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Table Vc. — Three-dimensional point groups (G). Tetrahedral groups (T,, T,, T) : Zeros of a general vector field
v=2,4,0) e, at each stratum X[L). The basic fields and relations determining the strata are given in tables Va
and Vb respectively. A dash in the last column indicates that v = 0 reduces to an identity.

G Z[L] Zerosof v =X _q. (0)e,
T, 2[T]
Z[Cy) g1 +0,q, +07g3=0
2[Cy) 9g, +360,q, + 06193 =0 d
Z[C] |0igy + 0,9, + 0595+ 9,95 =0
20,9, +20,0,q5 + 20} — 40,0, +363)q, +
+ (0t 406020, +20,0,+0)g, =0
2[C] 0,4, + 0,4, + 0595 + 9,95 =0
60,9, +60, 0,95 + 607 —40,0, +30,)q, +
+ 3(9]‘—49%02 + 26,0, +0§)q5 + (36, ——9%)(9? —-30,0,+20y)qs =0
60,q, + 605q, +(9T—69%92 + 886, 0, +30§)q3—-6cp, q, =0
T, 2[T,]
2[Cy] 30,9, +96,9, +01q; =0
2[C] g1 +0,g5=0
2[C] 0,9, +36,q, + 0595 =0
60,9, + (07 —03)q, +20,0,9, =0
2[C] |41=q,=93=0
T 2[1]
2[C;] 30,9, +90,9, + 0195 =0
2[C,] g+ 0,9, =0
2[C] 0,9, +30,9, + 0545 — 9,95 =0
60,9, + (0 —03)q, +20,0,9, + 29,95 =0
20,95 (07 — 0,0, — 18603) g, + 20,(30, - 0D gs +
+ (0105 — 60,05 —03)gs =0

Solutions on Z[C!] are found from the equation of
2[C], cf. table IV5,

07 — 36,0, +2 0, =0 (56)

and the equations (cf. Table 1V¢)
q, + 0,49, =0 (57)
24, + (0, - t’)f)q3 =0. (58)

One first solves (57) for 0, (as a quadratic polyno-
mial in 6,). Substituting this 6, into (56) one finds 0,
(as a cubic polynomial in 6,). Finally, substituting
these 0, and 0 into (58) a single cubic equation for 6,
is obtained. Solutions on X[C,,], £[C,,] and Z[C,,]
are, similarly, found from a third degree equation in 6,
whereas equations for X[C] are more complicated.

8

5. Conclusion.

We hope that this paper will help both to acquaint a
broader group of physicists with new, sophisticated.
and powerful group theoretical tools developed over
the last few decades by the mathematicians, and to
shed some light on an acute problem in physics, name-
ly, that of solving systems of non-linear equations. We
have completed treatment of all two- and three-dimen-
sibnal point groups. However, we also presented
mathematical background which should be sufficient
for further applications. For example, it is both
challenging and useful to apply the method presented
here to : four- and five-dimensional irreducible repre-
sentations of icosahedral groups Y and Y, (this would
complete calculation for all irreducible representations
of all finite three-dimensional point groups), to / > 3
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Table Vla. — Three-dimensional finite, reducible G 0, Vs €
point groups (G = D,,. D, .. D,.n > 2) : Denominator 2 7
& C D,, 0, =: ¢y =1 e, =ck
(6)) and numerator (¢;) invariants and basic vector J 2 ot =02 B
fields(e,). Cartesian coordinates x, y and = are so chosen "= 2=/F €= ‘1)
that the origin is a fixed point and the x and z axes are 6y =y, ey =-Vy,
1wo and n-fold axes respectively. i, j and k denote unit 1
vectors in the x, y and z directions respectively. The 5 -
j ; ) o IS D= it Vi p2 2 2 D,, 0, =: 0o =1 e, = zk
radius vector in the xy plane is p=xi+ Yhpt=xT+y~ " ! : o
Ovther quantities entering the table are vn=Re(x+iy)": nz2 |0 =p" 19, =20, | € p}
;7,, = Im (x + i»)"; Jp ]= — ¥i + xj. Note that 05 = v,, e, = ﬂV)’z"
;; V‘y"::yn~l i~ Oy lj and ;V0"= Oy I¢+ V- l.j' €, = 0, i‘
e, = za,p
1
€, = ;1- z VO’"
irreducible representations of O(3), to crystallogra-
phic space groups etc. Finally, the most challenging D, 0, =22 | g, =1 e, = zk
would be an extension of our results to compact nz2 (60,=p> |op, = zo, e, =p
groups. 1
03 =y, €& =7 \A
Acknowledgments. € =€ X €
3 e; =e; X e,
M. V. Jari¢ acknowledges an Alexander von Humboldt € =€, X e,
research fellowship and partial support from Deutsche

Table V1b. — Three-dimensional finite reducible point groups (G = D,,, D,,, D,, n > 2): Classes of little
groups ([L]), relations determining corresponding stratum (X[L]) and the global basis on EX (e.). The relations are
given in terms of invariants ; the relations necessary in orbit space, but redundant in the carrier space, are enclosed
in curly brackets. The last rows for groups D, and D, give algebraic relations satisfied on each stratum by the
non-trivial numerator invariants. See table Va for definitions of the invariants and the vector fields.

