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This is one of the oldest subject in mathematical physics. In 1829 the finite 

subgroups of 0(3), the three dimensional orthogonal group, had been enumerated by 

Hessel. Completing and correcting the work of Frankenheim, Bravais determined the 14 

(Bravais) classes of lattices in 1850. In 1879 Sohncke described the 65 classes of 

crystallographic groups, subgroups of the connected Euclidean group Eo(3) . Reflec- 

tions had to be added. This was done independently by Fedorov and Sch~nflies. In 1891, 

by correspondence, they compared their results correcting minor errors on both sides, 

~1~yreached an agreement on the listing of the c 3 = 230 crystallographic classes. 

This is a beautiful result of mathematical physics : indeed SchSnflies, a mathemati- 

cian, published in Mathematische Annalen while Fedorov, working for the Russian Geo- 

logical Survey, published in the Proceedings of the Saint Petersburg Mineralogical 

Society ! Fedorov also described the c 2 = 17 crystallographic classes for dimension2. 

"Is the number c of crystallographic classes finite for any dimension n ?" 
n 

became a mathematical problem, precisely Hilbert 18 th problem. The affirmative answer 

was given by Biehenbach : in 1910, he proved that Yn , the number of isomorphism 

classes of crystallographic groups is finite for any n and in 1912 he established 

the theorem : isomorphic crystallographic groups are conjugated in Aff(n) , the n 

dimensional affine group (= inhomogeneous linear group). 

The interatomic distances in a given crystal phase depends on temperature t, 

and pressure p , so its crystallographic group does depend on t and p , hence the 

natural equivalence for the classification of crystal symmetry groups is up to a con- 

jugation b~ an element of Aff(n) the connected affine group. When two isomorphic 

crystallographic groups (conjugated in Aff(n) by Biebenbach theorem) are not conju- 

gated by elements of Affo(n) their two crystallographic classes are "enantiomorphic" 

For n = 3 there are eleven pairs of enantiomorphic classes so Y3 = 219 = c3-ii . 

The c 4 = 4895 (Y4 = 4783) four dimensional crystallographic classes have 

been recently listed and described : Brown et. al. Ill . The c n are unknown for 

n > 4 ; an asymptotic limit has been given by Schwarzenberger [2] : 

lim ~ Log c n = Log 2 (i) 
n -~o n 

It is difficult for many mathematical physicists to study crystallography be- 

cause most of its fondamental concepts were conceived when group theory was less deve- 

lopped and they are defined only implicitly in the literature. This situation is chan- 
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ging now, but one may find that a n-independent extension of the intuitive concept for 

n = 2 or 3 is far from obvious e.g. Ne~busser et. al. [ 3 ] for the definition of 

crystal system. (Two of the three authors had each proposed earlier a definition ; 

theyboth failed for n = 7 !) Let me try to contribute here to an easier problem : 

the classification of crystallographic groups (and not of the crystal themselves). 

I have first to recall some definitions and results. An action of a group G on a set 

M is defined by a map # which satisfies : 

G x M > M , ~(l,m) = m , ~(g2,~(gl,m)) = #(g2gl,m) (2) 

I will often use g.m as a shorthand for ~(g,m) . The isotropy group G m (physi- 

cists also say the little group of m) is the G-subgroup which leaves m fixed : 

G = {g C G , g.m = m} • (3) 
m 

The G-orbit of m , G(m) , is the set of G, transforms of m . We easily compute 

-I 
Gg.m = gGmg (4) 

The set of the isotropy groups of an orbit is a conjugation class of subgroups of G . 

There is a natural definition of equivalence of G-orbits : those with same isotropy 

groups• In a group action, a stratum is the union of all equivalent orbits e.g. the 

stratum S(m) of m is the set of all m'E M whose isotropy group Gm, E [G m] the 
-i 

conjugation class of G m If m' = = • g2 "m gl "m ' g2 gl E G m , i.e. gl and g2 be- 

long to-the same coset of G : = m glGm g2Gm and the orbit G(m) is equivalent to 

[G:G] the set of left G-cosets of G m with the G action by left translation : 

g2.glGm = (g2gl)Gm . When Gm~G , i.e. G m invariant subgroup of G (N [Gm] has 

one element !), [G:G m] has also a natural group structure, that of the quotient group 

G/G m . Finally we recall that NG(H) the normalizer of H is G is the largest G- 

subgroup which contains H as invariant subgroup. The points of the orbit G(m) with 

same isotropy group G m form an orbit of NG(Gm) . 

