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Résumé. — On calcule les groupes d’homotopie qui donnent la classification topologique des
défauts des phases smectiques A et C. On obtient d’abord ces résultats par un usage direct
des méthodes classiques de la topologie algébrique, avant de les discuter par une méthode plus
intuitive et plus géométrique, qui repose sur le fait qu’une ligne de disinclinaison particuliére doit
disparaitre dans la transition physique d’une phase C 4 une phase A.

Abstract. — We calculate the homotopy groups which yield the topological classification of
defects for the smectic A and C phases. After having shown how a direct use of classical methods
in algebraic topology lead to the required results, a more intuitive and geometrical discussion of
the results is given, which relies on the fact that a specific disclination line should disappear in a
physical transition from the Sm C to the Sm A phases.

It has been shown in [1] that, given an ordered
medium, the homotopy groups of the manifold of
its internal states V' permit a classification of the topo-
logically stable defects in this medium. The mani-
fold V' is a representation of the topological pro-
perties (dimensionality, connectivity) of the order
parameter and it has been demonstrated in [2] that
V is an orbit G/H of the thermodynamic group G
(generally the Euclidean group E’) with respect to
the subgroup H, the symmetry group of the ordered
medium.

In this note we give the homotopy groups which
yield the topological classification of defects in the
smectic A and C phases. We think it useful to explain
to physicists how one can compute such groups,
using the powerful methods of algebraic topology
(first paragraph); but in the following paragraphs

a more intuitive and geometrical discussion will -

also be given which uses the fact that the symmetry
group of the Sm C phase is a subgroup of the Sm A
phase symmetry group.

These symmetry groups are respectively [3, 4] (')

He=(Zx RHYOC,, Hy=(ZxRH»OD,,. (1)

(") We use the following notations for groups : Z, R additive
group of integer, real numbers; Z, .cyclic group of 7 clements
= direct product, [] semi-direct product of groups; SU/(2) is the
group of 2x 2 unitary matrices with determinant 1. We follow
Landau and Lifschitz [14] notations for the point groups (',
Dow €0 D, cte. and we refer to them for their detinition.,

1. — We shall call E the connected subgroup of £’
(i.,e.  without reflections) and H, =F n HJ,
He = E n H(. We denote by E the universal covering
of £ and by 8 the surjective homomorphism ESE:
its kernel, the center of E is the two-element group
generated by the rotation through 2 n. Equivalent
definition of the orbits V, and V. are :

E'|H, = E/H, = E/H, = V,
where
x = AorC (2)

and where H, = 0 '(H,), the inverse image of H,
by 6.

Note that ¥, and V. are both connected since
they are bases of connected tiber bundles E or E,

with fibers H, or ﬁx ; hence
ro(Va) = 1 = mo(Ve). 3)

In order to compute the homotopy groups m,,
i =1,2,3 of ¥y and V. we use the long homotopy
exact sequence for a principal fiber bundle
(6, para. 17.11] (*) which is here applied to the total
space E with base V. and fiber Fl_x; this is the best of

(*) These physicists who find this group theory heavy going
can skip this paragraph and go to para. 2. But they can get know-
ledge of the necessary concepts in ref. [S] and [6]. However, it remains
that a few concepts, and in particular that of exact_ homotopy
sequence, are essential throughout this paper
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the possible choices in eq. (2), because n,(E) = I,
so that the long homotopy sequence breaks more.

= () = () = (V) = my(H) >
= () = my(V) = my(H) — () »
(V) - ro(H) - 1. (4)

This sequence ends with 1 because E is connected [7].
Moreover E has the homotopy of its maximal compact
subgroup SU(2) ().

n(E) = n(SU(2)) (5)
hence

n(E) = 1 = ny(E) (see ref.[8]) (6)

ny(E) = (see ref. [9]) )

which yields

n(V) = m(H); m(V) =mno(H).  (8)

Sm C. We have to compute H.. We remark that
a rotation of 7 is of order 2 in E (i.e. its square is 1)
and of order 4 in E (its square, i.e. the rotation of 2 ) m,
is indeed the non-trivial element of the center of E),
so He = (Z x R) 0 Z,, and from the remark in
foot-note (*) m,(Hc) = n,(K.) where Ke=202Z,.
Since K. is a_discrete group, m,(H.) = K. and,
for n > 1, = (H) = 1. So the long exact sequence
splits for each n, and for n > 1 it yields the isomor-
phisms (E) = (Vo).