G [L] 2[L] e,
Dnh [Dnh] 91 = 02 =0, { 93 =0} 0
n22|I[C,] 0,>0,0,=0,{6,=0} €
[C‘zf)] ‘)16, =00, >0, 9§ =0 €,
[CH] () 6,>00, >0, 9% = 0 € €
[Clh] 01 = O, 02 > O, 9% < 0; ez, E3
[C,] 6,>006,>00 <0 €, e, ey
D,; |[D,] 0, =6,=0{6,=0} 0
n?z [Cnr] 01>0,02=O,{03=0} el
[CZJ 01 = 0, 02 > 0. 03 = 9’2’ 62
[C,] 92>0,63=—0'2'.{01>0} e, e,
[Cy] 02>O,03>~(9;.01+0§~03>0.{9,>0} € + e e, — e e,
@1 =46,05-6,){>0}
D, [D,] 6, =0,6,=0{6, =0} 0
nz=2|[C] 6,>0.6,=0{6,=0)} e,
[C5] (%) 0, =06, >0, 0% = ) e,
[C,] 0,>0.06, +6,—60,>0{6,>0) e, + e, e — e.e,
o} =0,0; -0){>0}

() For n odd the two classes, (+) and (—). coincide : for n even they are disjoint and correspond to 0, = + 677
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Table VIc. — Three-dimensional finite reducible point groups (G = D,,, D, D,, n = 2) : Zeros of a general

Ne 1

vector fieldv = X, q,(0) e, at each stratum X [L]. The basic fields and relations determining the strata are given in
tables Vla and V1b respectively. A dash in the last column indicates that v = 0 reduces to an identity.

G Z[L]

Zerosof v =2 _q,0)e,

D,, 2[D,]
nz=2 2IC |9, =0
Z[CH] |09, + 0595 =0
Z[C) 1 g, =0,0,9, + 059, =0
Z[Ch) |92=93=0
2[C,] 41 =4q =43 =0

D, Z[D,J]
2 2 Z[Cnv] ql = 0

Z[G,] g+ 07 g3 =0
2[C] 019, +039,=0

0,4, — 05495 + ©,(0, 95 + g¢) =0
Z[C] 0,9, +0,q, + 0395 + ¢(qs + 0,95 + g5) =0

_ 1 _
0y —q, + 05 1‘13)*“?:(9'5—‘93)(‘1.‘._91‘15)—91‘9'5 "46 =0

03d, + 03" gz + (0595 — 057" g¢) =0

2[D,]
nz=?2 ZIC] |gq.=0
Z[CS) |6,9; + 0395 =0

=

039, + 0571 g5 — 9,95 =0

2[C,] 0,9, +0,q, + 0595 + ¢0,(qy +g6) =0
@1y — g2) + (8 — 03) g4 — 0,(05 95 + 05"

—

Table Vila. — Three-dimensional finite reducible point
groups (G = C,,, C,, C,, n > 2) : Denominator (0,)
and numerator (¢ ) invariants and basic vector fields (e,).
Cartesian coordinates x, y and z are so chosen that the
origin is a fixed point and the z axis is the n-fold axis
which together with the x axis forms a vertical reflection
plane. i, j and k denote unit vectors in the x, y and z
directions respectively. The radius vector in the xy
plane is p = xi + yj, p* = x* + y*. Other quantities
entering the tableare : y, = Re(x + iy)"; 0, = Im(x +
)y Jp = — yi + xj.

Forschungsgemeinshaft, Sonderforschungsbereich 161
as well as hospitality and financial support from the
ILH.E.S. extended to him during the main part of
this work. R. T. Sharp is thankful to the LH.E.S. for
hospitality. We are grateful for illuminating discus-
sions with Professor Deligne and Professor Bierstone.

G 0; Pp €5
Cnv 61=Z (00: e1=,2
1

05 =7, ey =—Vy,
Con 0,=2" | 9o = e, = zk
nz2 | 6,=p*| o, = e =p
1

05 =, e3=;l-Vy,,

e, =z0,k
e =Jp
1

€ z;Va,,
C, 0, =z Yo = e, =k
n22 [ 0,=p"| ¢, = e, =p
1

03 = 7 93=;V7n

95 =e, X 02

06=61X€3
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Table VI1b. — Three-dimensional finite reducible point
groups (G = C,. C,. C,. n=>2): Classes of little
groups ([L)). relations determining corresponding stra-
tum (Z[L]) and the global basis on EX (€.). The relations
are given in terms of invariants; the relations necessar 'y
in orbit space, but redundant in the carrier space, are
enclosed in curly brackets. The last rows Jor groups
C,y and C, give algebraic relations satisfied on each
stratum by the non-trivial numerator invariants. See
table Vlla for definitions of the invariants and the vector
fields.

G [L] Z[L) €,
Coe [C.] | 6,=0{6;,=0} €
nz?2 ([CC) | 6, >0,63 =0y €. e,

[Cy) 03 <03,{0,>0} €, €, €3
C, [C] 0, =0,0,=0,{0, =0} 0
nz=?2 [C,] 0,>06,=0{6,=0)} e,

[Cy 0, =0,60,>0 e, e
[Cy] 0,>06,>0 €, e, e
ol =05 -01{>0}
C, [CJ 0, =0,{6,=0} €
nz2 [C] 0,>0 €, e, e

0l =0, -603{>0}

(“) For n odd the two classes, (+) and (—), coincide ; for n even
they are disjoint and correspond to 6; = + 672,

Table Vilc. — Three-dimensional finite reducible point
groups (G = C,, C,, C,, n > 2) : Zeros of a general
vector field v = X, q,(6) e, at each stratum X[L]. The
basic fields and relations determining the strata are
given in tables V1la and VI1b, respectively. A dash in
the last column indicates that v = 0 reduces to an
identity.

