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Résumé. — Pour tous les groupes ponctuels (sous-groupes fermés) finis ou continus des groupes orthogonaux
O(2) et O(3) nous donnons une base d'intégrité 6,(x), ©5(x) e,(x) pour les polynémes invariants et pour les champs
de vecteurs polynomiaux, nous donnons les équations et inégalités définissant les strates (union des orbites de
méme type). Finalement, nous écrivons des équations donnant les zéros d’un champ de vecteurs covariants sur
une strate donnée; ces équations sont linéaires dans les composantes (invariantes) du champ de vecteurs sur les
€,(x), les coefficients de ces termes étant eux-mémes des invariants. Tous ces résultats sont résumés dans des tables
et illustrés par un exemple d’application physique de symétrie cubique. La méthode mathématique pour obtenir
ces résultats est expliquée de fagon a permettre au lecteur de I'appliquer a d’autres groupes.

Abstract. — All finite as well as infinite (matrix) point subgroups of full orthogonal groups in two and three dimen-
sions are considered. For each point group a polynomial integrity basis for invariants and the basic polynomial
vector fields are first given. Then, the strata are defined via equations and inequalities involving the integrity basis.
Finally, equations for zeros of a covariant vector field are given on each stratum in terms of the integrity basis,
which appears via coefficients in the expansion of the vector field on the vector-field basis. All the results
are tabulated and an illustration using the cubic group is presented. Mathematical background sufficient for

extensions of the results is also given.

1. Introduction

When a physical system has a symmetry group G,
its properties can be studied in terms of G-invariant
functions defined on the configuration space on which
G acts. When the action of G corresponds to a linear
representation I', we consider instead of G the matrix
group G which represents G. (G is the image of G
under I') The matrix groups with which we deal
correspond to the actions of closed subgroups of full
orthogonal groups O(/), / = 1, 2, 3. on one, two and
three dimensional Euclidian (carrier) spaces described
by cartesian coordinates. These groups are the ones
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most frequently met in applications to molecules,
solids (macroscopic tensors, electronic structure, Lan-
dau theory of phase transitions, etc.), problems
concerning spherical bodies (earth, stars), and similar
problems. We formulate our methods with sufficient
generality that they may be used for other finite or
compact groups.

Since Bethe’s famous paper [1] on cubic harmonics
many papers have been written on the problem of
finding independent sets of crystal harmonics. Hop-
field [2] recognized that all crystal harmonics of a
given symmetry can be written as linear combinations
of a few basic ones, with invariant functions as coeffi-
cients ; this was well known to the mathematicians
(see. e.g. [3). [4] for references). Papers by Meyer [5]
and. later, by Killingbeck [6]. Kopsky [7]and Michel [4]
deal with invariants of crystallographic point groups.
Other crystal harmonics (covariants, or tensors) were
treated by McLellan [8]. Patera e al. [9] and Kop-
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sky [10, 11]. Since the mid-fifties new mathematical
results have appeared (see Stanley [12] for an excellent
review) which are directly applicable to these pro-
blems; these results have been used and reviewed by
Michel et al. [4, 13-15].

This paper has several motivations. Not the least,
we hope to acquaint solid state physicists with the
mathematical methods mentioned above; they pro-
vide a powerful tool in problems involving invariants
and covariants of space and point groups. Refe-
rences 4 and 13 written with a similar perspective, deal
only with polynomial invariants. Here we focus on
polynomial covariant vector fields. We develop a
new method for finding their zeros associated with a
given symmetry. The method involves only invariants
of the relevant matrix group G. Such a problem must
be solved in many physical applications, such as
finding minima of the Landau free energy in phase
transitions, minima of a Higgs potential in gauge
theories, fixed points of renormalization-group equa-
tions, bifurcation points of a nonlinear problem, etc.
For each group G, we give canonical equations, in
terms of invariants, for zeros of covariant vector fields
at each type of symmetry point by G. We also collect
results, some known, some given for the first time,
concerning subgroups of O(/), / = 1, 2, 3. In particu-
lar, we list little groups of G and give invariant des-
criptions for associated strata. We tabulate explicitly
the basic polynomial invariants and covariant vector
fields.

In the next section, we summarize the mathematical
background which would be useful in extending our
results to subgroups of O(/), / > 4, or to other repre-
sentations of relevant physical groups. Physicists
interested only in subgroups of O(3) (and not in 4-
and 5-dimensional irreductible representations of the
icosahedral groups) need only to familiarize themselves
with the definitions and notations before proceeding
to section 3 where the relevant results are presented.

2. Mathematical background.

2.1 Groupr AcCTIONS. — We consider actions of a
unitary matrix group G on an n-dimensional vector
space £, Later on, we shall restrict ourselves to the
particular case of real, therefore, orthogonal, repre-
sentations on real vector spaces. G is given as the
representation I’ of a physical symmetry group §;
that is, G is the image of § under I (or G = Im §).
We emphasize that invariants and covariants on E,
depend only on the image. Since different represen-
tations of different groups, or inequivalent represen-
tations of the same group, may have the same or
equivalent [in U(n) !] images, it is advantageous,
as pointed out in references 4, 16, to classify and study
group representations according to their images.

We denote an arbitrary element (a matrix) of G
by g and a vector from E, by r. The transform of r by ¢

Ne |

is written g.r which in a given basis reads x; - g,; x;
with a summation over repeated indices; r may be a
configuration space vector and g may be, for example,
a rotation matrix.

It is well-known that G defines in £, certain geo-
metric structures, such as rotation axes and reflection
planes, whose points are left invariant by certain
elements of G. This leads to the study of little (iso-
tropy) subgroups L of G. By definition the little
group L(r) of a vector r of E, contains all elements of G
which leave r invariant.

By the definition of L(r) an element g of G not in
L(r) transforms r into g.r # r. The set of all distinct
g.r, as g runs through G, is called a G-orbit. Since
L(g.r) = gL(r)g~"' it follows that the little groups
of vectors on the same orbit are conjugated ; therefore
we may label an orbit by Q([L], r) where [L] is the
conjugacy class of its little groups and r is one of its
vectors. Furthermore, two different orbits may share
little groups ; an obvious example is the pair Q([L], r)
and Q([L], Ar) where A is a non-zero real number.
The union of orbits with the same [L] is called a
stratum, denoted by X[L].

Strata may be viewed in the following way. Given a
little group L we may construct the linear subspace
of E, denoted EF (the notation Fix L is sometimes
used), spanned by all vectors invariant under L. For
finite groups the dimension i(L) of E is given in
terms of characters y of I' :

L) = % x(g)=|—1{—,z trg. (1)

|L!geL gelL

Symmetry subspaces E* are a natural generalization
of symmetry axes and reflection planes. It can be seen
that L' > L if EX < EY (incidentally, this relation
can be incorporated into an efficient algorithm for
determination of all little groups of a discrete group
[17, 18]). Therefore, a stratum is given by

U E,,L'). @

=y (B -

Le(L] L'>L
We remark that the topological closure of the stratum
is the union of the subspaces EX for L e [L].

