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Résumé. — Les défauts de symétrie d’un milieu ordonné qui sont topologiquement stables, sont
classés par des groupes d’homotopie. A titre d’exemple, nous établissons une classification compléte
de ces défauts de symétrie cristalline.

Abstract. — Topologically stable symmetry defects in ordered media can be classified by some
homotopy groups. As an example we establish a complete classification of such defects for crystals.

Two of us, G. T. and M. K., have proposed [1]
a classification of elementary stable defects by the
homotopy groups of the manifold of states. In this
letter we will give a more systematic approach and
present some applications of this classification, parti-
cularly for crystals.

1. — Let G be the symmetry group of the physical
laws governing a thermodynamical system M. Among
the statistical equilibrium states of M, there generally
exist not only a phase with symmetry G, but also other
phases with less symmetry : in a perfect state (i.e.,
without defects, and idealized as an infinite system)
such a phase is invariant under a subgroup H of G :
the action of G on this state yields an orbit G/H of
states with identical physical properties: this orbit
is the manifold of states of ref. [1]. If there are defects,
H invariance is only local : different domains of M
correspond to different points of the orbit G/H (i.e.,
these different local states are transformed into each
other by G). Ideally, this situation defines a function
@, taking its values in G/H, at each point of the conti-
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nuous medium outside the defects. (These considera-
tions also apply to any model of statistical mecha-
nics in a space of dimension d.) The restriction of the
function ¢ to an r-dimensional sphere S, defines a
homotopy class «, en,(G/H). If «, = 0, en,, the func-
tion ¢ can be extended to an (r + 1)-dimensional
disc bounded by S, and, on this (contractible) disc,
this extended function is homotopic to a constant,
i.e., to the function of the perfect state. When o, # 0,
S, encloses a topologically stable defect of dimension
d =d—1—r. If o, =0 for all r such that

O0<r<d-1,

then by continuous deformation the state of the
system can be made perfect in the interior of the
sphere S;_, (d = 3 in our space). When some =, are
nontrivial, there is a topologically stable defect
(= t.s. defect in this letter).

We are naturally led to a classification of t.s.
defects ; of course such a classification cannot depend
on the base point chosen for computing the homotopy
classes. In all applications G will be a Lie group
(which might be of dimension zero, i.e., discrete):
when G and H are connected, G/H is n-simple for
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every n (see ref. [2], theorem 16.11): then the t.s.
defects of dimension d’ can be classified by the ele-
ments of n(G/H) with r =d — 1 — d’. When H
is not connected, 7,(G/H) may act nontrivially
on 7,(G/H) and the t.s. defects will be classified
by the orbits of 7, in n,; for instance if 7z, is not
abelian, the line defects (when d = 3) will be classified
by the conjugation classes of r,.

In ref. [1], these ideas have been applied to several
systems, e.g., superfluid “*He and *He. For all appli-
cations here, G = E(3) the Euclidean group in 3-
dimensions. It is the semi-direct product R}0(3)
of the translation group R* by O(3). We denote by
E, its connected component and by E, the universal
covering of E, (E, = semi-direct product R},SU(2)
of R* by SU(2)); finally we denote by 6 the surjective
group homomorphism :

E, % E,. (1)

2. Nematics. — As a first illustration, we consider
a case already dealt with in ref. [1] in order to show
that we do reach the same conclusions. Nematic
phases are invariant by translations but not by rota-
tions because the non-spherical molecules of these
liquids are oriented (at least partially) so the thermo-
dynamic properties of the nematic phase are described
by a quadrupole (symmetric tensor with null trace
of O(3)). There are two types of orbits :

EQ)/(RY(D,,) ~ OB3)/D,, ~ SO(3)/D,, ~ P(2, R)
(the projective real plane) and
EB3)/(RHDyy) ~ O(3)/D,, ~ SO3)/D, .

The first kind of orbit corresponds to uniaxial nema-
tics with the homotopy n, =0, n, = Z,, n, =12
as found in ref. [1]. The second kind of orbits would
correspond to biaxial nematics (the quadrupole has
three unequal axes) and by a computation similar to
that in 3 below one finds n, = 0, m, = 0 (no t.s.
point defects in that case !) and 7, = Q the quater-
nion group (i.e., the group generated by the ioy
where g, are the Pauli matrices); n, is not abelian
and has five conjugation classes : | (the perfect state),
= 1, +ioy, + io,, + io,.