G Z[L] Zerosofv =X q.(0)e,
CnL‘ X[Cnv] ql = 0
nz2 Z[C* | g, =0,0,9, + 0,49, =0
Z[C] a1 =q:=q;=0
Ca Z[Cyl
n>2 | ZC] |q, =0
ZIC) 16,9, + 6595 + 9,95 =0
?y4; “92‘15“93‘16 =0
Z[Cy] 491+ 9,9, =0
0,9, + 0395 + ¢, g4 =0
®143 — 0,95 — 6,95 =0
Cn Z[Cn] ql =O
nz2 Z[Cy) 4 +¢,9, =0
09, + 6039, + ¢, g, =0
?193 — 0,95 — 0395 =0
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Table Villa. — Three-dimensional ~ finite  reducible
point groups (G = S,, . n > 1, C. C,) : Denominator
(0,) and numerator (@y) invariants and basic vector
Jields (e,). Cartesian coordinates x. y and = are chosen
such that the origin is a fixed point and the z axis is the
n-fold axis perpendicular to the reflection plane.
i, j and k denote unit vectors in the X, y and z directions
respectively. The radius vector in the xy plane is p =
xi+ yj p? = x* + % Other quantities entering the
table are : y, =Re(x + iy)"; o, = Im(x + ",

q s 1 ] !
Jp=—yl+xj;gvyn=yn—ll"an-—l.];;'lvan=
Oy 14 VYpoy )

G 0, Py €,
S: () |0, =2 | @, =1 e, = zk
nzl |0,=p g, =27, | e=p

1
0y =75, | 0, = z0, €; = ""zv)’zn
(P3 = aZn 34—-))",2
e5 _Zynp
e6=lzv’})n
e7 = O',,IE
e8 ‘-—'—‘ZG’np
1
e9=;zVa,,
€0 = 20y, k
e, =Jp
1
€2 =‘2‘;V°’2n
C, 0, =22 | g, =1 e, =zk
02=x ez-—i
0, =y e =]
C, b, = x ®o =1 € =’:
b, =y e =]
03 = Z 83 =R
© S, =C,
Appendix A.

GLOBAL BASIS OF VECTOR FIELDS ON A STRATUM. —
We have proven, theorem 3. 1, that at any pointrof a
stratum, the values v,(r) of the equivariant vector fields
span the tangent plane to the stratum. If for a stratum
of dimension m, there exist m covariant vector fields
whose values are linearly independent at every point
of the stratum, and therefore form a basis for each
tangent plane to the stratum, we shall say that there



20 JOURNAL DE PHYSIQUE

Ne 1

Table VIIIb. — Three-dimensional finite reducible point groups (G = S,,,n = 2, C,, C,, C,) : Classes of little
groups ([L]), relations determining corresponding stratum (X[L)) and the global basis on EY (e,). The relations are
given in terms of invariants ; the relations necessary in orbit space, but redundant in the carrier space, are enclosed in
curly brackets. The last three rows for S,, (n = 2) and C, give algebraic relations satisfied on each stratum by the
non-trivial numerator invariants. See table Vllla, for definitions of the invariants and the vector fields.

G (L] Z[L] €,

Sz.. [Szn] 91 =0, 02 =0, { 93 = 0} 0

n=?2 [C,] 0,>06,=0{0,=0} e
(Cy] 8, >0 {6, =20, 0%” 2 0§ } e + €€, e — €€ — e(Y)

@3 = 591(9; + 05)
1

G (Cl] 0, =0,=0{6;=0} 0
(Cy] 0, +0,>0{6, >006,>0 05<6} e + e e;, e — e e, — e ()
2 1
Q) = 591(62 + 65)
1
(Pg = 591(92 — 03
@3 =065 - 63
Cs [Cs] 01 =0 €y, €3
[Cy] 0, >0 €y, €5, €3
C, | [C] The whole space e, e, e,

(“) A minimal set of basic vector-fields which spans Z[C,], which is three dimensional, consists of four basic fields,
manifesting non-existence of a global basis on this stratum (see also Appendix B).

exists a global basis of vector fields for this stratum.
We can give two such examples :

i) One dimensional stratum (which does not con-
tain the origin); the vector field r is equivariant and
forms global basis.

ii) Generic stratum of a pseudo-reflection group
acting on an n-dimensional space £, In that case the
basic covariant vector fields are the gradients of the »n
algebraically independent basic invariants. By theorem
3.1 the values of these n gradients must form a basis
for E, atany point of the n dimensional generic stratum.

These two examples are sufficient to prove the
lemma :

Lemma A.l1 For two dimensional real represen-
tations of finite groups there exists a global basis of
covariant vector fields for any stratum.

Indeed for reflection groups this is true by ii) on the
generic stratum and by i) on the nongeneric — and
therefore one dimensional strata. The non reflection
groups are the C's and the Grammian of the basic
vector fields p and Jp is p* which does not vanish

Rk

all groups we consider, acting on three dimensional
space, we will find only one family of groups with no
global invariant vector field basis for their strata :
These are S,,; see table VIIIc.

We now prove the following :

0
outside the origin (J is the matrix (]

Theorem A.1 There is a global covariant vector
field basis for all strata of the reflection groups in two
dimensions and for A, B,. H;.

Lemma A.l proves it for 2-dimensional reflection
groups. For the others the proof is based on an idea

nY
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Table VIlle. — Three-dimensional finite reducible point groups (G = S, n > 2.C. C. C,): Zeros of a general
vector fieldv = X q,(0) e, at each stratum X[L). The basic fields and relations determining the strata are given in
tables Vllla and V111b, respectively. A dash in the last column indicates that v = 0 reduces to an indentity.