A n-dimensional crystallographic group G (in crystallography one says a space-group) 

is a closed discrete subgroup of E(n) , the n-dimensional Euclidean group such that 

the orbit [E(n):G] be compact. So T G , the translation subgroup of G is generated 

by n linearly independent vectors and is isomorphic to Z n . The quotient G/TG= P 

is called a point group. It is a finite subgroup of O(n) . The conjugate class of 

P in O(n) is called a "geometric class". The macroscopic properties of a crystal 

depends only on its geometric class. The number of G.C. (Geometric class) and ICPG 

(isomorphic class of point groups) is given in table 1 for n < 4 . They are respec- 

tively 32 and 18 for n = 3 . 

The elements of T G form a lattice in the vector space E n . The set of lattice 

is an orbit [GL(n,R) : GL(n,Z)] (GL is for general linear). The strata of the ac- 

tion of O(n) on T (obtained by restriction of the GL(n,R) action) are one possi- 
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ble definition of crystallographic systems : there are 7 for n = 3 , namely triclini~ 

monoclinic, rhombohedric ; tetragonal, trigonal, hexagonal, cubic . The corresponding 

isotropy groups are called the holohedries, and denoted by PH " An arithmetic class 

is a free action of a point group P on a translation group T , i.e. it is an in- 
A 

jective homomorphism P .~ Aut T = GL(n~Z) . Therefore arithmetic classes corres- 

pond to conjugation classes of finite subgroups of GL(n,Z# . It was a remarkable the- 

orem by Jordan (1880) that the number of these classes is finite for any n : it is 

73 for n = 3 . The Bravais classes of lattices correspond to the arithmetic classes 

of the holohedries. There are 14 for n = 3 . As extensions of P by T with ac- 

tion N , the space groups of an arithmetic class correspond to the elements of the 

H~(P,T) . Isomorphic extensions are the orbits of the normalizer cohomology group 

NGL(n,Z)(A(P)) in its onatural action on H~(P,T)~ . The semi direct product T A P 

corresponding to O C H%(P,T) is called a symmorphic space group. 

We give in Table i some crystallography statistics for 1 < n < 4 

Table I Crystallography statistics for I < n < 4 

n = I 2 3 4 
Crystallographic Systems i 4 7 33(7) 
Geometric classes 2 iO 32 227(44) 
Bravais classes I 5 14 64(10) 
Arithmetic classes 2 13 73 710(70) 
Isomorphic classes of spaces groups 2 17 219(11) 4783(112) 

The numbers between bracket give the number of splitting into 
enantiomorphic pairs 

It is only for eight space groups that no crystal of that structurehasbeenyet found [4] 

Of course enantiomorphism classes always appear together in the s~me piece of material 

(twining or macle). Do not believe that crystals of the pure chemical elements corres- 

pond to symmorphic groups of holohedries. This is true only if there is ~ne atom per 

fundamental cell. Diamond, the metastable phase of carbon, has two, its point group, 

Oh ' is a holohedry , its space group, Fd3m , is not symmorphic. In general mo- 

lecular crystal space groups are expected far from symmorphic. 

Since the development of solid state physics in the thirties, the use of the 

unirreps (unitary irreducible linear representations) of the space group became more 

and more necessary : labelling and structure of electronic levels and energy bands, 

phonon dispersion relations, localized states, study of selection rules in any tran- 

sition between quantum states ; see e.g. for applications Birmsn [ 5 ], Cracknell 

[ 6 ] Bir and Pincus [ 7 ] ; these books contain a study of the unirreps. They are 

also a necessary tool for the study of symmetry changes predicted by Landau theory 

of second order phase transitions (see below). 