As an example consider the group SO(3) of three-
dimensional rotations around the origin. A vector
ro # 0 is invariant under all rotations around the
axis { Ary } and its little group is SO(2). The other
rotations of SO(3) acting on r, generate the sphere
[ rlI* = | ry|? the orbit of r, The little group of
the origin is the whole group SO(3). Thus, there are
two strata, the origin and the rest of space, associated
with the classes [SO(3)] and [SO(2)] respectively.

For a compact or finite group there is a natural
ordering among classes of little groups. [L] < [L1] if,
by definition, there are L € [L] and L’ € [L'] such that
L <'L" There is a theorem, not trivial to prove
[33], that there is a minimal class [L,] whose stratum,
the generic stratum, is open dense. In the case of a
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finite matrix group G, L, contains only the identity
element.

2.2 INVARIANTS AND COVARIANT VECTOR FIELDS. —
Let D(g) be a linear n'-dimensional representation of
G carried by the vector space E,. A function f(r)
defined on £, and valued in £, , is called a G-covariant
or tensor if for every ge G

f(g.x) = D(g) /(). )

In this paper, we are mainly interested in two
special cases :

1) E, carries the trivial one-dimensional repre-
sentation of G, and D(g) = 1: then f(r) is called an
invariant function ;

2) E, carries the same representation as E,, so
D(g) = g; then f(r) is called a covariant vector field,
which we write as f(r).

In the case of SO(3) discussed above, f(r) = || r|?
is an invariant and f(r) = | r || ris a covariant vector
field.

2.3 POLYNOMIALS ON THE REPRESENTATION (CARRIER)
SPACE E,. — To describe the properties of a physical
system, we may have to use distributions or functions
which are not smooth (infinitely differentiable), but
usually smooth functions (which include in particular
analytic functions) are sufficient. For a compact
(or finite) group Schwarz [19] has shown that G-
invariant smooth functions are smooth functions of
invariant polynomials. More generally, as we shall
see, smooth invariant and covariant vector fields can
be expanded on the polynomial basis (which we will
introduce for polynomial fields) with smooth func-
tions of polynomial invariants as coefficients. This is
our justification for restricting this paper to the study
of polynomial invariants and vector fields. In this
section, we consider only finite groups and shall say
later how the results generalize to the case of infinite
compact groups.

Denote by P the (infinite dimensional) vector space
of all polynomials in r € E,, It is also a ring. There are
two natural compatible decompositions of P as a
direct sum. One is

P=®PW,MmFW=@+”—v @

m=0 m

where P™ s the vector space of all homogeneous
palynomials of degree m. Since the action of G on P

g-p(r) = p(g.r), p(r)eP %)

preserves the degree, each P™ carries a linear repre-
sentation of G. The character y™(g) of the G-repre-
sentation on P™ is given by the generating function

S ™(g) " = [det(l — 1] (6)
m=0

where 7 is a dummy variable.
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Let o label the different equivalence classes of
irreducible representations I’ , of the group G. We
recall that an isotypical (also called factorial) repre-
sentation of G is a direct sum of equivalent irreducible
representations. The second natural decomposition
of P is into the direct sum of spaces spanning isoty-
pical representations

P=@Pr,. 7)
P, is the vector space of a-covariant polynomials. We
use o = 0 to label the trivial representation, so P,
is the ring of G-invariant polynomials. A polynomial
p€P may be projected on P, by an orthogonal
projector §, given by
dim I, _
apM) = —== 3 xXapg™'n.  (®)
l GI geG
The multiplicity ¢ of the irreducible representation
I', on the space

P™ = pm A p ©)

is given by the generating function M (1) obtained by
forming the Hermitian scalar product of the charac-
ters x,(g) and x"(g)

< 1 X (9)
M) = A = o . (10
o) m};o : |G|,;Gdet(l—-tg) a0
Note that [11]
dim P = ¢"dim T, . (11)

For invariant polynomials, the function M(tr) was
first computed by Molien [20]. In the mathematical
literature M (1) is often called the Poincaré series.

2.4 CASE OF (PSEUDO-) REFLECTION GROUPS. — A
pseudo-reflection on E, is a unitary operator u, of
whose n eigenvalues n — 1 are equal to one while the
n'™ eigenvalue is a root of unity different from one.
The space left invariant by u is called a reflection
plane. When the n' eigenvalue is equal to minus one u
is equivalent to an orthogonal operator and is simply
called a reflection. A group R generated by (pseudo-)
reflections is called a (pseudo-) reflection group. Any
such matrix group can be decomposed into irreducible
groups and the list of irreducible pseudo-reflection
groups was determined by Coxeter [21] and Shephard
and Todd [22]. They also showed that the Molien
function M(¢) for an irreducible (pseudo-) reflection
group can be written in a unique way as

Mot) = 1/D() = [T (1~ ). (2)
i=1

They computed the corresponding exponents d,
and showed that they satisfy the relation

[Td =R 13
=1

i
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As suggested by equations 12 and 13, one can find
n algebraically independent homogeneous polyno-
mials 0,(r) of respective degrees d, such that every R-
invariant polynomial is a polynomial € C[0,, ..., 8,],
the ring of polynomials in 6,,.... 0, with complex
coefficients. One also says that P is a polynomial ring.

Let us recall a well known example. Let R be the
group 7, of n x n permutations matrices whose all
entries are zero except one in each row and each
column which is equal to one. The matrix group T,
is a reducible orthogonal representation of the sym-
metric group S,, the group of all permutations of n
objects. Indeed the one dimensional space of vectors
with all coordinates equal is invariant. The ortho-
gonal space of vectors the sum of whose coordi-
nates vanishes carries an (n — 1) dimensional
irreducible representation of S,. The reflections
in 7w, are matrices permuting just two coor-
dinates axes. Since these permutations generate
it, m, is a reflection group. It is well known that any
symmetric polynomial in the coordinates x, ..., x,

is a polynomial in the 6s with 6, = ) xi,i=1, ..., n.
=1

Chevalley [23] for orthogonal groups and Shephard
and Todd [22] for unitary groups proved :

Theorem 2.4.1 The ring P, of G-invariant poly-
nomials is a polynomial ring if and only if G is a
pseudo-reflection group.

Chevalley also proved :

Theorem 2.4.2 For any reflection group R, P is a
| R |dimensional free module over P, which transforms
under R as the regular representation.

The last theorem extends to pseudo-reflection
groups. It is a generalization of an easy-to-prove
property : every polynomial in one (real) variable has a
unique decomposition

p(x) = qo(x?) + q,(x?) x, (14)

where g, and g, are polynomials in x?, go(x?) =
1 5 1

5 () + p(= x)) and ¢,(x7) = 57 (p(x) — p(= X))
Here, n = | and R is the two element group O(1).

