representation label
(highest weight) in the direction of &, and u is the represen-
tation label in the a; + 2a, (vertical) direction. To convert
(5.5) into a generating function for half (because two states
contribute) the C,’ character, we retain the part of (5.5) that
is even in S, [only even s, representations of SU(2) have
states with m, = 0]. Set S, = — 1 [the eigenvalue of R, is
(—1)*], multiplyby (1 — U ~2)(1 — U ~'B) and keep the
U part (thereby retaining only positive u weights, which are
just the orbit labels). The result is

1 1
(1+P*)(14+0% [(1 —P)(1+ P2Q?)
0B Q?
(14+PQ*)(1—QB)  (1—-QB)(1—Q?)

(5.6)

Twice the coefficient of P?Q “B " is the character of C,’ (and
C,") for the orbit (0,6). To get a generating function for half
the characters of C,” (and C,”) for the orbit, substitute
B— — B in (5.6) or, equivalently, multiply the C," char-
actersby ( — 1)°. The coefficients have been evaluated (they
take only the values + 1 and 0) and the result is found in
Table XII, along with the reduction of (0,6) to the direct
sum of irreducible representations of DT. We give below the
multiplicity n for (0,b) orbits, obtained from the generating
function (5.1) with 4 = 0. For each case g — b is even and
p+g>b.

(1) peven, g>b;
n=lp-B+2)B+D+ (-1 (r+1)

(2) podd, ¢>b;

n=4p-56+1D@+1)+(p—c+1)(e+1)

+@+D@-m1,
(3) peven, q<b;
n=4[(p—B—-E+2)(B—E+1)

+pp—y—-Wy—-£E+D],
(4) podd, g¢<b;

TABLE XI. Decomposition of square orbit (2,0) of DT(B,) into the direct sum of its irreducible representations. Only nonzero characters are shown. The

values of the multiplicity » are given in (5.4); @ = ( — D (p+ig—a+2),8

=(-D(p+lg—a+1),y=p+2,8=p+1.

Characters
C, C, (054 Cy C, Decomposition Restrictions
4n 4n 4n @ a (n+la) (M@l e (n—la)(T,o ) @2l azlq, aeven, p+ lgeven
4n 4n 4n - -8 Gn—1B(T el e (in +1B)(Mel,) 2l arlq, aeven, p + lgodd
4n 4n — 4n g —B Un—B)(TeaTy) e (ln+ ta)(Tyaly) a 2ry, a>lg, aodd. p + lgeven
4n 4n ~4n - a (n+ja)(Tea Ty @ (in—la)(Tya ) 2, axlg, aodd, p+ lgodd
4n 4n 4n ¥ ¥ Un+iy)(Tyely) e (bn—iy)(Tye M) @2l a<lqg, waeven, p-+ lgeven,peven
4n 4n — 4n P —p (n—D(TeaT) e (n+ p)(FyaTy) @2l a<lg, aodd, p + lgeven, p even
dn 4n 4n p p Gn+p)(Cye Ty e (e~ I(Fya0y) 200 a<lg. aeven, p+ lgodd, peven
4n 4n ~ 4n Y oo—¥ Gn = iy(Fea T @ (n+ I(FyeTy) @20, a<lg, aodd, p + g odd,p even
4n 4n n -5 =0 (n = 16N s T s (ln+ 160, e @20, a<lg, aeven, podd
in 4n dn O S Gn+ 0T e Ty 8 (n~ 1) (Dya M) » 20, a<lg, aodd, podd
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TABLE XII Decomposmon of square orbit (0,b) of DT(B,) into irreducible representations of DT(B,). Characters not shown are 0. Values of the

multiplicity » are given in (5.7). For p>b, we have
a = + 1, for (pmod 4, gmod 4, b mod 4) =

(0,0,0),(0,1,1),(0,1,3),(0,2,2),(1,0,0),(2,2,2);

a = — 1, for (p mod 4, g mod 4, b mod 4) = (1,2,0),(2,0,2),(2,1,1),(2,1,3),(2,2,0),(3,0,2);

a =0, otherwise.