G 2[L] Zerosof v = X _q,(0)e,

Sa. 2[S;] | —
nz=?2 Z[C] g9, =0
2[C] [ 0yg; + 0,9, + 0,95 + ¢,(qs + 0, a5 + de) + 02(q7 + 0, g5 + qo) +
+ @30, 10 + q12) =0
T 9343 — 9246 + @3 G9 + U549,y + 039, =0

(000~ 42— 03740+ L0+ 0@ — 0,09~ 0,00 g, +
+ 5030 = 0,4 + 0203 + 6 a3 + 41 — 1 g3] = 0| )

0241 = 2 + 0571 4 + 50300 — 0,45) + 203 — 0,)(gr — 0, gp) -
=000 9o+ 04[05 — 03 q10 — g, — 0371 g,,] =0

G 2[G] | —
ZIC] |0,q, + 0,9, + 0,9, + ©1(qs + 0,95 + q¢) + ¢,(q, + 0, qg + q9) +
+ @30, q,0 + ‘112)_= 0
r—403‘13"‘(qua‘*“/’xqsa'*“92‘111+93‘112=0 )
1
¢4 — g, — q3) + 50, +03)(qs — 0, q5) — 0, g +

1
+ '2‘(P3(‘I7 = 0,q8) + 0,[(0, + 65) 410 + G411 — qy,] =0

1 1
209, — 9, + g3) + '2"P3(‘14 — 0,495 + 5(02 — 03)(q; — 0, q5) —

— 0,495 + (pl[(02 - 03) 4,0 — 411 — 412] = O_J

Cs Z[Cs] q2 = q3 = 0
2[C,] 4y =¢q, =q3 =0
C 2[C] 4y =q; =q3 =0

() On the generic stratum, the equations outside the brackets must be supplement by one of the equations within
the brackets : either equation can be used outside the two families of planes, f; = 65 and 6, = — 67, whereas the first
equation must be used at the first family of planes and the second at the second family of planes, respectively. This manifests
non-existence of a global basis for S,, at X[C,]. (See also Appendix B.)

(*) On the generic stratum, the single equation outside the brackets must be supplemented by two of the equations
within the brackets. Outside the three planes 0; = 0,0, = — 0,,6, = 0(the three coordinate planes) any two of the equa-
tions can be used. At the first plane (y = 0) the first and the second equations can be used and at the second plane (x = 0)
the first and the third equations can be used whereas at the intersection of these two planes (z axis) the second and the third
equations must be used. This manifests non-existence of a global basis for C; at Z[C ]. (See also Appendix B.)

introduced in § 6 of [14]. Given a homogeneous  The multilinear form p(x,, x,, ..., X,) is obtained by
polynomials p(x) of degree d, by « polarizatign » one N Y
can obtain a multilinear form in d variables: indeed PXy Xa: 00 X)) = (1/d ) Dy, Dy, ... Dy, p(x) . (A.3)
define It is completely symmetrical in the @ variables and it
D I , o satisfies :
,.p(x) = il—?()) (p(x + 4y) — p(x)) 4 = (y~ Vp(x)) PX X, X, ... x) = p(x). (A.4)

(A.1)
For a fixed x, the bilinear form in y and z, p(x, x, ...,
X, ¥, z) defines a n x n matrix T(x), homogeneous of
degree d — 2

D, D, p(x) =D, D, p(x) . (A.2) Px.x. ... xy,2) =(y. T(x) 2). (A.5)

and note that



22 JOURNAL DE PHYSIQUE

This matrix is symmetrical since (y, T(x)z) =
(T(x) y, z). Consider now a set of basic invariants for
one of the groups we consider and order them in order
of increasing degree. Let 6, = (x,x) = Zx} and
0,(x) = (x, T(x) x). Then(x, T*" ' x) = Ok = 1,...,n
form a set of basic invariants. This can be verified by
direct calculation for 05 of H; (which is Coxeter’s
notation for the group Y,, see Appendix D).

The group B, is the symmetry group of the hyper-
cube in » dimensions (By = O,). Its basic invariants
can be chosen as 0, = ) x7* Then T(x),; = x} J;;

and we do verify that 6, - (x, T*"!(x) x). Similarly,
A, is the symmetry group of the regular simplex in n

dimension (A; = T,). Consider this n dimensional
n+1

space as the hyperplane ) x; =0 in the (n + 1)
i=1

dimensional space and in it the regular simplex whose
(n + 1) vertices have coordinates are

1
(fa)i=5i,,“n+l-

(A.6)

Then A, ~ S, |, the group of permutations of (n + 1)

objects, is represented by the (n + 1) by(n + 1) permu-

tation matrices (zero everywhere except one by line and

column). A basis of invariants can be chosen such that
n+1

0<k<n 0,=) xt*" with 6,=0. (A.7)

i=1

Then

T(x),; = x,0 O=(xTx)*'x) 1<k<n.

(A.8)

ijs

For the reflection groups which we consider, the basic
vector fields can be chosen as

e(x) = Tx) ' x = —CLVH,‘(x) (A.9)
k

where ¢, =[(k — 1) d + 2], d =degree of T(x). Assu-

me that for a given / < n, at a point x,

) - -1

e®) = T100x = ¥ 0, T x = 3 o %)
s=1 s=1

(A.10)

ie. e(x) is a linear combination of the (/ — 1) e/(x),
1 € s < (/- 1) This is also true for the e,(x), / < k <
n. Indeed, applying the operator T(x)*~! to the two
sides of equation A. 10 one obtains

k-1

e(x) = Z

t=k=1+1

opee®)  (ALLD)

and for each value of t, / < t < (k — 1), e,(x) can be
expanded as a linear combination of the e(x), |1 <
s < (I — 1), by repeated use of the equation A.10.

If the point x belongs to a stratum of dimension /,
equation A.10 cannot hold, because the set of n
vectors e,(x) would be of rank (/ — 1) and theorem 3.1
would not hold. Hence the vectors e (x); | < k </

Ne 1

are linearly independent; this is true for any point x
of the /-dimensional stratum. This concludes the proof
of the theorem.