One can also specify the degrees of the basic poly-
nomials of the module P over the polynomial ring
P, : the number of basic polynomials of degree s
18 the coefficient of £° in the polynomial

di=1

Q) =D()(1 — 1) " = ]ﬁl Yoo (15)
=1 j=0

The expression free module means that the expan-
sion of any p(r) e P as a hnear combination of the
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basic polynomials b/(r), r = 1,....| R |, with coeffi-
cients in P, = C[0,, ..., 0,] is unique

R|
plr) = Zl q,0,, ..., 0,) b(r). (16)

We give another simple example. The four element

£2 x 2matrices 7, — 2( °) (! ©°
group o matrices L, — L { | 0 1

is a reflection group. It is Abelian, so it has four inequi-
valent irreducible representations of dimension one.
Its Molien function is (1 — #?)” %, one can take for 6,
and 6,, x* and y?, respectively. So P, is the ring of all
two variable polynomials g(x* y*) and the other
three P.’s are xP,, yP, and xyP,. Thus, for this group
equation 16 is explicitly

p(x,y) = q,(x% ¥ + 4o(x% y) x + q3(x% ¥ y +
+ qu(x* Y xy. (17)

In the tables, section 4, more interesting examples are
given.

It is a simple corollary of theorem 2.4.2 that
different subspaces P, are free modules over P, each of
dimension (dim I'))®>. In particular for the vector
fields (x = v, may be reducible) there are n* compo-
nents of n basic vector fields of degrees (d; — 1).
One can take for the basic vector fields the gradients
V6, of the invariants 0, i = 1, ..., n. So every R-cova-
riant vector field v(r) has a unique expansion

V() = Zl 4.0,, ..., 0,) V0, . (18)

Note that

M (1) = N,(1)/D(1) = <i t"“‘)/D(t). (19)

2.5 FINITE GROUPS NOT GENERATED BY REFLECTIONS.
— In this case it can be shown that there exists a
polynomial ring C[0,, ..., 8,] of n algebraically inde-
pendent homogeneous G-invariant polynomials 6,(r)
such that the ring P of polynomials on £, is a finite free
module over C[0,, ..., 8,] : see for instance Stanley [12].
This author shows that one can always choose the
degrees of each 6(r) smaller than or equal to |G|
Moreover, these degrees satisfy a generalization of
equation 13

[1d =kIG| 0)
i=1

where k is an integer greater than one. The module P
over C[f,,...,0,] transforms as a direct sum of k
regular representations of G. Similarly, the P,'s
are free modules over C[f,,...0,] of dimension
k(dim I',)*. For instance, the ring P, is generated by
(n + k — 1) basic polynomials 6,(r), i = 1,...,n, and
pur), p=1..k~1and Py is a free C[0,,....0,]
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module of dimension k. That is. every G-invariant
polynomial py(r) has a unique decomposition

k-1
Po(r) = 3 q,0,. .0, @4(r) (21)
£=0

where ¢(r) = 1. The basic invariant polynomials
6; and ¢, form an integrity basis for P,

Foreach ¢,. f > 0, there is an integer power v, > |
such that ¢y e Cl0,,...0,]. If 0y = degree @p(r),
the corresponding Molien function is

1 + kf 1% NG NG)
M. (1) = p=1 - 22
o) D(1) D0 -on P

where D(7) and Q(r) are defined by the equation 15,
same as in the case of (pseudo-) reflection groups,
with C[6,, ..., 6,] in place of P,. Using (10) :

k=N(Q1) = l:[l d/lG| =Q)/IG|. (23

We shall call the basic invariants 6,(r) and g(r)
the denominator and numerator in variants, respectively.

Unfortunately, there is no efficient algorithm to
determine the minimal integrity basis, i.e. the one with
the smallest k or, cf. equation 23, with the smallest
degrees d. It does not correspond necessarily to the
case N(7) and D(r) relatively prime (see Stanley [12]
for examples).

In order to illustrate a difference between a free
and a non-free module we consider a simple example,
the two-element group {1, — 1 } in n = 2 dimen-
sions. Since it leaves no vector r # 0 invariant, and
since | G | = 2, the possible s are x2, 32 and xy. The
Molien function is (1 + 12)/(1 — 12)?. In this case
the minimal integrity basis corresponds to k = 2 and
0, =x% 6, = »* and ¢, = xy. Hence, every inva-
riant polynomial p,(x, y) e P, can be written as

Po(x, ) = q,(x% )%) + g,(x%, y) xy.  (24)

In that case P is a free C[x?, »*] module of dimension
k|G| =4 and the basic polynomials are 1, Xy, X
and y. Thus, a polynomial p(x, y) e P can be uniquely
written as

p(xv y = pO(xs y) + pv(xs )’) (25)
with
PAX.Y) = 3% ) x + q(x% )y, (26)
P is also a P, module, but it is not a free Py module.
Indeed, to generate all polynomials with coefficients
q € P, it is sufficient to take as a basis 1, x and y. So,
P is a P, module. It is not free because the decom-
position is not unique; e.g. for p(x,y) = x* y one has
X*y=gx=gqy 27

with either ¢ = xye P, or ¢’ = x? € P,, Since the
group is Abelian the vector representation is reducible
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and the four (k.dim I', = nk = 4) basic vector fields

can be chosen as : (x) ( X)_ (’) ( ‘)
y -y X - X

In the following section, we will treat the cases
G < R. In a more general case, in constructing the
basic fields, one must use a brute force method.
Namely, one chooses monomials of systematically
higher and higher degree, not exceeding | G|. and
applies an appropriate projection operator

dim I, -
Faijy P(r) = "l"CTr Z( r:(g)ijp(g L.r) (28)
9eG

to find the / component ( J is kept fixed) of an a-
covariant field. Checking for independence with
previously found fields and using the functions M (1)
one eventually constructs an a-covariant basis.

2.6 SUBGROUPS OF FINITE REFLECTION GROUPS. —
If G is not a reflection group but is a subgroup of a
reflection group R, G < R, we can choose for the
denominator invariants 6,(r) those of R. Then, cf
equation 23, k = | R |/| G|. As we have seen, P is an
| R |-dimensional free module over Clo,, ..., 6,] which
transforms like the regular representation of R. When
restricted to G this representation yields k-times the
regular representation of G. The basic polynomials
b,(x), equation 16, are exactly the same for both R and
G but their covariance properties differ between R
and G.