For p < b, we have
a = + 1, for (p mod 4, g mod 4, b mod 4)
a = — 1, for (p mod 4, ¢ mod 4, b mod 4)
a =0, otherwise.

= (0,0,0),(0,1,1),(0,2,2),(0,3,3);
= (2, 2:0))(2)37’)v(21012)y(2yl)3);

Characters

C, C, C; c,Cy cr.cy Decomposition Restriction

4n 4n 4n 2a 2a n+a)(Tyely) +4(n—a)(Tyaly) +nls beven

4n —4n 0 2a —2a n+a)(Tyely) +in—a) (T8l b odd
n=4(p-56—-E6+1D(-E+1) ‘ (— 1), for p=0 mod4, ¢=0 mod 4;
+(p—e—E+ D=+ D] 57y — (=D forp=1mod4, ¢=0 mods
(—1D@=24" for p=1 mod4, g=2 mod4;

In the above

— (=192 for p=2 mod4, ¢=2 mod4

0, otherwise.

2] el )
o). o]

(1+PQ%/(1

Finally we turn to the (0,0) point orbit. The characters ~ Which implies

c, C,C/,C/,C,", C", and C,” are found as before. In
addition we now get nonzero characters for C,”, C,", C,"*,
Cy, and Cy'. Since their characters are zero for the other
orbits, their characters on the point orbit are equal to those
on the whole representation of the B, algebra. Thus they are
given by the generating functions of Ref. 17 (replacing the
variables 4 and B by Q and P, respectively):

=pg+p+q) +1,
=lp+D(g+ 1),

—P)(1-P*)(1-0?%72,

for p even,
for p odd .

There is no point orbit for g odd. The generating function for
the multiplicity of the point is

(5.8)
(5.9)

»
The decomposition of the point orbit into irreducible repre-
sentations of DT is given in Table XIII.

(1+P)(1+PQ%

(l ___P2)2(1 +Q2)2 ’

(1 —P)(1+ PQ?)

(1=PH(1+ 0%

For C;, C,”, C,"" we find the characters,
(—D?(4p+1ig+1), forpeven,
(—D?(p+1), forp odd.

For Cg and Cy' we find the characters

for C},

for Cg, C} .

C UH

VI. THE DEMAZURE-TITS SUBGROUP OF G,

As in the previous two cases, (p,q) = pw, + qw, is the
highest dominant weight denoting an irreducible representa-
tion of G,. In particular, (1,0) and (0,1) are the representa-
tions of dimensions 14 and 7, respectively. A dominant
weight (a,b) = aw, + bw, denotes the W orbit in the G,-
weight (and also root) lattice containing it, as well as the DT
orbit of subspaces in the representation space labeled by the
highest weight (p,g). Naturally one assumes that
(a,b)e)(p,q), otherwise our problem is trivial.

TABLE XIII. Decomposition of the point orbit of DT(B,) into its irreducible representations. The values of n are given in (5.9). a = ( — 1)??

XUp+ig+D,B=(—=1D)"Wp+ 1), y=2(—

l)q/4 b 2( . 1)(:; 2)/4

Nonzero multiplicities of irreducible DT (B,) representations

(pg)

r, r, r, r, I mod 4
Kn+pta+y+4) Wn—p+a-—y) n+p+a—yp n—pt+a+y—4) Hn—a) (0,0)
Wn+p+a) Hn—p+a) n+p+a) Hn—p+a) n—a) (0,2)
n—p+pB—y+1) n+p+B+y+ 3 Hn—p+pf+4+y~13) Hn4+p+B—-y—~1) n—=pB) (1,0)

M n—p+pB+86-3) n+p+p-56-1 Kn—p+B—-8+1) n+p+B+86+3) in—p) (1,2)
Mn+pt+a+2) Mn—p+a-2) Hn+p+a+2) Hn—p+a-2) n—a) (2,0)
Hn+p+a—~8-2) n—p+a+d-2) Hnt+p+a+d+2 n—pt+a—-5+12) L(n—a) (2,2)
n—p+pB-1) Wn+p+pB+1D n—p+p-1 nt+p+pB+1) Y —f) (3,0),(3.2)
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TABLE XIV. Character table of the DT(G,) and W(G,) groups. Repre-
sentative element of each conjugacy class is shown. Subscript on class sym-
bolis the order of its elements. Conjugacy classes of G, are given as EFO. IR
is an irreducible representation.