In 1939 [ 8 ] , [ 9 ] began the study of these unirreps. One considers a 

character k of the translation group T G i.e. k C T~ G the dual group of T G ; in 
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* = U(1) 3 k physicist langage this is a wave vector of the Brillouin zone. Since T G 

can be specified by three real parameters k I , k 2 , k 3 defined modulo i ("The wave 

vector k is defined up to an element of the dual lattice of the translations"). Let 

G k and Pk = Gk/T G the isotropy groups of k in the actions of G and P on T G • 

(Remark that T G acts trivially and also that G k is a space group). The unirreps 

of G coresponding to the orbit G(k) (in physics books one says "the star of k") 

are obtained as induced representations r(k)+G from the unirreps F (~) Gk o f G k . 

The dimension of an unirrep satisfies 

dim F (~) i g = O@G(k))'(dim r (~)) (5) 
G k G k 

(~ 
It is a divisor of 48 for three dimensional space groups. The image of PG )IG is a 

, k 
finite group when the three kis are rational. Since there is an infinity of G- 

orbits in T G , every space group has an infinity of inequivalent unirreps. This has 

not discourag~dphysicists to tabulate them ! [IO] to [15] . 

Most tables treat only a few thousands unirreps, those corresponding to "higher 

symmetry k's ", i.e. those k's in the zero dimensional strata for the action of 

* These unirreps are the most useful for applications ; they have finite PH on T G . 

image. These tables leave also the induction r (~) + G to the user and give only the 
Gk 

unirreps FGk 
One could use for years tables of trigonometric functions without knowing 

their geometrical meaning. This seems to be the situation in solid state physics for 

the use of the nearly 4000 unirreps of the G k whose k is of "higher symmetry". 

The structure of these unirreps is interesting and they have only 37 unequivalent ima 

ges whose dimensions are : 

dimension 1 2 3 4 6 

Number of 7 20 6 3 i 
images 

(6) 

To show i~, Mozrzymas andl[16]noted that these images are homomorphic images 

of the "extended little group Pk " (already considered by some physicists, [17 ], 

~8 ]). It is a central extension ~.~/Im k = Pk " Remark that Im k and Pk depends 

only on k and the geometrical class P . The corresponding ~k of a'~ittle space 

group" G k can be obtained inside each arithmetic class by the functorial map. 

H~(Pk,T) ~ > H~(Pk,lmk) 

These Pk are direct products of an (eventually trivial) Abelian group by one of a 

family of 26 finite groups whose order are : 

order 6 8 12 16 24 32 48 96 (7) 
non Abelian fac- i 2 2 6 4 5 4 2 
tors of ~s 



340 

Only the "allowed" images (i.e. those faithful for Im k) appears as the correspon- 

ding images of the G k . 

If a physical system S has a symmetry group H , all physical properties 

of S should be described by invariants of H . If, in the physical theory, the ac- 

tion of the symmetry group appears through a linear representation, the group inva- 

riants depend only on the representation image. This shows the interest of the clas- 

sification of the images of the space groups unirreps. As we have seen, these unirreps 

are of finite dimension m . When the image is infinite, it is not closed in the group 

U(m) . The physically relevant invariants are those of the closure Q of the image : 

it is a compact subgroup of U(m) . There has been recent progress for computing the 

algebra of invariants of compact or finite groups and this is very useful to physicists 

~.g. 19 to 22]. For a m dimensional compact image Q , G. Schwarz proved [23] 

that invariant smooth functions are smooth functions of invariants polynomials. Since 

Hilbert we know that the ring of invariant polynomials is finitely generated. It is 

now known that it is a free module over a ring of polynomials i.e. every K-invariant 

polynomial is of the form 

P(Xl,X2,...,Xm) = E ~ Q (61,82 .... ,em,) m' ~ m (8) 
~=0 

where #~ , e k are homogeneous polynomials of degree 6 and d.1 respectively ; 

the 8.i are algebraically independent, the Q~ are arbitrary polynomials in m' 

variables (m' = m in the particular case where K is finite) 4o = 1 , for each 

> 0 there is a smallest integer v > 1 such that ~ is a polynomial in the 
n 

@k'S and for 1 < n < ~ , ~e is another ~ . So the dimension ~n of the vector 

space of K-invariant homogeneous polynomials is given by the generating function 

i+ ~ t ~ 
M(t) = ~ ~n tn ~=I %, (9) 

n=O (l-t di) 

i>l 

When K is finite, M(t) was calculated by Molien [24] 

I det(l+tA(g))-i (IO) = E 
M(t) ~]- A(g)EK 

1 
For compact images,replace ~-~ ~ by the Haar integral. 

There~a~e been many generalizations of the crystallographic groups : magnetic 

groups, black and white and color groups, matacrystallographic groups, etc. There is 

no time to review them ; for a recent survey of references see [25] . I prefer to 

mention with some details the most active fields in the last five years, where symme- 

try has played and important role in condensed matter physics. 