To summarize :

(Vo) =2Z; mn(Vo) =1, )
r (Vo) =2Z02Z,; m(Vo) =1
Sm A. We have first to compute D, = 07(D,,).

The abstract groups D and D are both extensions
of Z, by C, with the same action (x, the non-trivial
element of Zz, changes re C,, into r™'), but while
D, is the semi-direct product, D is a non-trivial
extension ; the square of each element of the connected
component # C, is now the non-trivial square
root of 1 in C,; in geometrical terms, in D, the
elements ¢ C,, are rotations of = with square 1 in E
and, when pulled-back in £ by 67!, their square
15 the rotation of 2 n. So. although K, = n(H,) = K,
we have
no(Hy) = Ky =202,. (10)
The higher homotopy depends only on the
connected component : containing the unit element
of H‘, it is C,, the double covering of C_ but iso-

(*) A semi-direct product of groups is a topological product
considered as a topological space. The homotopy groups of a
topological product are direct products of the homotopy groups
of the factors, In such a topological product we can omit the contrac-
tible factor such as R* since its homotopy is trivial.
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morphic to it, hence. for n > 0, m(H,) = n,(S"),
ie.

n(H)=2; n(H)=1 for n>1. (I1)
Again, the long exact sequence splits at m,(H,)

foreachn > 2, ie., forn > 2
n(Va) = n(E) = n(SUQ2) = m,(Ve) . (12)

For n < 2, the splitting is obtained by
m(E) = 1 = ny(E),
so that we have

(V) = my(Hy) . (13)

Finally, collecting our results obtained on the
homotopy sequence of H,, E, V, :

(Vi) =2Z; m(Vp) =2
m(Va) = Z02Z,; my(Vy) =
2. — Now, let us be more intuitive and physical.

According to [2] we have, for Sm C, the following
results :

(14

a) There are no topologically stable walls in the
Sm C phase, since ny(E'/H) = 1 . both E’ and
H{ contain a symmetry by reﬂection, and we have
E'|H{ = E/H,.

b) The homotopy groups n(¥V.) for i =2 are

all equal to n(F) (ex. : m,(E) = 1 : there are no
stable singular points; n,(E) = Z : there are topo-
logical solitons.)
' ¢) my(Ve) is isomorphic to the lifting of Hc in
the covering group of E, (E = SU(2) (I R %), and one
gets n, (Vo) = Z [0 Z, (see eq. (9)), where Z corres-
ponds to the dislocations of translation, and Z,
to the disclinations. This group is non-abelian. Write
an element of n,(V.) as (p, ) where p is an integer
and o one of the elements of Z, = (I, a, a?, a?).
One has the following composition law

(P, @) (g, B) = (p + «(g), af) (15)
where

ag) = q if a=Iad?

wg) = —q if a=aa.

The change of sign indicates that the rotations of
angle + = (the elements a and a°) reverse the trans-
lations. The only dyad axis in the Sm C phase is
perpendicular to the plane of symmetry and the
dislocations (p, a) and (p, a”) are obtained by apply-
inga Volterra process about that axis [10]. The element
(0, a*) corresponds to the fabrication of a discli-
nation by a 2 n rotation Volterra process about
any axis, but it is enough to consider for the sake
of clarity those defects built about the normal to
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the layers. The element (0, a*) corresponds to a 4 =
rotation and is also the unit element of n,(V.)
(a@* =1) : the 4 n disclinations are not topologically
stable. The Volterra process applied successively
to the normal to the layer (2 n rotation) and to any
axis (4 n rotation) brings a (0, a?) disclination (for-
merly built along the normal to the layers), along
the direction of the 4 n object. A detailed description
of all the defects of the Sm C phase is to be found
in [10]. We refer to ref. [2] for the coalescence of
line defects according to homotopy classes and to
ref. [15] for their possibility of crossing.

3. — The physical process of continuous phase
change between the Sm C and the Sm A phases consists
in tilting the optical axis towards the normal to the
layers. This geometrical description can be expressed
as follows : let us assume that we know the manifold
of the internal states ¥, = ¥(Sm A). To each point
in ¥V, we put in correspondence a one-parameter
family of orientations of the Sm C phase, by keeping
the orientation of layers constant but moving the
optical axis on a cone about the normal to the layer ;
all these positions define a circle S* ; in mathematical
terms S' is the fiber of the fiber bundle with base V,,
and bundle V. [6] : all the orientations of the Sm C
phase are indeed reached once and only once when
one performs the former geometrical operation at
all points of V.