ke

The multiplicity n = mult,, ,, (a,b) of a weight (a,b) in
the weight system Q(p,q) is also the multiplicity of the DT
orbit. It can be found either in the tables of Ref, 13 (for the
lowest 100 representations) or it can be calculated using the
G, character generator, Eq. (2.7) of Ref. 18. There in order
to conform to present notation the following substitutions
should bemade: 4 —Q, B~ P, —~AB ~*?2 £ . B /% then the
coefficient of the term P?Q 94 °B* (a,b non-negative) in the
power expansion of the generating function is the multiplic-
1ty n.

The character table of the Weyl group W(G,) and the
Demazure-Tits group DT(G,) are found in Table XIV.

First consider W acting on the G, weight lattice. Repre-
sentative elements of the W-conjugacy classes are

Cy I, Cy (rr)?, Cy:r,

, 6.1
G ry Gy (nn)? Cy (61

rr, .

The subscript on a class symbol is the order of its elements; 7,
and r, are the elementary reflections (2.1). The traces of

TABLE XV. Decomposition of the Weyl group orbits of the G, lattice.

Weyl group
Class 1| (e "2 "t (ryry?| myry ?1:;:::“““" Ie < (n r‘2)3 € Cz e C;
R s
I s | s 2 |2 [N St
IR c! Cz c; C; CJ CS
T I ENERE NN ENE 1 [ T,
I', 1 1 -1 -1 -1 -1 1 1 1 -1 Tz B e
Ty L ST I T AT YT IO I 1 1 Ty
T, U R ST LT IR (R IS o T, R
Ts 202|220 loflo]o]- 1 T B ,
Te 2 (2|2 )20 fofofo -1 [- Te rneC, (nr) eC, nrneCq
-t |3 {1 o |o T,
LI S - T EL T I T S A 0 0 Ty FIG. 3. Action of representative elements of conjugacy classes of the Weyl
C 2 I e B R AR B I o o Ty group of G, on weights of a generic orbit.
3 -t 3 f=1t 1 |-r 11 o [o To :
GG el eyl | e |c R
Vements’ |t fale|s|s]6| 8 |8 classes of each type#are easy to determine as before: each
£F0 (100]{oo1 ]j{oo1 Jj{oo1 1} (001 i1 10]jloot {201 | [101] [(111] *point of the orbit that is not moved by the representative
Representative A element contributes 1 to the trace. Hence it suffices to see the
element r . Class action of the representative of each class on Q( G,). It is
y i N
PO N P O B T < shown in Fig. 3.
REAE- BN c e | £ i i i
= I = Consider the generic, or dodecagonal, orbit (2,6), a > 0,
Demazure-Tits group

b> 0, of the Weyl group in the G, weight lattice Q. The class
C, has trace 12, while all other classes have trace 0. Hence
one has the decomposition (a,b) =T 1o,e;el,
® 2I's ® 2I's as shown in Table XV. Similarly for the hexag-
onal orbit (4,0), @> 0, the class C, has trace 6, the class C,’
has trace 2, and all other classes have trace 0. We find the
decomposition (a,0) =T, @, e 'se T (cf. Table XV).
For the other hexagonal orbit, (0,b), 5> 0, the class C; has
trace 6, the class C,” has trace 2, and the others are 0. The
decomposition is (0,b) =T", @ I', ® ['s ® . Finally for the
pointorbit (0,0) each class has trace 1 so that its decomposi-
tionis (0,0) = I',. The decomposition of Weyl group orbits
of Q(G,) is summarized in Table XV.

Next let us consider the DT group acting on the weight
vector basis of ¥, , A = (p,q) and let us find the decomposi-
tion (3.11).