We make a remark, which applies in n = 3 dimen-
sions only, for subgroups H of reflections groups R
which have the same set of rotation axes i.e. same set of
points X, of one-dimensional strata. If e,, « = 1,2, 3
are basic vector fields of R, by theorem A .1, e,(x) and
e,(x) are not collinear where 0 # x ¢ 2, and there-
fore(e,(x) x e,(x),e,(x) x e,(x)) > 0,ie. e, (x),e,(x),
e,(x) x e,(x) form a global basic outside 2, U { 0 }.
So we have proven :

Lemma A.2 In three dimensional space, if e,
o = 1, 2, 3 form a basis of covariant vector fields for
the finite reflection group R and if e, e,, e, x e,
are covariant vector fields for the R-subgroup H
possessing the same rotation axes, then e (x), e,(x),
e,(x) x e,(x) form a global basis for all H-strata of
dimension / > 1.

This lemma applies to the unimodular subgroups
of R, thus to the pairs Y <Y, O<O, T <T,
D, < D,, C, < C,,. We are left to study as particular
cases the groups T, (Appendix C) D 4, C,;, S5, (Appen-
dix B). As we will see there are no global bases for the
S,, groups.

Appendix B.

STRATA, INVARIANTS, COVARIANT VECTOR FIELDS,
GLOBAL BASES OF VECTOR FIELDS FOR THE GROUPS
C, S, C» Coo D,, D,y D,. — In this appendix,
we give some information for the construction of
tables I, VI, VII, VIIL Let us first define the groups.
In the three dimensional space C, is the group of
rotations around the axis Oz by angles 2 mk/n,
0 < k < n; it is a cyclic group of n elements. C,, is
generated by C, and a reflection through the plane
x0Ozie. y = 0. Let/, = 0, « = | to n be the equations
of the n reflection planes of C,,. The product of the
I)s is

B.1)

s

o, =

[, =Im(x + iy).
1

[

x

C,, is generated by reflections. Both C, and C,, act
trivially on the z axis. They are the finite groups
acting on the two dimensional space of coordinates
x, y. The basic invariants of C,, for this action are

2 0, =y, =Re(x + iy)".

(B.2)

0, =p? =x* +)?,

Since C, is the unimodular subgroup of the reflection
group C,,, its numerator invariant is [See Egs. 31
and 32]

D(p*, y,)
“ _

Py = D(.‘C, y) " (B 3)
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Remark that

P =71 + oy (B.4)

Basic vector fields of C,, are the gradients p = -;—sz =

X l A -1
- V},n — n—-1 i
’ n - 0,
Since the real two dimensional representation of C,

is irreducible on the real but reducible on the complex.
it leaves invariant the antisymmetric bilinear form

X 0 -1
X1V — Xy, = (xz.yz)J( 1, J= .
Vi ] 0

(B.5)

Therefore, Jp and % JVy, = % Vo, complete the basis

of vector fields for C,, We have seen in appendix A
that these groups have a global basis of vector fields
for each stratum.

For the representation in three dimensional space
of the same groups, one adds the invariant z, the gra-
dient field k (unit vector of the axis Oz) and for C,
the cross-products of the C,, covariant vector fields.
The other finite, reducible, groups acting on the three
dimensional space are discussed below.

i) D,, is generated by C,, and the reflection through
the plane xOy, ie. z = 0. It is a group generated by
reflections and it is straight forward to construct the
tables for it. As explained in [3], [12] and [4], the Stanley
method yields the invariants for the subgroups D,, C,.
as well as for the subgroups D,, and S,, of D,,,. The
choice of covariant basic vector fields is less obvious
and should be guided by the computation of the
Poincaré (Molien) functions for vector fields
(Tables Vla, b, ¢).

ii) D, is the unimodular subgroup of D,, If e,
a = 1,2, 3 are the basic vector fields of D,,, we can add
€; X e, € X €3 €; x e; to complete the basis of
vector fields of D,. Then, as we have seen in appen-
dix A, e;,e,, e, x e, forma global basis on the generic
stratum. Note that the « horizontal » rotation axes,
for the rotation by =, have for equation z = 0 and
g, = 0. (See also Tables Vla, b, ¢.)

iii) D,, contains D, and the n plane reflections
whose planes are defined by y, = 0. It is a subgroup
of index 2 of D,,,. It is possible to find a global basis
for the two dimensional and the generic strata given in
tables Via, b, c.

iv) C,, is the direct product of C, and the plane
reflection through the « horizontal » plane xOy. It is
an index two subgroup of D,, and Stanley method
applies. With the help of the Molien function, it is
easy to find the three other basic vector fields and the
global basis for the two dimensional and the generic
stratum, tables Vlla, b, .

V) S,,. is a 2 n element cyclic group generated by
the product of the space inversion — I and a rotation
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around O: by an angle 2 n/n. It is sometimes denoted
C,; (and for n = 1 C; is more often used than S,).
Outside the generic stratum, for n > 1, there is a one
dimensional stratum, the z axis. S,, is an index-four
subgroup of D,,, The Stanley method yields the
three ¢, invariants. There are twelve basic vector
fields and no global basis for the generic stratum.
However it is possible to find four covariant vector
fields (see Table VIlla)

r=e +e, a=¢e,;, b=e, —e¢,.

c=e, — e (B.6)
such that

Gram (r,a, b) + Gram (r, a, ¢) = (6, + 0,)* 62
(B.7)

is positive everywhere on 2[C,] for n > 2; Gram is a
shorthand for the Grammian of a set of vectors :