However, it is not guaranteed that this method
yields the minimal k, except when |R|/|G| =2
As shown also by Stanley [3], [12] (the preprint was
used and explained in [4]) there is an efficient method
when

R'<G <R (29)
where R’ is the group generated by the commutators
of R (ie. by the elements of the form aba~' 5~ 1),
R’ is the smallest invariant subgroup of R such that
the quotient R/R’ is an Abelian group. Consequently,
irreducible representations of R/R’ yield all inequiva-
lent one dimensional representations of R. Polyno-
mials which transform according to such representa-
tions are usually called quasi-invariants of R. All quasi
invariant polynomials, which transform by a one-
dimensional representation X, of R, form a one-
dimensional P, module P, = ¥,(r) P, Stanley [3], [12]
gave an explicit construction for basic polynomials
¥,(r). Since we will need this construction only for
reflection groups, we explain this slightly simpler case.
For any reflection u € R, 4> = 1 we have 1) =+ 1.
Stanley’s rule is

u =reflection in R
Lalw)=~1

1) (30)

where /,(r) is the linear form of the hyperplane of the
reflection u. As a particular case we can consider the
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representation x(g) = det g. For any reflection u € R,

detu = — 1, and in that case
W(r) = 1 1(r). (31
u=reflection in R
It was already known that
o,
Wy(r) ~ J(r) = det =—. (32)
cx;

Indeed, since J(r) is the determinant of the n compo-
nents of n vectors V6, it is a pseudoscalar which
changes sign when one crosses a reflection plane
(and only then, as can be seen from theorem 3.1 of
the next section). Incidentally, equations 31 and 32
yield for the number of reflections in R :

2": d —n. (33)
i=1

All quasi invariants of R are quasi invariants of
every subgroup of R. When G satisfies (29) then all
invariants of G are obtained from the quasi invariants
,(r) P, of R such that G < Ker g, (kernel of x,), i.e.
x.(9) = 1 for every g € G. Hence Stanley’s theorem :
P$, the space of G-invariant polynomials, is a free
P, = C[0,, ..., 0,] module with basis y,r), G <
Ker y, (here we used a superscript G in order to dis-
tinguish between P§ and P,, the rings of G- and R-
invariant polynomials, respectively). That is, for
every p(r) € P§

pr) = )

a,G < Ker xo

4, (1), (34)

where ,(r) = 1 and g, € P,. The dimension k of the
module P§, is the number of y, in equation 34 and the
numerator invariants for G are ¢, (r) = y,(r).

Such explicit algorithms for finding nk basic G-
covariant polynomial vector fields are not known.
First, one takes (n + k — 1) gradients of the integrity
basis but one should also look among quasi-vector
fields of R (their components are polynomials which
transform like the product of an R-quasi-invariant and
an R-covariant vector field), which are G-covariant
vector fields. Note that although the number of basic
R-quasi-vector fields is precisely kn they are not,
in general, basic G-covariant vector fields.

We recall a general method for obtaining from a
given covariant, the same type of covariant but of
smaller degree : if p,(r) € P§, operate on the covariant
with the operator p,(V). In three-dimensions a quasi
vector field may be obtained by taking a curl (V x ) of a
vector field or by forming the cross product of two
(quasi) vector fields. Finally, when G is irreducible
on the real, but becomes reducible on the complex
there is a real orthogonal matrix J which commutes
with G and which satisfies

~Ji=Jt =1 (35)

No 1

Therefore, if v(r) is a G-covariant vector field, Jv is
another one orthogonal to v. ie (v.Jv) = 0. where
we use () to denote the orthogonal scalar product.

2.7 OrsiT SPACE. — The integrity basis for a group
G defines a map (function), which we will denote by w
or w(r), from E, into £, ., _,

@ = o) =(0,0r),..0,r), @), . ..o ().
(36)

The whole space £, is mapped onto an n-dimensional
(semi-algebraic) surface in E,,, . We will call this
surface the orbit space and we will denote it by w(E)).
The usefulness of this concept arises from the fact that
w is constant on any given orbit Q([L], r,),

o(r) = w(r,), reQ(L]ry), (37)
and that it separates orbits [24, 25]. Consequently,
all G-invariant structures in E,, such as orbits and
strata, appear also in the orbit space w(E,). Several
papers were recently devoted to the relations determin-
ing both the surface w(E,) in E,,,_, and the image
of the strata in the same space [26-28].

A physical problem which possesses a symmetry
G always has « degenerate » solutions which fall on
an orbit. Therefore, it is sometimes advantageous to
formulate the problem in terms of invariants so that a
solution (04, ..., 0,, @, .... ¢4_,) in E, ., i1s found
first. Only the solutions which fall on the surface
w(E,), ie., ones from the orbit space, are physical
ones. Corresponding orbits Q([L], r) of solutions in
E, can then be found by employing the inverse map

w

QLY r) = 0 'Oy, s 0, @1y oo 0—y) . (38)
The inverse map w~ ' depends only on G and is
independent of the physical problem in question.
Therefore, for a given G, @™ ! can be determined once
for all. As an illustration, ™~ ' will be given in section 4
for the cubic group Oy,

2.8 EXTENSION TO COMPACT GROUPS. — For (con-
tinuous) compact reflection groups we can compute
the Poincaré function for invariants : it is of the form
My(t) = 1/D(r) and the ring of invariant polynomials
is a polynomial ring. However, the Chevalley theo-
rem 2.4.2 does not apply. Also, compact groups other
than reflection groups can have M(t) = 1/D(z). So the
problems we wish to solve are more difficult for
compact groups in general. These problems happen
to be very simple for O(3) and for one-parameter
groups, the only compact groups we study here.

Let us again quote the Schwarz theorem [19] which
is applicable to compact as well as finite groups :
for a compact group G, the G-invariant smooth
functions are smooth functions of G-invariant poly-
nomials. With the use of the Malgrange division
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theorem [29] one can justify expansion of any G-
invariant smooth function s(r) into

k -

sr) = Y s4(0,,....6,) @4(r)

8=0

(39)

where s5,’s are smooth functions of the denominator
invariants (however, not anymore unique) while
@g's are the numerator invariants. From an identifi-
cation of the spaces of smooth maps SM(E, E') and
SM(E* ® E', R), equation 39 can be extended to any
type of smooth G-covariant field.

3. Zeros of covariant vector fields.

We consider a finite orthogonal group G acting on a
real E,. Given a polynomial vector field v(r),

v(g.r) = g.v(r), geG, (40)
we want to find its zeros. That is, we want to solve for r
the system of equations

v(r) = 0. (41)
We recall that a covariant polynomial vector field can
be expanded

nk
vr) = ; 4,(0;, ... 0,) e,(r) (42)

where e,(r) are basic (for C[6,, ..., 6,] module) cova-
riant polynomial fields.
At a point r,, by using (40) for g € L(ry) and the
definition of E-0 we have
g-¥(ro) = v(ry) (43)
implying v(r,) is in £ and thus in the closure of
Z[L(ro)]. Hence, at a given particular point r, of an
m-dimensional stratum there cannot be more than m
linearly independent basic fields e,(ry) (since G is
finite, the topological dimension m of the stratum is
equal to the dimension of the subspace EM")). Also
there cannot be fewer than m. For a proof, let /i be an
arbitrary unit vector in EL*, Then we can construct
a covariant polynomial vector field which is along 7
at ry. Such a field is the gradient of F (r), VF(r), with

Foy =[] [alir =g |? + (r = g.r,, g.n)]. (44)

geG

where a is any real number

(g.rg — 1o.g.7)
a> Max o~ To 07
g¢Leo [l 9Ty — 1o ||

(45)

and || r [|? = (r, r). Since 7 may be in any one of the m
linearly independent directions and since each cor-
responding field VF(r) can be expanded like equa-
tion 42 the proof is complete. Thus,
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Theorem 3.1 Values of basic G-covariant vector
fields (and also of gradients of the integrity basis) at r
span £, the tangent plane at r to the stratum
Z[L(r)]. The theorem extends to compact groups if
one replaces £ by the « invariant slice » (see e.g.
Ref. 26).