We consider first the generic orbit (a,b), a>0, b>0,
which appears with multiplicity # in ¥V s.0) - The classes with
nonzero traces are C, and C,. The trace of C, is 12n. For C,
we have the representative element R,2 its eigenvalue is
(— 1)™, where m, is the SU(2) weight in the a, direction.
The values of |m,| at the 12 points of the orbit are a, a + b,

Characters of classes

W orbit on
G, lattice Shape C, C, C; cy C, Cq Orbit decomposition
(a,b)
ab>0 dodecagonal 12 0 0 0 0 0 Fel,eMele2le2l,
(a,0)
a>0 hexagonal 6 0 0 2 0 0 Felelsal,
(0,6)
b>0 hexagonal 6 0 2 0 0 0 Nel,el,al,
(0,0) point 1 1 1 1 1 1 r,
791 J. Math. Phys., Vol. 29, No. 4, April 1988 Michel, Patera, and Sharp 791



2a + b, each 4n times. Hence the trace for C, is 12 for a,b R, and R,’R,, the representative elements of C,and C,”,

both even, and — 4n otherwise. Hence one has the decom- respectively, are those with dominant weight (¢,0) and op-
position as given in Table XVI. posite weight ( — @,0). On these states the eigenvalue of R,
The hexagonal orbit (a,0), @> 0, has two horizontal is ( —1)'"?, and that of R *is ( — 1)*: |m | takes the value
sides; the classes with nonzero character are C LG, G, Cy, 2a, where (s,m; ) are the representation label and weight of
as follows from Fig. 3. The trace of C, is 6n. For C, the trace the first SU(2) subgroup and (,m, ) those of the second.
is6bnifaiseven, and — 2nifaisodd. We will derive generat- The even-even part of the G, DSU(2) x SU(2) branch-
ing fungtions for traces of C,” and C,. Orient the ing rules generating function is found from Ref. 18, Eq.
SU(2) X SU(2) subgroup of G, so that a, points in the di- (3.1) (to conform to our present notations, the substitutions
rection of the second SU(2) root. The states not moved by A—Q and B— P should be made):
]
3¢2 3Q2g2 3g22
F(PQ;S*T?) = - > 1 5 ppy— L+PQO S +,Q,ST +€QST
(I=P)(1=PS*)(1 = QT*)(1—Q°S°T?) (1-0°5%)(1-07)
PT? 4+ PQT* + P2QS°T* 4+ PQ’S°T? N P’S°T° 4 P3S°T® 4+ POS°T* + PrQS*T 0 ]
(1-02)(1—PT?) (1 —PT?) (1 —P°S°T®) '
(6.2)
Because R, = ( — 1)"/?, weset 7> = — 1. The result is
1 1 P
F'(PQS?) = [ - s 5
Q (1—=PH(1+Q) L(1—-PSH(1 —Q0H(1+Q%S*)  (14+P)(1—PS?)(1 -Q?)
B PQ + PQS*
(I+P)(1-Q*(1+Q°S? (I+P)(1—-PS*)(1+Q°5?)
- PS*+Pos | (63)
(1+P3S*)(1—PS?) (14075 ] '

Finally we convert this generating function for SU(2) representations to the corresponding one for non-negative SU(2)
weights (or G, orbit labels, since @ = im_) by computing
F'(P,Q;S?)

G(P,QA) = _
(Fe4) (1—8(1—524) s

1 1
“1+Q[u—mu—P%u—Qﬁu—m>

024 P
CU=PHA QYA —PO(+0A)  (1—PH1 -0 (1 —PA)
B PQ N PQ
(I=PHA+P)(1 =01+ Q%)  (1—P)2(1+0%) (1 +0°4)
N PQA 3 P2+ P3Q
(1=P(1—PA)(1+Q%4) (1—PH(1—P)(1+ 0 (1 —PA)
P24 + P304 P2Q%4 — P3Q4?