Gram (ry, 15, ...) = det(r,, 1)), (B.8)

which reduces to (r;, r, x r;)? for a set of three vectors
in the three dimensional space. For n = 1 the above
expression vanishes in 2[C, ] along the z-axis (6, = 0).
However, in that case

Gram (r, a, b) + Gram (r, a, ¢) + Gram (r, b, ¢) =
=(0, + 6,)° (B.9)

which is positive everywhere on Z[C,]. Consequently,
12

an arbitrary S,,-covariant vector field, v= ) g, e,

a=1
is completely determined everywhere on the generic
stratum by its four projections : (v, r), (v, a), (v, b) and
(v, ¢). However, no three of the above projections are
(linearly) independent everywhere on X[C,] and there
is no global basis on Z[C,]. For example, if we deter-
mine v by the first two projections, (v, r) and (v, a),
then the projections (v, b) and (v, ¢) are equivalent
everywhere on 2[C,] except on the two families of
planes 0, = 05 and 6, = — 6 where Gram (r, a,b) =
0 and Gram(r, a, ¢) = 0, respectively, and where
(v, ¢), respectively, (v, b) projections must be used.
In particular, for n = 1 the intersection of the above
planes (z-axis) also belongs to Z[C,] and both pro-
jections, (v, b) and (v, ¢), together with (v, r) determine
v at this intersection.

Although the Molien functions for vector fields
were necessary for our work, we do not give them in
this paper since they can be deduce immediately from
our tables. To build these tables, we need also to
compute the Grammian matrix of the basic covariant
vector fields and express it in terms of 6, and ¢, We
leave this as an exercise to an interested reader. We
present a detailed calculation for cubic groups in the
following appendix.
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Appendix C.

COMPUTATIONS FOR THE CUBIC GROUPS O,, O, T,
T, T. — These groups are subgroups of O,, the
symmetry group of the cube. We choose the origin
of coordinates at the center of the cube and the coor-
dinate axes normal to the cube faces. The cube sym-
metry group is generated by nine plane reflections.
We denote by /, =0, « = 1,2,....9 the equations of
these reflection planes. By the action of O, on the
planes of the 3-dimensional space, these nine reflection
planes fall into two orbits : one is made of the coordi-
nate planes and yields

(C.1H

No |
The other orbit, of six planes, yields

9
[14L=Us=02 -7 = 252 - x3). (C.2)
1=4

We also introduce the notation -

F

9
H11=J9=13J6' (C.3)
x=1

The group T, is generated by the six reflections through
planes (C.2). The T, group has three plane reflections,
those of (C.1). Rotation axes are at the intersection-
of the symmetry planes. The incidence relations are
given in table C. 1. This table shows that the rotation
axes fall into three O, orbits.

Table C.1. — Reflection planes and rotation axes of the cubic groups. Each of the three A-axes is at the inter-
section of four reflection planes ; each of the four B-axes is at the intersection of three reflection planes of the 6-plane
orbit. Each of the six C-axes is at the intersection of two reflection planes. Only the groups O, and O have C-axes

of rotation.

Axes
Planes 4 B c
O, T, x =0 X X X %
y=0 X X X X
z=0 X X X X
y—z=0 |x X X X
y+z=0 |x X X X
0,T, z—x=0 X X X X
z+x=0 X X X X
x—yp=0 X | x X X
x+y=0 X X X X
Order of 0, 0 4 3 2
rotation axis T, T, T 2 3

The reflection through the coordinate planes
changes the sign of the variables x, y, z so O, and T,
invariant polynomials depend only on x?, )?, 22
and the homogeneous ones have even degree. From
equations 13 and 33, we know that the degrees d,, d,,

dy of the three basic invariants of O, satisfy :
dl =2, [11 d2d3 =48

di+dy +dy=9+3 so dy=4,dy, =6 (C.4)
(48 is the order of O,, 9 is the number of its reflection
planes). The rotation around the 4 and B axes induce
respectively odd and even permutations of the coor-
dinate axes, so the three basic O, invariants are
invariant by the permutations of x2, y*, 22 A possible
choice is :

2t I o= x4t st

In . ,’(b + y() + __0 ) (C‘S)

The O, basic vector fields can be chosen proportional
to the gradients of the basic invariants

Vi=(p2 Vy=(u3)y, %) v, =5 )5 9.
(C.6)

They satisfy the relations (see equations 31 and 32)

L D(I,, Iy, Ig)

(Vi Vy x Vo) =% Doy = Jer (€©7)

The six reflection planes of (C.2), which generate
T, permute the coordinate axes but do not change
separately the sign of x, y, z (they change it by pairs).
So the fundamental invariants of T, are /,, /,, /,.
With the notation
(C.8)

VI, =V, =(yz, zx, xy)



Nn ]
equations 31 and 32 applied to T, invariants yield :

I DU, 1y, 1)

(Vi Ve x V) = ¢ Doy = Jer (€9

The unimodular subgroups O of O, and T of T,
have respectively the same denominator invariants 0,
i = 1,2, 3. Their numerator invariant ¢, is J, for O
and J for T. The general Stanley method (see Eq. 30)
applies to the index-2 subgroup T, of O, Its s
are those of O, Its ¢, is the product of the /, of O,
plane reflections which do not belong to T, this is
Je again.

We now pass to the choice of basic vector fields.