Let us denote the m basic vector fields whose values
are linearly independent at r e £ by e/(r). .... €, (r),
m = dim EX". In general, e,(r) cannot be chosen so
that they form a global basis on X [L(r)]. i.e. a linearly
independent set of vectors not only at r but every-
where on XZ[L(r)]. For example, in the tables of sec-
tion 4, a global basis does not exist for some strata of
the groups S,, n > 1. Additional discussion of the
global basis is given in appendix A.

As explained in section 2.7 our goal is to replace (41)
by conditions in terms of the integrity basis only.
The rational is that by going to the orbit space not
only do we remove unnecessary degeneracy but we
sometimes obtain equations of lower degree than those
found directly in E, using e.g. a recent method by
Jari¢ [30]. In order to achieve our goal we first need
equations and inequalities describing each stratum
2[L]in orbit space. They can be found using a method
by Jari¢ [28]. Second, on each stratum the basic fields
e,(r) need to be determined (we always choose a basis
of the lowest possible degree). Equation 41 is then
replaced, on a given stratum X[L], by m = dim E"
equations

(V). er) =0, o =1,.. (46)
These equations can be written explicitly in terms of
the integrity basis by using (42) and by calculating

explicitly the nk x nk matrix M@, ..., 6, Pyeeey O q)
MO, ... 0, 04, ..y 04— 1) = (e,(F), ex(r)). (47)

For closed subgroups of O(2) and O(3) calculations
of the matrix M are illustrated in appendices B, C and
D. The system of equations 46 can often be simplified
and we give in the tables its lowest degree equivalent.

o M.

4. Tables for closed subgroups of O(2) and O(3).

The closed subgroups of O(2) are the Lie group SO(2)
and the two families of finite groups, C, and C,,.
which are isomorphic to cyclic and dihedral groups
Z, and D, We use here the usual notation of the phy-
sical and chemical literature (see e.g. [31 ]). For instance,
C, and C_, stand for SO(2) and O(2), respectively.

Lie subgroups of SO(3) are C_ and D, whereas the
finite subgroups are C,. D,. T, O and Y. The last
three are irreducible and leave invariant some regular
polyhedra : tetrahedron for T, cube and octahedron
for O, icosahedron and dodecahedron for Y. It is
well known that subgroups of O(3) can be obtained
from those of SO(3) by adding the spatial inversion
(— I) in one of two ways :
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Table la. — Two-dimensional point groups (G)

Denominator (0,) and numerator (@4) invariants and
basic vector fields (e,). Cartesian coordinates x and y
are chosen so that the origin is a fixed point and the
x-axis is a reflection axis. i and | denote the unit vectors
in the x and y directions respectively. The radius vector
isp =xi + yj, p* = x* + y* Other quantities enter-
ing the table are defined as Jollows :y, = Re (x + iy)";

No |

Table 1b. — Two-dimensional point groups (G) :
Classes of litile groups ([L)), relations determining
corresponding stratum (X (L)) and the global basis on
Ey (e,). The relations are given in terms of invariants ;
the relations necessary in orbit space, but redundant in
the carrier space, are enclosed in curly brackets. For
the group C,, the last row gives an algebraic relation
satisfied on each stratum by the non-trivial numerator

o, =Im(x + iy)";Jp = — yi + xj. invariant. See table la for definitions of the invariants
and the vector fields.
G <02 o; P €,
G <02 (L] 2[L] €, (")
Coo=0Q)| 0,=p> | 95=1 |e; =p
C Cpd [0,=0 0
C,=S0Q)| 6, =p* | gy=1 | =P - [C] ] 0,>0 €,(2)
e, =Jp
C [Crx;] 01 = 0
Co 0, =p? € =p °° [Ci] 6, >0 €, €
n>2 | 0=y, | 2= e 21y, [Cul [ 6,=0, {6,=0} | o0
Co [CEN () | 0,>0, 02 =07 e
e =p [CI] 91 >0’ 9'1' >022 €, €
C, 0, =p* | 9o=1 |le, =J
‘ ' S Gl [0, =0.46:=01] o
n ; 2 62 = yn qDl = dn e3 = ;;Vyﬂ C [C]] 01 > 0, 9’1‘ >022 el, e2
e4=’11Va,, o7 =07 - 63
0, = x e =i (Gl )82 =0 ©
< =0 | = oy C
2 2= % s [C] |[6,>0 e e,
C 0, =x ~ 1 e =1 :
! 0, =y bo = e, =] C, [C,] The whole space | e, e,
(“) For n odd the two classes, [C{*] and [C!™], coincide ;
for n even they are disjoint and correspond to
0, = + 67~
(*) dim Z[L], when different from dim EY is given in
G 2[L] zeros of v = X _q.(0) e, parentheses.
C.. § [Sm] = -
[C] 4 = Table Ic. — Two-dimensional point groups (G) :
SIC Zeros of a general vector field v = £, q,(0) e, at each
C, Z[ C’,‘] —d. =0 stratum Z[L]. The basic fields and relations determin-
(€] 9 =49 = ing the strata are given in tables la and b respectively.
3[C.] A dash in the last column indicates that v = 0 reduces
C. Z[C?"] 00, +q,0, = to an identity.
Z[C] (a1 =q,=0
Z[C,] A
C, 5[C)] G0, + a0, + quo, =0 i) From a group H < SO(3), generate G = H u
4,0, - q, ‘Pbx +4,0, =0| (= DH < O@3) which is isomorphic to H x Z,. In
this fashion one finds C,,, D,,, S,, and D, (n odd),
c £[C] a9, =0 Cuand D,, (neven), T,, O, and Y,
’ ZIC)] |4 =g =0 - . .
i) From a group H < SO(3) which has a subgroup
C, r[C,) 4, =q, =0 K ofindex two generate a group G < O(3) isomorphic
to H by multiplying elements of H not in K by (— 1).
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In this way one finds C,, = OQ), C,, and D,
(n odd), S,, and D,, (n even), C,, and T,.

The explicit forms of the invariant and covariant
basic fields depend on the choice of coordinates. The
choice we make is indicated in the table captions.
Traditionally, the z-axis is the rotation axis of order n:
moreover, when the group has in addition axes of
order two, one of them is the x-axis. Similarly by
convention, one of the reflection planes of C,.. if not
fixed by previous choice for two-fold rotation axes.
is the xO:z plane.