- a 2 ot a 2 2 : (6.4)
(I=PH(1+PA)(1—PA)(1+Q%4) (1—P Y1+ Q) (1 —PA)(1 +Q34)

TABLE XVI. Decomposition of G, orbits of the Demazure-Tits group DT in a representation (p,q) into a direct
sum of irreducible representations T',,..., [, of DT. An orbit is given by a G, dominant weight (a,b): n is the
multiplicity of (a.6) in (p,g). Notation: ¢, d, e, f, g are the coefficients of the term P 7Q 94 “B * in the power series of
Egs. (6.5), (6.8), (6.9), (6.10), (6.11), respectively; X . = (n +e)/12,Y, =(d+c)/4,Z, =(f+g)/6.

DT orbit in (p,q) Decomposition
Dominant Characters Hultiplicities of irreps of DT(G,)
i ] " e v '
weight G G GG CFCYC G CyCfT, T, Ty T, Tg TgT, Ty Ty Ty
(a,b) Ja,b even [12n12n 0 0 0 0 0 0 0 ol n n n 2n 2n O o] 4] 0
a,b>0lotherwise|12n -4n 0 0 0 0 0O 0 0 0} 0 0 0 0 0 n n n n
(a,0) |a even 6n 6n 0 0 2c 0 2c 0 0 o [M4S 05€ Do i n oy 6 0 o
a odd Sn-2n 0 0 -2¢ 0 2¢0 0 0/0 0 0 0 o o W€ nscnte nc
(0.b) |b even 6n 6n 0 0 O 2d 0 24 0 o |ntd n+d nd n-d p n 0 0 0 0
) 2 2 2 2 n+d n+d n-d n-d
b odd bn-2n 0 0 0-2d 02d 0 0|0 0 O O O 0 3 5 5 S
+ +
N . |
(0,0) n n e e ¢ d4 ¢ d f g J’; ':-ll . ':J ! N* 0 0 0 0
:: e 7 > ’\[Jl '+
+ + Y x >
> bad » » ~N o~
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The symbol |5 indicates that only the Oth power of S term of (6.4) should be retained. The power series expansion of

G(P,Q;A4),
G(P.QA) = SPrQid e, ,

Pqa

(6.5)

states that the trace of class C, is 2¢,4, for the orbit (a,0) in (p,q); for C," the trace is 2( — 1)%,,,- The factor 2 appears
because two states contribute to the trace. The decomposition of the (a,0) orbit is shown in Table XVI.

For the hexagonal orbit (0,0), b > 0 (two vertical sides), the classes with nonzero trace are C,, C,, C,", C,. For C, the
trace is 6n. For C, itis 6n for beven, — 2n for b odd. We derive generating functions for the trace of C,” and C,, using the rep-
resentative elements R,’R, and R, respectively. Orient the SU(2) X SU(2) subgroup with the first SU(2) root alonga, of G,.
The states not moved by R, and R,’R, are those with weights (0, + b). On these states the eigenvalue of R (s (— 1) [sis

the first SU(2) representation label] and that of R,%is ( — 1)*

; |m, | takes the value 2b [m, is the second SU(2) weight].

Because R, = ( — 1)”?, weset S” = — [ in the generating function (6.2) with the result
1 1 or?
F'"(P’ ;TZ) = 2 2 k 2 J
¢ (I=PHU+Q°T) L(1-Q2)(1+Q%)  (1+0)(1-QT?
P2T® P—PT?>—p2T*

(6.6)

A= OTHA+PTY  (+PTHU 1P (P07

PQ* }

Finally we convert this generating function for SU(2) representations into the corresponding one for non-negative weights

(or G, orbits labels, since b = Im, ) by computing

F"(PQ,T?)
HBOB = =12 T72B) |
1 [ 1+0+0° P’
140 La-PHA+0)(1-0Y T UrP(1—PYH(1109
P2 PQ>

(1 —PH1—0Q)(1+0?)
PB4+ P?B’4 P'B®

_f_
(14+P)(1—-P*)(1—-0Q%
PB+P2B+P2B2+P3B3+P“B3—P3—P3B

C(=PH(1—-Q)(1+PQY)
OB

(1+P)(1—-P*(1+P2B?)