1. Modulated and incommensurate crystal structures 

Most crystals have defects (see 4, below) ; these must be neglected for defi- 

ning a perfect crystal state and its symmetry group. However the crystal symmetry may 

be more subtle in what is now called a modulated structure. This may occur in the most 
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common material, such as the historical example of Na2CO 3 discovered in 1969 [26]. 

It was established in 1976 that, at ordinary temperature, this mineral has a incommen- 

surate structure [27] ; so its symmetry cannot be described by a 3-dimensional space 

group. 

Consider a crystal with a periodic deformation depending on a parameter ~ , 
÷ 3 ÷ 

so that the point n = E n.t. 
i=l i i 

n 6 A  , 

÷ 

where f(%) is continuous in % 

has mational coordinates O J qi 

of the crystal lattice A is displaced into ~n(%) 

÷ ÷ ÷ -+ -~ 

rn(%) = n + f(l) sin(2~q°n) (ii) 

with f(O) = O . If q C (the Brillouin zone) 

< I , i = 1,2,3 , the function ~ (I) is again in- 
n 

variant by a discrete translation group (N Z 3) , which is a subgroup of that of A . 

The smaller is lql , the larger is the modulation in the dual space direction. When 
÷ I I 

% diverges from zero (for Na2C03, at temperature -138°C, (then q = (~,O,~)) around 

the X-ray diffraction peaks K in the Bragg reflections, weak satellites appear at 

K + g.q where g E P , the point group. Generally q is also a continuous func- 

tion of temperature so the generic values of its coordinates are irrational, the de- 

formed lattice is then called "incommensurate" and, strieto sensu, it has only a trans- 

lation group N Z ~ of invariance, where ~ is the number of (fixed) zero coordinates 

There are other types of incommensurate structures, for instance the non- 

stochiometric ones. They can be decomposed into two periodical subsystems whose ratio 

of characteristic lengths is a temperature function : e,g. FeI_~S , HZ3_ 8 As F 6 where 

has a small value function of T . These composite structures may also be modulated 

(as is the case of the last compound). Now that the existence of incommensurate struc- 

tures is known, physicists are looking for them and they are founding many. 

What is the best way to describe them from the symmetry point of view ? The 

answer has been given by Janner and Jensen [28]. I can explain it by the following 

remark : it is true that the function a sin(2~px+r)+ b sin(2~qx+s) has no period 

when p/q is irrational, but its general behaviour is known when we note that it is 

the restriction on the line y = x of a doubly periodic function on the two plane 

x , y , i.e. a sin(2~px+r)+b sin(2~qy+s) . Any function p(~) describing a physical 

property of an incommensurate structure can be written with the Fourier decomposition : 

p(r) = E ~ E p(~,q)e 2~l(k+q) (12) 
k~A qCA d 

It is invariant by a 3+d dimensional crystallographic group (d < 3) acting separa- 

÷ ~ Z 3 tely on the k's and the q's and transforming A ~ into itself. Equation (12) 

can indeed be interpreted as the projection of a 3÷d dimensional crystal structure 

on the dual space ; this means that the incommensurate crystal can be considered as 

the intersection, by our 3 dimensional space, of a "super-crystal" in 3+d dimensions. 

Physicists are really interested by the classification of crystallographic groups in 
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4,5,6 dimensions, which are reducible on a 3 dimensional subspace. 

2. Landau theory of second order phase transitions 

÷ and Consider equation (ll) again when q has rational coordinates in A* 

diverges from zero. Then the crystal symmetry decreases from the space group G to 

a subgroup H ; discontinuitiesinsomephysical properties of the crystal appear but 

the volume, for instance, is a continuous function of % . This is an example of a 

second order phase transition. In 1937 Landau [29][30] gave a mathematical model for 

them. 