The tables are organized in the following way. A
division is made according to the type of the groups.
For example, tables 1 contain all closed subgroups
of O(2); tables 11 contain all Lie subgroups of O(3);
tables 111 to VIII contain all finite subgroups of O(3).
For each type the tables are broken into three :
in (a) the basic fields are defined ; in (b) the isotropy
groups and equations of corresponding strata are
given; in (c) the lowest degree equivalents of equa-
tion 46 are written for each stratum and in orbit space.

In choosing basic fields there is definite arbitrarines.
For example, one could wish to choose harmonic

Table Ila. — Three-dimensional point groups (G). Lie
subgroups of O(3) : Denominator (0,) and numerator
(@p) invariants and basic vector fields (e,). Cartesian
coordinates x, y and z are chosen so that the origin is
a fixed point and the z axis is the preferred one. i, Jand k
denote unit vectors in the x, y and z directions respecti-

vely. The radius vector is r = xi+ yj + zk,
r?=x? +) + 2%, the radius vector in the xy plane
is p=xi+y,p*=x"+y" and Jp = — yi + xj
G < 0(3) 6, 9 e,
03) 0, =r? Qo =1 e, =r
SO(3) 0, =r? ¥ = 1 e, =71
D, 0, =p’ ¢ =1 € =p
6, = 22 e, = zk
D, 6, = p? @0 =1 €& =p
02 = Zz 82 = Z)E
e, = zJp
Can 0, =p’ ®o =1 € =p
92 = 22 82 = zk
e; =Jp
Cur.»t‘ 01 = p2 (pO = 1 el = P
0, =: e, =k
C, 6, = p? ¥ =1 € =p
02 =z 62 = k
e, =Jp
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polynomials whenever possible. However, an arbi-
trary linear combination of harmonic polynomials
with coefficients in C[0,. ..., 6,] is not necessarily a
harmonic polynomial. In order to extract the harmo-
nic component of a polynomial. a procedure due to
Lohe [32] is useful :

PO = p(r = PN + 3)7'V) 1, (48)

Table 11b. — Three-dimensional point groups (G).
Lie subgroups of O(3) : Classes of little groups ([L]),
relations determining corresponding stratum (ZIL)
and the global basis on EY (e,). The relations are
given in terms of invariants (orbit space). See table 1la
for definitions of the invariants and the vector fields.

G <003 (L] 2[L] €, (‘)
0O(3) [O3)] 6, =0 0
[Cy.l 6, >0 e,(3)
SO(3) [SO@3)] 6, =0 0
[C,] 6, >0 e,(3)
D, Dyl 0, =0,=0 0
[C. 0,>0;0, =0 e,
[C,.] 0,=0;6,>0 e,(2)
[Cy] 0,>0;0, >0 e, e,(3)
D, [D,] 0, =0,=0 0
[C.] 6,>0:0, =0 e,
[C,] 0,=0;0,>0 e;(2)
[C,] 0, >0;0,>0 | e,e,e,
Con [Chl 0, =0,=0 0
[C.] 6,>0;6, =0 €,
[C,] 0, =0:6, >0 e, e
[C,] 6,>0:0,>0 |e.e,e,
C.. [Ceul 6, = e,
[CJ 0, >0 e, e,(3)
C, [C.] 0, =0 e,
[C) 0, >0 e, e, e,

(“) dim Z[L]. when different from dim EY is given in
parenthesis.
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Table Ilc. — Three-dimensional point groups (G).
Lie subgroups of O(3) : Zeros of a general vector field
v=2,q,0)e, at each stratum ZX[L) The basic
Jields and relations determining the strata are given
in tables 1la and 11b respectively. A dash in the last
column indicates that v = 0 reduces to an identity.

G < 0O(3) Z[L) Zerosofv = X_q.(0) e,
003) 2[0(3)]
2[C,.) 4, =0
SO(3) Z[SO(3)]
2[C,] g, =0
Daoh E[Dmh]
Z‘[(:ucm] q2 =
2[C,,) q; =0
2[Cy 4y =q;, =0
D, 2[D,]
E[Cw] qZ =
2[Cy) q, =
Z[Cy] 4y =4, =q3 =0
Con 2[C4
2[C,] g, =0
2[Cy 41 =q3 =0
2[Cy] 9y =4, =43 =0
Coeu Z[Cmv] q; = 0
Z‘[(::] ql = q2 = 0
C, 2[C,] 49, =0
Z[Cy) 91 =4, =q3 =0

where N =r.V is an operator which multiplies a
homogeneous polynomial by its degree.

Some of the results listed in our tables have been
known previously and they have been double checked
here. Several errors which appeared in previous
publications have been detected and they are dis-
cussed in appendix E.

We will illustrate the use of the tables on an example
of an Oy-covariant vector field. Let v be an O,-cova-
riant inhomogeneous vector field of seventh degree in
X, ¥, z. Such a field can be written using the basis
given in table IVa as

v=gq(0)e + q,(0)e, + qs(0) ey, (49)

where we used a shorthand § = (6, 6,, 8,). Since e,e,
and ey are of first, third and fifth degree, respectively,
in x, y, z the polynomials q,, g, and ¢, are of degree
six, four and two, respectively. Thus, in the most
general case

G =ay, +a0 +a,;07 +a,,0, +a,,0 +
+ a0, + a0,
qz a“ + azz 01 + (123 ()f -+ (124 02 (50)

4y = ay, +ay,0,,

il

Ne ]

Table Illa. — Three dimensional point groups (G).
Icosahedral groups (Y,, Y) : Denominator (6,) and
numerator (¢,) invariants and basic vector fields (e,).
Cartesian coordinates x, y and z are chosen so that the
origin is a fixed point and the five-fold axes pass through
the 12 vertices of an icosahedron at (+ r, +1, 0),

O, 7+ 1), (1.0, 1), where t = 4(/5 + 1).
r denotes the radius vector and r* = x* + y? + 22,
Other quantities entering the tables are
Ig=(1x* =) (ty* =22 (22% = x?) ;
Lo =(x+y+2)(x—y—2)(y—z—x)(z—py—x) x
X (2x2 =1y (72 2 12 ) (2 22 xY)
Jis=4 0 xyz(tx+1  y+ ) (—tx+1 7 y+2)
x(x—t ' y+)(x+t y—2)(x+1y+1 ' 2)
x (x=ty+t ) (x+y—1 ) (—x+1y+17 L 2)
x @ x4yt xby—t2) (=t x4 y+2)
x (T ' x—y+12).

G Gi (pﬁ eu
Y, 0, =r" | ¢, =1 e, =r
02 =Ié €, =%Vlé
1
0y = I,y e3=-2-V110
Y 0, =r" | @, =1 e, =r
, o,
02=16 (p1=-]15 22 =§V16
|
0y = I, 93=§V110
e4=01 Xez
s =¢€; X e,
€ =€, X e,

where a;; are arbitrary constants and the basic inva-
riants are given in table [Va.