2p3
P°B 6.7)

’ (1=PH(1=)(1+Q)(1-0B) (1—P3(1—Q)(1 —QB)(1+P°B%) ]

The power series expansion of H(P,Q;B),

H(P,Q,B) =ZP”Q"B *d s s (6.8)
rab
gives the trace of the class C, for the orbit (0,b) in the G,
representation (p,g) as 2d,,; for C,” the trace is
2( — l)”dpq,,. The decomposition of the orbit (0,b) is given
in Table XVI.
Finally we deal with the point orbit (0,0). All classes
can now have nonzero trace. The traces of classes C 1 Gy,
" G, Cy, C,’ are computed as above for the hexagonal
orbits. Thus the trace of C, and C, is 1, the multiplicity of the
orbit. A generating function for 7 is obtained from (6.2) by
setting.S = 7' = 1, since each even SU(2) X SU(2) represen-
tation has just one state at the origin; # for (p,q) is the coeffi-
cientof P”Q ?in the power series expansion. For C,”and C,
the trace is ¢ = ¢, the coefficient of PQ 74 * in the expan-
sionof (6.4). For C,” and C, the trace is d = d .0, the coeffi-
cientof P?Q “B " in the expansion of (6.7). Since the remain-
ing classes have zero trace for all but the point orbit, their
trace for the point orbit is their character in the whole irredu-
cible representation (p,g). Accordingly we can get it from
the known generating functions for the characters of the cor-
responding G,-conjugacy class of clements of finite order in
G,, Ref. 17. For Cy" and C,” we have
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{

1
PPO9% —

;q: Qe (1+P)(1=PH*(14+ Q)% (1 —0?%)?
X[1+P—2PQ— P2Q — PQ>
+Q°+2P%Q —2P%Q? 4 2PQ3
_+_P4Q__P3Q2__P2Q3__2P3Q3

+PQY 1 PO (6.9)
For C; we have
. 1
PI’Q‘{ 74 - ) 2
; =P (14040
X[1+P+20+20°+PQ° + PQ
+ Q'+ P'Q+ PIQ?
+2P4Q:+P‘Q‘+2P’Q!
+ P'Q* + PYQ"]. (6.10)

For C, we have
S PO,

rq
=) =P+Q-PQ+PQ - PiQ})
(1=P"(1 -0

(6.11)
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Our result, the decomposition of the point orbit, is given in
Table XVI.

Vil. CONJUGACY CLASSES OF ELEMENTS
GENERATING THE DEMAZURE-TITS GROUPS

In this section we consider the elements R,,
ke{1,2,..,I}, which generate the Demazure-Tits group
DT (G) up to equivalence transformation by the simple con-
nected Lie group G, and identify the G-conjugacy classes to
which they belong. Since part of that has been done already
in Ref. 7, here we just complete Table III of that article.

First let us show that R, , ke{1,2,...,/}, are rational ele-
ments in any G. (An element is rational if its character val-
ues for any representation of G are integers.) Consider
R, e€SU, (2)eG, and the subgroup SU, (2) whose simple
~ root is @, . The character value of R, for any representation

A(G) of G is by definition its character for the subgroup
representation A(SU, (2))CA(G). Then recalling®'’ that
R, is arational element of SU, (2), it has to be rational also
in G.
We know” that all R, are of order 4 and that those R
“corresponding to simple roots a, of the same length are G
conjugate, while any two R, corresponding to roots of dif-
ferent lengths are not G conjugate. Therefore here we have to
identify one conjugacy class of elements of order 4 in D,, E,,
E,, and Eg and two such conjugacy classes in F,. For all other
cases the conjugacy classes were found.” All the conjugacy
classes of R, are shown in Table XVII.

From now on we assume the conventions and results of
Ref. 7. In particular, elements of finite order in G are de-
noted by relatively prime non-negative integers attached to
the nodes of extended Coxeter-Dynkin diagram; we use the
Dynkin numbering of the nodes (cf., for instance, Ref. 7 or
Ref. 13). It is not difficult to list all conjugacy classes of
elements of order 4 in any G. Thus, for example, there are
only seven such classes of elements in E;. Since this is clearly
the most complicated case we have to face, we illustrate in
this example how one can proceed.