3. Crystal. — We can now sketch the classification
of the t.s. defects in a crystal. Let H be the crystallo-
graphic group of the crystal under consideration (it
belongs to one of the 230 crystallographic classes) :
H is a discrete subgroup of E(3) such that the orbit

E(3)/H is compact. Since E(3) is a covering space of

the orbit :

r>1, n(E(3)H) = n, E(3) (2)

(see e.g., ref. [2]), so for any crystal
ny =12 (

(3]
~

7!2::0‘

(see refs. [3] and [4] respectively).
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Let Hy = Hn E,. If H= H,, the point group
H/Z* does not contain reflections, so the orbit E(3)/H
has two connected components ie., m, = Z,: the
only other case is when H, is a subgroup of index
two of H: then the orbit is connected and r, = 0.
To summarize

ny=2, if HcE,, n, = 0 otherwise . (3)
When n, = z,, there can be wall defects : they are a
special type of twin boundary, the twin by reticular
merihedry in the terminology of G. Friedel [5].
If my = Z,, the two connected components of the
orbit are homeomorphic so, in all cases, to compute
n,(E/H) we need only to consider E,/H, which _is
homeomorphic to the orbit E,/07'(H,): since E,
is simply connected

my = 0"'(Hy) where Hy=HAnE,. (4

In general this group is not abelian, so isolated line
singularities in a crystal can be classified by the
conjugation classes of 6~ '(H,), the covering in E,
of the crystallographic group without reflections.

4. What happens when two t.s. defects of the same
dimension coalesce ? If each one is described by an
element of an abelian group, they combine according
to the (abelian) group law. For instance any two wall
singularities in a crystal (twin boundaries) annihilate,
as do two t.s. line defects in uniaxial nematics and as
two vortices in phase A of *He should do, as was pre-
dicted in ref. [1]. If two isolated line defects are describ-
ed by conjugation classes of 7, the composition law
of these conjugation classes is that of an abelian
algebra (which is the centre of the group algebra).
However the function ¢, defined in | above, yields
more information : indeed the 7, orbit (by 7, inner
automorphisms) of the product af of a pair of ele-
ments of 7, lies in a unique conjugation class, which
is independent of the order since «f and po are conju-
gated : af = a(fa) a~ 1.

5. The two following remarks will help the inter-
pretation of paragraph 1.

a) The local states of non-perfect media are not
simply obtained from each other by Euclidean displa-
cements, but more generally by linear or even by
differentiable transformations. In the case of crystals,
consider for instance the figures of ref. [6] Ch. 3.
So the function ¢ defined in I above takes its values in
(Diff R*)/H where Diff R is the group of diffeomor-
phisms of the d-dimensional Euclidean space. This
does not change our conclusions : indeed, using the
work of Stewart [7], we obtain

n,(Diff R"H) = n(E(n)/H) .

(It i1s for pedagogical reasons that we first introduced
the Euclidean group.)
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b) One can also consider instead of G/H a family
of orbits (G/H) () corresponding to the different
values of the Landau [7] (scalar) order parameter 7.
This positive parameter decreases as a function of T
and reaches zero at the temperature 7, of the phase
transition to the symmetrical phase. For n > 0 all
orbits are homeomorphic and the family

{GH) M, 0<n <n<n,|

is the topological product of G/H and a line segment, so
it has the homotopy of G/H. However, when the
fluctuations of # to the value n = 0 can no longer be
neglected (when T goes nearer to 7, i.e. usually when
T increases) the manifold of states to be considered
is the union { (G/H) (1), 0 < n < 5, }. It is contractible
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into the point # = 0, so its homotopy is trivial i.e.,
the defects become unstable (e.g. annealing process).
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After this work was finished, our attention was
called to the paper of D. Rogula in Trends in applica-
tions of pure Mathematics to Mechanics, p. 311-331,
edited by G. Fichera, Pitman Publ. London 1976.
This paper proposes homotopy for classification of
defects and gives some applications to Bravais lattices.
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