Zeros of a seventh degree O,-covariant vector field
determine low symmetry phases which occur in Perov-
skites during a ferroelectric phase transition described
by a Landau free energy F of eighth degree

F = aOI 01 + 6102 0% + 003 02 + (104 Hi‘ +
+ ags 0,0, + age 0y + ag, 0% + ayg 62 0,
+' (109 01 03 + (100 ()g . (5])

In this case v = VF and only ten a;; of equation 50
are independent : (a,, = 2a,,, a,, = 4ay,, a; =
6dgy, ays = 2ags, ay5 = 8ag, a6 = 4agg, ay, =
2age, ay; =40y, a5, = 4ags, ay; = dagg, ay, =
8 ag0, a3, = 6 ayg, a3, = 6ay)
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Table 111b. — Three-dimensional point groups (G). Icosahedral grops (Y,.Y) : Classes of little groups ([L]).
relations determining corresponding straum (Z[L)) and the global basis on E Y (€)). The relations are given in terms
of invariants; the relations necessary in orbit space, but redundant in the carrier space, are enclosed in curl 'y brackets.
T he last row for Y gives an algebraic relation satisfied on each stratum by the non-trivial numerator invariant.
See table 1la for definitions of the invariants and the vector fields. © = (1 + \/3 )

G (L] I ¢,

Y, | ) |6, =01{6,-0,-0) 0,
[Cs] |6, >00, -Q—’—Si-’lef,{es =§2—T1—2‘5—903} e
[Ca] |6,>0,0, Q-’—z;”—-lle-}, {93 =2tV } e
[C] |6,>06,=0,=0 e,
(C.] 61>o,—Qigﬂof<92<(2—i2;—993,93>(7—4r)029§, e,

460705 —80760,0,3+41)— 9] 07033 — 21) + 465 635 + 8 1) +

+ 15967 63 051 — 27) + 688 63 0313 — 8 7) + 325026, 6,(1 + 271)

— 7200, 035 05(7 — 41) — 1728 6555 — 347) —25603(11 + 187) =0

2t+1
27

40705 —86]0,0,3+41) — 9165033 —21) + 466035 + 8 1) +
+ 15961603051 — 27) + 68863 63(13 — 87) + 32562 6, 62(1 + 21)
— 7200, 636,(7 — 47) — 172865(55 — 34 1) — 2563(11 + 187) > 0

[C,] {01>o,—(3-’-5L1—)03<92< 03,93>(7-41)920f}, e, e, e,

Y Y] [6,=06,=0,=0) 0
(C.] e,>o,02=—9-131-99§,{93=(-2—%2—‘5-‘—)92} 6
[C.] 01>0,02=(—2-’3;—99f,{93=i(3-181:—203} e,
C) [6,>06,=0,=0 e,
cJ] |6 >0 - Q-’-gt-llef <6, <@ s D2 6,> (7~ 400,02 e, €, €

497 =460767 —86]0,0,3+41) — 9169033 — 21) + 465635 + 81) +
+ 15907 63 65(1 — 21) + 688 63 6313 — 8 1) + 32567 6, 62 (1 + 2 1)
= 72060, 03 65(7 — 41) — 1 728603(55 — 341) — 250311 + 187){ > 0)
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Table Illc. — Three-dimensional point groups (G). Icosahedral groups (Y,, Y) : Zeros of a general vector field
v =2,4,0) e, at each stratum £[L). The basic fields and relations determining the strata are given in tables 111a
and 111b, respectively. = (1 + \/ 5). A dash in the last column indicates that v = 0 reduces to an identity.

G 2[L] Zerosof v =2%_q.(0) e,

Y, 21Y,]
2[Cs,] 25q1-15(2r+1)0fq2+(2r——1)9‘1‘q3=0
2[Cy) | 8lqy +9Q 1+ 1)1 g, + 252t — 1) 0t g, =0
2[Cy] | 91 =0

2[C] 014, +36,9, + 50,4, =0

309, + [~ T2t + D80, + (187 + 11)6,] g, +
+ 300 = 20000, + 320+ 1620, + 84 < — 710, 03] g = 0

2[C] 4y =4 =q3 =0

Y SY]
2[Cs] 25q1—~15(2r+1)9fq2+(2r~1)0‘1‘q3=0
Z[Cy] | 8lgy +9Qc+ 1)0 g, + 2527 — 1) gy =0
2[GC,] g4, =0

2[C,] 014, +30,4, + 50545+ ¢, g5 =0

30, q, +i—[~7(2r+ 0360, + (187 + 11)0,] g, +

+%[(l —-216010, + 321 + D60, + (@t —-7)0, 03]19; — 0,95 =0

©1 43 +%[-— T2t + 1636, + (187 + 11)6, 05 — 3663]q, +

+Zli[(1 -21)0760, +32t+ 1)030, + 841 — 7) 07 03 — 60 0, 6,] g5

+%[3(1 ~ 2107105 + 4427 + 1)03 0,0,
+ 2447~ 70,07 — 5(18 7 + 11) 03] g5 = 0.

To determine zeros of v directly in terms of x, y.z Corresponding orbits in x, y, z can then be determined
one has to solve system of 3 equations of seventh  from the inverse of § = w(r) which depends only on G
degree, which in addition depend on thirteen arbi- (not on v) and can be given once for all. Let us first
trary parameters. The idea of our method is to solve, determine the inverse map for O,
instead, for the zeros of v in terms of the invariants .
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L
Table IVa. — Three-dimensional point groups (G). G 0, P €
Octahedral  groups (0O,. O) : Denominator (0) and o 0 -2 1
numerator (@) invariants and basic vector Jields (e,). h P=r Vo = €@ = :
Cartesian coordinates x, y and = are chosen so that the 0, =1, e, ==VI,
origin is a fixed point and x-, y- and z-axes are the ?
o< i the rds S 2 2 4 .
four—foldaxea...rzs the rafitus vector,r* = x? 4 yo o+ 2, 0y = I, 3=z Vi,
Other quantities entering the tables are defined as
Sollows : 2
o 0, =r $o =1 € =T
Ip=x* + % + 2% Ig = x5 435 4 56; 0~ Ly
Jo = xyz(x* = 3?) (3 = 22 (27 — x?). =1y [ @ =Jg | e, = 7 VL
1
03 = 16 63 = 6 Vlé
e, =e Xe,
€ =€ X e,
€ =€, X e,

Table 1Vb. — Three-dimensional point groups (G). Octahedral groups (O, O) : Classes of little groups ([L]),
relations determining corresponding stratum (X[L]) and the global basis on E 3 (€)). The relations are given in terms
of invariants ; the relations necessar 'y in orbit space, but redundant in the carrier space, are enclosed in curly brackets.
For the group O the last row gives an algebraic relation satisfied on each stratum by the non-trivial numerator
invariant. See table IV a for definitions of the invariants and the vector Sfields.