Let geEg belong to one of the seven Eg-conjugacy classes
of elements of order 4, g* = 1. Note that all E, representa-
tions are self-contragredient. Therefore g and g~ ' = g are
conjugate, g ~g>. That is, all powers of g relatively prime to 4
are conjugate to g. Consequently,’ the character y, (g) of

TABLE XVII. G-conjugacy classes of elements generating the Demazure—
Tits group and their second powers. Subscript short (long) corresponds to
short (long) simple roots of a simple Lie algebra.

G Rlong R img Rkh@n thor:
A4, [11] [01]
A, 132 [210---01] [010---01] :
B, 132 [2010---0] [0010---0] [110---0] [010---0]
C, >3 [210---0] [010---0] [2010---0] [0010---0]
D, >4 [2010---0]  [0010---0]
E, [2000001] [0000001 | .
E, [21000000] [01000000] .
Ey [210000000] [010000000] o
F, [2100] [0100] [2001] [0001]
G, [210] [010] [101] [010]
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any element of our seven conjugacy classes is an integer in
any representation A of Ej.

Since all eight R, , ke{1,2,...,8}, are E, conjugate, it suf-
fices to consider only, say, R,. In adopted conventions the £ s
simple roots are numbered as

o—o——o—-o—i—a:)—o
a, a, a, a, Qs Qg a4

Let us find the character value y ,q, £,y (R;) of R, on the
248-dimensional (adjoint) representation Ad(Ey). But 4, is
orthogonal to the diagram with @, removed. That is, the
diagram of E, (its dimension is 133) on which the SU(2)
with simple root a, acts trivially. Otherwise R, sends 4, to

— h, and merely transposes the remaining root vectors in
pairs which contributes nothing to the character. Therefore
one has

Yaacey (Re) =132, ke{1,2,...,8} .

Next we find which of the seven elements of order 4 in E
has that character value on Ad (Ejy). It turns out that there is
just one such element [21000000]. Using the extended dia-
gram, it is given as
o—o—o—o——o—zjo——o

2 1. 0 O O O o0 o

In order to verify that its character is indeed 132, one can
consult the table of positive roots of £z (pp. 62 and 63 of Ref.
13), this time reading the roots in the simple root basis (a
basis). We need to know only the a, coordinate of each root.
That coordinate takes only five values + 2, + 1,0, negative
values occurring for negative roots only. An Eg root with the
a, coordinate m contributes’ to the character value
exp(27im/4). Moreover since the character must be in-
teger, the values m = 1 and 3 can be disregarded; they must
cancel out. Among the positive roots one finds 63 times
m = 0 and once m = 2; the negative roots contribute simi-
larly. Adding the eight zero weights of the adjoint represen-
tation as another m = O eight times, one gets the character as
132. In the same wgay, but much more quickly, one can deter-
mine the rest of the conjugacy classes of R, in any other
simple G.

Viil. CONCLUDING REMARKS

The Weyl group has been the most important device in
virtually any extensive work with representations of high
rank (> 1) simple Lie algebras/groups. The higher the rank
the more difficult it is to proceed without it.

Physical states “live” in representation spaces rather
than in spaces populated by roots of an algebra or weights of
its representations. Consequently, the symmetries of the
Weyl group are no more than an (homomorphic) image of
the general symmetries of physical states. Moreover, inter-
esting problems at any period of time are usually at (or be-
yond) the limits of what one can calculate with present day
methods. Therefore using only the Weyl group is helpful but
one can often proceed much more effectively.
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A motivation to carry out large scale computations is
often present in physics but only rarely in mathematics. That
is perhaps the reason that a tool of prime importance like the
Demazure-Tits group has been relatively little studied by
mathematicians.

This independent sequel to Ref. 3 is an attempt to par-
tially rectify the situation. The principal results are the fol-
lowing: Description of the DT in the classical series of simple
Lie groups and G,; identification of the conjugacy classes
(under the Lie group action) of the elements generating DT;
finding the character table of DT in simple Lie groups of
rank 2; and decomposition of all finite-dimensional repre-
sentations of rank 2 Lie groups into direct sums of irreduci-
ble components of DT.