As we have noted, every physical function describing the crystal, for instance 

F , the Gibbs free energy, is an invariant of its space group G . The thermodynamic 

equilibrium is described by the lowest minimum of t when the temperature T , the 

pressure p (and any external field) are fixed. In general this minimum is G-in~ariant. 

but when the parameters change there can appear a set of critical values Tc' Pc 

(generally a curve in the T,p plane) for which the minimum splits into an orbit 

[G : H] of minima. Assume F to be a smooth function : by Morse Lemma and Schwarz 

theorem [23],this will appear when a coefficient of the positive G-invariant quadra- 

tic form vanishes over the space E of a real-irreducible representation of G . For 

the splitting of the minimum to occur, the expansion of F on E must not contain 

a third degree G-invariant polynomial ; this is the Landau criterion for second order 

phase transition. (See below what happens when it is violated). If the subgroup H 

is still a space group, there is a largest translation subgroup K of H which is an 

invariant subgroup of G ; this subgroup K is subgroup of all isotropy groups of the 

orbit of minima ; by linear completion of this orbit and from the irreducibility (on 

the real) of the representation on E , one sees that K is the kernel of the re- 

presentation ; its image Q = G/K is therefore finite. A more detailed analysis from 

Lifschitz [31] for transitions from crystal is crystal imposes the rule : the antisym- 

metric part of the tensor square of the unirrep must not contain the vector represen- 

tation of G (i.e. the natural representation of the image P = G/T). 

Both Landau and Lifschitz rules are in pretty good agreement with the known 

corpus of experimental data. The Landau model is also able to describe transitions 

to incommensurate structures ; in those cases the LifSchkz rule is always violated. 

Most first order transitions occur by local collapses of the crystal structure and 

formation of a new crystal (e.g. the well known tin pest which may occur in very cold 

climate) ; for such transitions there is no a priori relations between the space groups 

G o and G 1 of the two phases. Other first order transitions are called "quasi second 

order" because they can be described by the same Landau model with the Landau crite~ 

rion violated : at the critical T , p values, the minimum of F (which has been 

raised and is no longer the lowest minimum) becomes a saddle point, through a zero 

frequency mode , due to the presence of a small third degree tarm ; then the sys- 
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tem "falls~" into the (not far) minimum essentially governed by the third degree term. 

If the Landau model and its extensions have a good - but not complete - suc- 

cess for predicting second order - or quasi second order - transitions, it completely 

fails to predict the correct critical exponents. As suggested [32 to 36] this requires 

the use of renormalization group. This technique has been applied to the Landau model 

considered as a mean field theory. The absence of stable, non G-invariant fixed points 

explains in some cases why some expected second order transitions are instead of first 

order. [37] has made good predictions on the nature of the phase transition when some 

external constraint is applied. However it is still difficult to draw definitive con- 

clusions on this topic. 

3. Symmetry of mesomorphic phases 

This subject is nearly one hundred years old since Lehmann discovered the first 

liquid crystal in 1885 and one of the basic papers was written by G. Friedel in 1923. 

These are states of condensed matter intermediary between liquid and crystals ; they 

might be just liquid with oriented molecules (nematics), they might be just so tiny 

micro-crystals that they behave like the molecules of a liquid (smectics B ?). There 

should be an a priori classification of their symmetry group as there were for crystals. 

Some partial attempts were made in [38 to 41]. 

As is known to the majority of this audience, G-invariant states of a C 

algebra can be decomposed into extremal states which are not in general G-invariant. 

This is one of the mathematical scheme for spontaneous symmetry breaking. Following 

Kastler at. al.[40] this decomposition can be ergodic or transitive. For the latter case 

this decomposition is into an integral over an orbit [G:H] carrying a finite G- 

invariant measure. For the Euclidean group E(3) they are the compact orbits. What 

are the corresponding closed subgroups H ? Let T = H n R 3 where R 3 is the 

translation subgroup of E(Z) . Let Q~ = NE(3)(T ) / R 3 , the quotient of the norma- 

lizer of T by the translations. The list of possible T is R 3 , R 2 x Z,R x Z2,Z 3 

and exceptionnally R 2 . The corresponding Q~ are easy to compute and the possible 

H are obtained as solutions of H n R 3 = T < H < R 3 Q~ (D = semi direct pro- 

duct). Let us denote by H the connected component of the identity of H and by 
o 

eH = H/(TnH) 

Table 2 gives the general classification of the mesomorphic phases. (See also ~2],[43]). 
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TABLE 2 

TH=HNR 3 

1 R 3 
I !  

2 R2xZ 

It 

It 

It 

5 R 2 

3 RxZ 2 

4 Z 3 

Mesomorphic phases ; their symmetry group H < E(3) . 