Reciprocally, let us consider, the set of all loops
on V. whose homotopy class is (0, a*); we know
from §2 that they correspond to 2 r disclination
lines about the normal to the layers (Fig. 1). These
loops clearly deal with the geometrical operation
Just considered, and the fibers S! are in the same
homotopy class. The 2 n disclination lines disappear
when the Sm C phase is transformed to the Sm A
phase. Therefore, V, is obtained from V. by identify-
ing on V. all the points of each loop of a family
of (0, a*) loops fibering V. In the same way, all the
elements in n, (V) which are in the conjugacy class (*)
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Fig. 1 Typical (0, u®) dischination line in a Sm ¢ phase. The
vectors represent the projection of the optical axis on the layer.
We have used the symbolism of the nails for the molecules in the
vertical plane afore the singulanity. It is assumed in this drawing
that the line is transverse to the lavers, but this s oot essential
(*) 1t happens that (0. @*) 15 the only clement of s Conjugacy

olass

of (0, @*), or which pertain to the smallest subgroup
containing this conjugacy class, disappear when
Ve = V. This subgroup consists of the elements (0, 1)
and (0, a*). It is isomorphic to Z, and is the kernel
of the mapping n,(¥V.) — n,(V,). Hence

ny =

=202,. (16)

Let us notice furthermore that (0, a?) is equal to
its own inverse. Geometrically, this means that an
oriented loop of this class can change orientation
after each of its point has performed a closed path
on V. This indicates clearly that V. cannot be
obtained as a direct product of ¥, by S! : rather it is
a situation analogous to that one in which one obtains
4 Moebius ribbon by fibering a circle (the base) by
a line segment (the fiber), letting this line segment
suffer a © rotation along the basis.

4. — The other homotopy groups in Sm A follow
by using a classical property relating the homotopy
groups of the fiber, the bundle, and the base, stating
that the following semi-infinite sequence :

oy (S - (Vo) = (V) - n(SY) -
= (Vo) = (V) (17)

terminating with =,(V,) is a sequence of group
homomorphisms and is exact [6].

The groups n,(V,) are easily calculated for n > 3.

We get indeed, using the fact that m(S') = |
for n > 2, the results of eq. (13), i.e. m(V,) ~ (V)
nz 3.

The calculation of n,(V,) is less trivial but can
be done the same way, using the fact demonstrated
in § 3 that the kernel of the mapping (Vo) = n(V,)
is Z,. By going up the homotopy sequence, one
obtains :

(V) =2 (18)

i.e. singular topologically stable points are allowed in
Sm A, in contrast with Sm C.

Note that the Z, factor of n,(V,) acts on n(Va)
by changing the sign of the elements so this sign is
not defined for isolated point defects. For a pair
of point defects the relative sign can be observed
when they combine (e.g. they can annihilate if they
have some strength and opposite sign) but this relative
sign will change if a disclination line is moved between
them.

5. - The existence of point defects in Sm A is
related to the geometrical property of the fiber bundle
(Ve Vi, 81 that this bundle has no cross-section,
i.e. that it is not possible to construct a mapping of
the base V', into the hundle V. which is everywhere
contmuous. In physical terms, this means that, it one
starts from 4 Sm A phase which is sufficiently full of
defects, the transformation to the Sm C phase is
attended by the appearance of (0, «?) disclination
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lines. For example, start from a droplet in which the
Sm A layers are piled in concentric spheres; this
droplet contains a singular point (eq. (18)); cool it to
the Sm C phase : assume that the layers keep the same
orientation through the transition; at least two
(0, a*) lines must appear, which will begin on the
singular point. This is reminiscent of the trans-
formation of a t'Hooft-Polyakov monopole [11, 12]
into a Dirac monopole [13] with a singular string

by a singular gauge transformation. Notice that
we have specifically assumed that the layers keep
a constant orientation during the phase transfor-
mation. If it is not the case, there is no obstruction
to a transition towards a line (0, 1) = (0, a®)* with
a non-singular core ; however, inspection of corres-
ponding configurations (see [10]) indicates that this
requires a complete destruction of the topology of
the sphere.
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