There remain unsolved other equally interesting prob-
lems involving DT. We name a few.

The character tables of DT group in simple Lie groups of
rank > 2. An extension of known character tables of W to
those of DT, as exemplified here for rank 2, is possible and it
may not even be difficult.

Thesstructure of DT in E, E,, E,, and F,. The following
appears to be true: DT(E, ) CDT(E, , ,) for k =6 and 7.
The homomorphism DT(E, ) = W(E, ) is nonsplit.

Branching rules for Lie groups of rank > 2 to DT. The
multiplicities of Weyl group orbits in corresponding weight
systems are either known'” or can easily be found right now
for every case which may conceivably ever be needed.

Integrity bases of invariants and covariants of DT. Their
description along the lines, for instance, Ref. 16 is possible at
least for lower ranks.

Let us finish the article with a remark concerning the
action of DT(G) on a generic orbit ¥, w (A 7). Its dominant
weight 4 © = (4,,...,4;) has only trivial stabilizer in W;
equivalently, A * has no zero coordinates in the basis of fun-
damental weights, 1, > 0 for any 1< j</. The decomposition
(3.11) in this case depends only on the values A; mod 2,
1< j</and not on the highest weight A of any representation
of G.

The only elements of DT(G) which have nonzero trace
on ¥y (4 *) arethe 2’ elements which are mapped under ¢ '
of (1.2) to the identity element of W. All other elements of
DT move every vector of V. (4 ). The 2’ elements are of
the form

!

I RH* 8,=0 or1.

i=1
The eigenvalue of R, acting on any vector of weight
Zymew, isjust ( — 1) The weight component m; is also
the SU(2) weight in the o, direction.

The eigenvalues of all elements of DT with nonzero
trace thus depend only on the weights of the orbit. Their
characters and hence their orbit decomposition, therefore
depend only on the parity of A, ’s.
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APPENDIX: A SUMMATION FORMULA
Here we derive the following identity:

E(= D (g —x)!
=o  xl(g—2x)!
which we have not been able to find in the literature. The
right-hand side is the character of the conjugacy class [111]
of elements of finite order in SU(3) on the irreducible repre-
sentation (p,g), p>q, p — ¢ = 0 mod 3, as given in Ref. 17,
and used in Sec. I'V of this paper. We may represent the EFO
by R\R,, an element of DTCSU(3) belonging to the DT
class C;. Since it has trace 0 on all but the point orbit, its trace
for the point orbit is also given by the right-hand side of
(A1). We show below that it is also given by the left-hand
side of (A1).

The zero-weight space V,,, (0,0) is of dimension
g + 1. It is spanned by the ¢ + 1 vectors which can be writ-
ten'? as

[x) = (qy*)*(EE*)9—*(nél) P~ 73,

=(g+2) mod3 —1, (A1)

x=01,..,,

(A2)
where 7, £, { are the three weight vectors of the SU(3) repre-
sentation (1,0) of weights (1,0), ( — 1,1), (0, — 1), respec-
tively; n*, £ *, £ * are the weight vectors of the representation
(0,1) with weights ( — 1,0), (1, — 1), (0,1), respectively.
We eliminate § * of weight (0,1) by means of the syzygy
¥+ E6* 4§60 * = 0 (the scalar py* + ££* + £ * never
appears in these states). The action of R|R, is to permute
néG and p*& *£ * cyclically. Thus (A2) becomes

R\R,|x) = (§E*)*( — my* — EE*)1— X (nél) P~ 73
=(— 1)q—x(n§§)<p-—q)/3 qz_:x (gé-*)q—a
o =0
(g — x)!
al(qg — a —x)!
(g —x)!

= 1)~ .
(D) ;Ia)a!(q~a-x)!

The contribution of |x) to the trace is the coefficient of |x)
on the right-hand side of (A3) and the complete trace is
hence the left-hand side of (A1).

X (qm*)*
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