G [L] 2[L] €,
Oh [Oh] 01=0,{92=93=0} 0
[Col | 60,>0,0, =61 {0, =06%) €
[Cs] 6, >030, =0f~{993 =9?} €
[C,.] 0,>026, = 9%3{493 =67} €
[CJ] 0, >036, > 0?,263 > (30,60, — 6, e, e,
—~0?+99‘1‘62 —80?63-2] 9f9§+369,0293+ 30%-— 189§ =0
[C:] 91 > 0,29% > 202 > 9%. 6:1; had 391 62 + 203 =O el,ez
[C)] 6, >06} - 36,0, +26, >0, €, e, e,
—6?+90‘1‘02—80?03—21 9f0§+368,9203 +363 - 18 63 > 0,
{0, <9f}
o) [0] 0, =0,{6, =6, =0) 0
[C,] 6,>0,6, =6 {6, =63} €
[Cs] 0,>036,=061.190, =63 €
[C.) | 6,>0206,=6240, = e,
[C] [6,>0.6}-36,0,+26, >0, e.e.e,
—9?+90‘f92 —~80f(~)3 - 21 0f9§ +360,0293+30§-— 180§>O
{0, <67}
3697 = (- 05 +96%0, — 8676, — 210762 +366,0,0, + 3603 — 18 6%) x
x (07 —360,0, +20,){>0)
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Table Ve, — Three-dimensional point groups (G). Octahedral groups (O,, O) : Zeros of a general vector field
v =2_q,(0) e, at each stratum Z[L]. The basic fields and relations determining the strata are given in tables 1Va
and IV b, respectively. A dash in the last column indicates that v = 0 reduces to an identity.

G Z(L] Zerosof v =2_q,(0) e,

O, 2[0,]
2[Cy) | gy +0q, + 0:1! 43 =0

Z[Cy] |9gy +36,9,+601q5=0

Z[Cy) |49, +20,q,+0iq3=0

Z[C] 0,4, + 0,9, + 0393 =0

660,q, + 6059, + (O —6070, +80,0, +303)qy =0
Z[Cy] g + 0,45 =0

29, + (0, — 01 gq; =0

2[C) |41 =d2=45=0

(0] 2[0]
2[C,] 4, + 0,9, +01q5 =0
2[C4] 9¢, +30,q, +07q5 =0
2[C,] 4q, +20,q, +01q; =0
Z[C,y] 0,9, + 0,9, + 0393 + 9,46 =0
66,q, + 6059, + (07 — 66016, +86,0, +3603)q5 — ¢, 45 =0
69,45+ 60,0, —0)qs + (6] —6070, +86070;, +30,05—606,0,)q5 +
+ (016, — 60205 +80,0,0, +303—6603)qs=0

G 0 Vs i Table Va. — Three-dimensional point groups (G).
0, =r | @ =1 e — 1 Tetrahedral groups (T,, T,, T) : Denominator (0,) and
" ! 0 ! I numerator (¢,) invariants and basic vector fields (e,).
0, =1, | o, =Jg | &, = 3 Vi, Cartesian coordinates x, y and z are so chosen that the
I origin is a fixed point and the three-fold axes pass
0, = I e, 6V[6 through vertices of a tetrahedronat(1,1,1),(— 1, — 1, 1),
(, — 1, = 1), (= 1, 1, — 1). r is the radius vector,
e =€ x VI r* = x* + y? + 22 Other quantities entering the tables

es = e x VI are defined as follows -

e =1y, X e,

Iy = xyzi Iy = x* + % + 24
Td ()1 = p? (Po:l e =r IﬁzAr6+}76+26;

0, =1 =V/ 2 2 ‘
oo RN Jo =2 =) =@ - ),
H; = 14 e3 = :1‘ V14
r 0, =r*| oo=1 |e =r1 =~ = = . o
0, = I 0, =J | e =VI Let 0,, 0,, 0, be particular values of the invariants
g ! ' o2 | ? 6,. 0, .05. The corresponding orbit in x, y, = is found
0, =1, & =3 Vi, from, cf. table 1Va,
€, =€ X €& x4yt b2 =0,
6 T V1 3 —

X0y =0,
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Table Vb. — Three-dimensional poin groups (G). Tetrahedral groups (T, T, T) : Classes of little groups
([L]). relations determining corresponding stratum (X[L)) and the global basis on E 1 (€)). The relations are given in
terms of invariants : the relations necessary in orbit space, but redundant in the carrier space, are enclosed in curly
brackets. The last rows for groups T, and T give albebraic relations satisfied on each stratum by the non-trivial
numerator invariants. See table Vafor definitions of the invariants and the vector fields.

G (L] 2[L] €,
h [Th] 61=0,{02=03=0} 0
(Cz] | 0,>00, =06} {0, =063} €
(Cs] 1 0,>030,=6].{90, =03} e
[C:] 0,>00, <6],07 —30,0,+ 26, =0, e. e,
{20, > 67}
[Cl] 61 > 0,302 > ()f, 9? - 301 02 + 203 > 0,{02 S 0?} e1,32.e4
607 = — 07 + 9610, — 8030, — 210202 + 360, 0,0, + 362 — 1862{>0)}
T, (T.] 0, =0{6,=0,=0} 0
[Cs] | 0,>0,30, =03 {2762 =03} e
(Co] |0, >0,0,=067.{0,=0} €
[Cy] 0, >0,367>30,> 0%, e, e
—-‘05’4-—46‘1‘03 +20607603 — 50, 62 —~ 360,050, — 10863 + 263 =0
[C,) 0, >0,360 >30,> 62 €, €y e;3
~0?+40‘1‘03+20030§—5910§—36019§03- 108605 + 2603 >0
T [T] 01=O,{02=93=0} 0
[C4] 0, >0,360, =03, {270 =03} €,
[Cz] 01 >O,93 =0§,{02 =0} el
[Cl] - 61 > 0,30% > 303 > 9% 61,62,84
47 = — 07 +4616;, + 200362 — 56202 — 360,029, — 10865 +2603{ >0}

This system of equations can be solved analytically
leading to (at the most) 48 solutions &2

G52 = (£ 4/720), £ 1}2@). + 212@), (53)

where + signs are independent, ;, Sk =1,23i%#j#
k # i, and A(6) are the three solutions (possibly
degenerate) of the cubic equation in /4

A2 -8, + %(Ef -8,
- %(éf ~38,8,+268,)=0  (54)

By construction, (%, 7. Z) will be real at each stratum
and, conversely. the reality condition determines the
orbit space. o

We use tables IVh and IVc in order to find 0,.0,.0,4
for which v = 0. For example, at 2[C,] the equations
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for 8,, 6,, 6, are 4; = 4, = q3 = 0, which using (50)

have the solution
- a
0, = - 2L
ay;
2
= dyy | 4y a4z, a3 ay,
02 = — - 3
s G443, 4,443,
2 3
g dg + ay, asz, a,3ay;, a;say,
3T T - 3T 3
4y,  ay,4ay, ag,a3;, ay,ay,
2
414  Guedy;\fay, ay,ay;  a,ya;,
4| — - =22 + =
7 Qy7Q3;) \Gyq G403, a4 a3,

(55)

In (55) we assumed a, , a,, a;, # 0, other cases can be
treated similarly.