For the reflection groups O, and T, we have seen
that e,, « = 1,2, 3, can be taken proportional to the
gradients of the denominator invariants 6,, i = 1, 2, 3.
For the three other groups, the Molien function
indicates the number nk, and the degrees of the basic
vector fields. For the unimodular groups O and T
we can choose e; x €,, €, x e;, e, x e; for e, es, e
This does not apply to T,. V,, V,, Vs are the basic
vector fields e, e,, e; for T, (as for O,). Since V, is
a pseudo-vector field for T, one can takee, = V, x V,,
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es = V3 x V,. Although V, x V, has the right degree
indicated by the Molien function, it is not independent
from e, and es. Indeed

Vox Vot LVyx V, = Y12 = [)V, xV, =0

(C.10)

Noting that /; is a pseudo-scalar of T,: one checks
that a possible choice for e, is 7, V, x V.

We have studied in appendix A the choice of global
basis of covariant vector fields for a given stratum.
For computing the equations for zeros of covariant
vector fields on a given stratum, we need the scalar
product of all basic vector fields with those of the
global basis for each stratum. These scalar products
are given in table C.2. With this table we can also
compute the Grammian (i.e. the determinant of the
matrix of scalar products) of the set of vectors V,, V,,
Vs and V,, V,, V. This is respectively J? and J?2
which are O, invariants :

6J; =13 ~30L, 1, +21,,

— 1812 + 361, 1,1y — 813 I, +
+312 201212 +9141, - I8,
(C.12)

(C.11)
6J2 =

Table C.2. — Scalar products of various basic vector fields with vector fields of the global bases chosen for different

strata.
v, v, v, v, V, xV, V, xV,

v, I 31 I, I, 0 0

Vv, 31 A, I, 1, I 1, Js 0

v, I, L1 I Lg 0 —Jg

Vs Is Iy 1, Lg Ly, Jo -1, Js
V, x V, 0 Je 0 Jo I I, — I? — I, B,
V, x Vg 0 I, Jg - Jy 0 I Lg — I, I Iy(I, I, — 3 1)
V, x V, Jo — Ay J 0 0 I, Ly — I? L} -1, 1)
V, xV, 0 0 ~Js | =1 Jg — I, B, I, A, — 9 I?
V, x V, - Jg 0 0 — A, Js | L3I, —1,1,) 3L I -1, A,

A4=é’(11%‘14) B4=3I4“122;

Ly=%81,1s+312 -6121,+1});

Lio =35I Is+SIgI2=SI, I} +I3).

Use(V, x V,, V. x V) = (V. V) (V. Vy) = (V,, Vo) (V. V) = minor of Grammian for lines a, b, column ¢, d.

Appendix D.

CALCULATIONS FOR THE ICOSAHEDRAL GROUPS. —
We follow Coxeter [21] in orienting the-icosahedron
so that one pair of opposite edges is parallel to each
coordinate axis; it is centred at the origin and has
edges of length 2, and its vertices are at (+ 7, + 1, 0),
O %7 £ 1), (£ 1,0, + 1), where 7 = (1 +.,/5)2.
The associated dodecahedron has its vertices at the
midpoints of the faces of the icosahedron. Meyer [5]

has given explicit expressions for the basic Y-invariants
r?, I, 1, and J;5 (J,5 is a pseudoinvariant of Y,).
They are reproduced in the caption of our table Illa
(we correct a misprint in Meyer’s /,,). r* =x*+y? +z?
is the O(3) invariant ; /; is the product of the six planes
through the origin orthogonal to lines joining pairs
of opposite vertices; /,, is the product of the ten
planes through the origin parallel to pairs of opposite
faces; J, 5 is the product of the fifteen planes through
the origin orthogonal to lines joining the midpoints
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of pairs of opposite edges: they are the symmetry
planes, so J,s is proportional to the Jacobian
D(r%, Ig, 1,0)/D(x, y. 2).

The maxima, (2t + 1)/27, of I,/r® occur in the
directions of the vertices of the dodecahedron; 7,
vanishes along lines (planes) joining midpoints of
adjacent edges of the icosahedron.

The absolute maximum, 52t — 1)/81, of 7,,/r'°
occurs in the directions of the vertices of the dodeca-
hedron; local maxima (2t — 1)/125 occur in the
direction of the vertices of the icosahedron; 1,
vanishes along lines (planes) joining midpoints of
alternate edges meeting at a vertex of the icosahedron.
The absolute minima, — (2 ¢ — 1)/250, occur in the
directions of two points of each edge of the icosahedron
at distance ' from each vertex.

J s vanishes along the edges of the icosahedron and
along those of the dodecahedron.

The six basic covariant vector fields for Y are
e, =1 € =3V, e =3V, e =e xe,,
es =€, x e; and e =e, X e;; e,, e, and e, are
also the basic covariant vector fields for Y,. Their
scalar products are computed straightforwardly. For
instance, since (e,, e,) is an invariant of degree 10,
we must have (e,, e,) = Ar'® + Br* I, + CI,,,
where A, B and C are constants to be determined by
comparing coefficients of powers of x, y, z, say of
x'% x8y* and x°y*; additional coefficients are
compared as a check. In table D, we list the products
of (e, e)fori = 1,2, 3andj = 1, ..., 6. The remaining
scalar products can be found by using elementary
formula (a x b, ¢ x d) = (a, ¢) (b, d) — (a, d) (b, c).
Jis = (e,, e, x e;)? is evaluated similarly as a Gram-
mian determinant,

Jis = Gram (e, e,, e;) = det [(e,, e)]}-;. (D.1)

The result can be found in table IIIb.

We turn to the derivation of the equations of the
strata of Y and Y,. The stratum [C;] of Y, or [Cs,]
of Y,, consists of lines through the origin in the direc-
tions of the vertices of the icosahedron, but excluding
the origin itself. Since I//r® takes its absolute mini-
mum, — (2t + 1)/5, in these directions, we can
specify the stratum by the conditions

S5I,+Qt+1)rf =0, r*>0. (D.2)

The equation A¢ =517, + (2t + 1)r® = 0 implies
125116 = (2t — 1) r'° = 0, but not the other way
around, because /,,/r'° has only a local, not an
absolute, maximum in the directions of the icosahe-
dron vertices.