PH = H/TH He N~me 
3 

D h RoU(1) Nematics 

F R 3 e.g. biaxial 
nematies 

D R~R Chelesterics v! 

(cheral) 

D h R~U(1) S m e c t i c s  A " 

F R 2 Smectics C 

F R 2 Chiral SmecticsC ~I 
ZmF 

F R L y e t r o p s  80 
Rod Lattices 
Discoties 

F I Crystals 230 

nb of group classes (cjg in Aff(3)) 

It 

(= Finite < 0(3)) 

to be classified 

Belov and Tarakhova 

Fedorov, Sch~nflies 

For the last 25 years the study of liquid crystal has become a very active topic of 

physics. The Landau theory of second order phase transitions can be applied to many 

cases ; e.g. the transition from smectics A to smectics C ; in the mono or bi-molecular 

layers of the smectics, the orientation of the molecules, instead to be orthogonal to 

the layers becomes tilted. For the last two years liquid crystals with new symmetry 

types have been looked for and found, especially triaxial nematics and discotics. 

There are many new phases, mainly among smectics, whose symmetry is not yet determined. 

4. Topological classification of symmetry defects 

Symmetry defects, mainly dislocations which are defects of the translation 

symmetry, play an important role in the properties of actual crystals. They have been 

very much studied for the last thirty years. Dislocations are classified by the Burger's 

vector. This is really a classification by a homotopy group [44] . Toulouse and KlSman 

[45] introduced a general scheme for a topological classification of defects in an 

ordered phase and, as an application, predicted that the line defects in the super- 

fluid phase A of 3He would annihilate by pairs, just as they do in nematics. When 

the symmetry G (G is a gauge group, or E(3) for mesomorphie phases) is spontane- 

ously broken into the subgroup H , topologically stable point defects, line defects, 

wall defects are classified by elements of the homotopy groups ~n([G:H]) , n = 2,1,O, 

respectively. [46] These results were also found by Volovik and Mineev [47]. This 

approach is very similar to the topological classification of t'Hooft-Polyakov mono- 

poles by ~2([G:H]) where H is the stabilizer in the action of the gauge group on 

the asymptotic orientations of the Higgs field [48][49]. Instantons are characterized 

by an element of ~3(G) . Similarly there can exist defectless "knotted" configura- 

tions in nematics or cholesterics, classified by elements of ~B([G:H]) (see e.g.[5~). 
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The classification of defects for the mesomorphic phases is given in [42][43][47] . 

For general reviews of topological classification of symmetry defects, see e.g. [51] 

[52][53]. These topological methods have a validity for all domains of physics. For 

condensed matter physics they have been very illuminating. Of course, topology alone 

is not enough. It has to be blended now with energetic and dynamical studies. Conti- 

nuous density of defects are now studied. It is not unrelated to group theory since 

gauge theory approach can be introduced. This might be the subject of a report at 

the next conference ! 

Conclusion 

I hope that this fast survey has shown you the great variety of symmetries 

which appear in condensed matter physics. The study of these symmetries, their change 

by phase transition, their defects is partly an old topic and mainly a new lively 

field of research. There are some interesting problems in the different statistical 

mechanics models of strange materials (e.g. spin glasses [54]). Let me single out 

an amusing and a bit paradoxical approach for the study of amorphous materials. Are 

they like frozen liquids or do they have a lot of unseen regularities ? Kl~man and 

Sadoc [55] have proposed a tentative description of the crystallography of amorphous 

solids. They considered them as regular crystals in 3 dimensional constant negative 

curvature (Lobatchewski) space with a density ~f defects dueto their embedding in our 

Euclidean space ! 
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