The stratum [C;] of Y, or [C,,] of Y,, consists of -

lines in the directions of the vertices of the dodecahe-
dron. In those directions 7,/r® has an absolute maxi-
mum (2t + 1)/27 and /,,/r'® has an absolute maxi-
mum 5(2 ¢ — 1)/81. Hence the stratum is specified by
the equation By =2t + 1)r® - 271, =0 or by
52t — 1)r'® — 81 I,, = 0, together with > > 0.
The stratum [C,] of Y, or [C,,] of Y,. consists of

Ne 1

lines in the directions from the origin to midpoints
of the edges of the icosahedron, or dodecahedron.
Those points are specified by the conditions 7} = 0,
Iy, =0orr® I + I}, = 0, together with r* > 0,

The stratum [C] of Y, consists of the reflection
planes, on which J,5 = 0, with the exception of the
lines belonging to the one-dimensional strata and the
origin. It is specified by the invariant conditions
Jis =0, AgBg[Il, + r® I] > 0; the inequality
excludes the lower dimensional strata. Finally, the
generic stratum is given by A, Be(I3, + r® I2) > 0
for Y (adding J 5 > 0 for Y,); the inequalities exclude
all lower dimensional strata.

We now mention the Poincaré functions for inva-
riants, given, e.g, in [9]. Those Poincaré functions are
valid for the generic stratum; on lower dimensional
strata, because of identities satisfied there by the inva-
riants, they assume a reduced, or collapsed, form. Thus,
for Y, the generic Poincaré function is [(1 — 72)(1 —
19 (1 = ¢*°)] 'andfor Yitis(1 + ¢1%) [@-=»Ha-
t°)(1 = ¢'%]"%. On all one-dimensional strata,
Jys = 0and 7 and I, are numerical multiples of r®
and r'® respectively. Hence the reduced Poincaré
functions are (1 — ¢?)~". [Similarly, the basic vectors
e; all vanish or are multiples of powers of r? and
e, = r; the generating function for covariant vector
fields becomes #(1 — #?)7'.] On the two dimensional
stratum of Y, the only invariant condition additional
to those for the generic stratum is J 2, = 0. Hence the
reduced Poincaré function for invariants is

(1 =29[0 = A =51 - 197! =
=1+ + 29[ - )1 -],
(D.3)

Only r* and I} behave as denominator invariants.
I, and If, are numerator invariants; /3, can be
expressed as a linear combination of r'5 and (/;)°.
The global basis on a stratum has been discussed
in appendix A. On the one-dimensional strata it is
given by e; = r. On the two-dimensional stratum [C ]
of Y, it is given by e, and e,. For the generic stratum
of Y, the global basis is e,, e,, e;. However, since the
generic stratum of Y includes the planes J,5 =
(e;, e, x e3) =0, we take as its global basis e, e,
and e, = e, x e,.
Table D. — Scalar products (e, e ;) for the basic cova-
riant vector fields of Y (i =1,2,3 and j = 1, ..., 6).
Dig==THQt+ r* Iy +(1/4)(18t + 11) I,,;
Dis =(1/4)(1 =20 I + G4 Qe + 1) r* 1o +
+ 2@t =AY
Dig =C/HC -2 L+ Qe —-DrP 1, +
+ 128 1 — 13) r®([)? + 127 —40) PP [, [
+ 48(55 — 34 1) (1})>.

€ € € ey €5 €s
e, r? 31 51, O 0 Jis
€, R A Dy, Dy, 0 -Jis 0
€3 51, Dy, Dg Jis 0 0
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Appendix E.

ON DISCREPANCIES. — A careful reader may notice
some discrepancies between our results and previously
published ones. Therefore, we must warn the reader
of some errors in previous publications.

For the icosahedral group Y we use essentially the
same integrity basis as given in [5] except that we
found an error in 7, of [5] : the factor (x* + y* + z*%)
should read

Hy+)x=—y=—2)(—-z-x)(-x—-y) =
=xt 4t bt = 2x2)r = 2227 02242,

With respect to [9] we have to make two remarks.
First, we find for the octahedral group O that the
basic covariant E® (I',, I',), in the notation of [9)],
is not independent of the other five basic covariants
E®T T )=5 {1 )~ [IP(T )P} EOT, T )+

+12(I) E®O(T,, T,). (E.1

An appropriate, eight degree, independent covariant
is, for example

E® (I, Iy) = EM(Iy, Ty) x E9(I,, T,) (E.2)
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which is the choice in our table 1Va. Second, we
observe that equation 55 of [9] is not sufficient to
obtain all the basic covariants of an improper group
which is a direct product of the inversion and a proper
group. For example, basic fields of the form

E‘Z“”(I‘,", r'g) - 1(2p+ l)([‘m) E(Zq) (rh [‘m)’ (E3)

must be considered. This can be illustrated for T,
in which case one could not otherwise obtain the basic
covariant

EDLTY) =190 ) E® (T, ry. (E.4)

In [11] we found that the I'{")" basic covariants
for 'y~ (T,) were incomplete, missing a seventh
degree invariant [e.g. Eq. E.4).

Finally, in [13] equations for the strata of O, were
given. In the first and third row of table 3, [13], « should
read o’. In the second row of the same table the three-
fold axes (x =y = z, etc.) should be excluded from
the equations of [C,] stratum. This can be achieved,
for example, by adding the inequality 6, > 107 to
the relations already given.

Should some errors be detected in the present work.
we would appreciate being notified about them.
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