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Abstract 
An energy band in a solid contains an infinite number of states which transform 

linearly as a space group representation induced from a finite dimensional representation 
of the isotropy group of a point in space. A band representation is elementary if it cannot 
be decomposed as a direct sum of band representations; it describes a single band. We 
give a complete classification of the inequivMent elementary band representations. 

1 Space  g r oups .  A crystallographic space group is a discrete closed subgroup of the Eu- 
clidean group E(n) = R'~><~O(n) which contains a lattice of translations T ~ Z'~; when 
a choice of origin is made its elements can be written as g = (t + v(R), R) E E(n),  with 
R E O(n), t E T and v(R) is either = 0 or a non-primitive translation ~ T. The quotient 
G / T  --- i v is the point group~ a finite subgroup of O(n). The action of P on T ~ Z '~ is 
given by an injective homomorphism P ~ GL(n, Z) up to a conjugation in GL(n, Z), i.e., 
by a conjugation class of GL(n, Z) subgroups isomorphic to P.  Such a class is called an 
arithmetic class: there are 73 of them in n = 3 dimensions [1]. In each arithmetic class 
there is one symmorphic space group G = T><IP. For such a group, with a suitable choice 
of origin, all v(R) 's can vanish. In the general case the action of G on a point ~ of space 
E is defined by 

g.z = R~ + v(R) + t (1) 

2 B a n d  R e p r e s e n t a t i o n s .  Let ¢ ( z  - z0) be the wave function of an electron localized 
around an atom sitting at ~0 in a crystal whose symmetry group is G. The wave functions 
~b(g-l.(z - xo)), for all g E G are those of the corresponding electrons in all similar 
atoms of the crystal; they span a vector space 7-{ of functions which also contains the state 
vectors of delocalized electrons in a band. G acts linearly on ~ ;  by definition of induced 

group representations, the linear representation of G on ~ is Indo°=0 - (p) where Gz o is the ")'Gffi ° 

~(P) is the linear representation of G® o on the space spanned isotropy group of z0 and ,o=o 

by the functions ~b(g-l.(z - =0)), for all g E G= o. This representation IndoG=o 7(P~ois 
called a b a n d  r e p r e s e n t a t i o n .  These representations are of great interest for solid state 
physics; they have been studied by des Cloizeaux [2], Zak [311 Evarestov and Smirnov 
[4]. The most interesting band representations are the e l e m e n t a r y  ones: those which 
cannot be decomposed into a direct sum of band representations, so they describe a single 
band 1. Using Bloch functions as main tool, we are making a complete classification of 

1 Of course, as group representations,  e lementary band representations are highly reducible. So we 

prefer to avoid here the express ion irreducible-band representations used as a s y n o n y m  in [3] and [5]. 
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elementary band representations [5]. We think worthwhile to present here a purely group 
theoretical method. Sections 3 and 4 recall the basic notions on space group geometry and 
on induced representations that  we sha11 need. In section 5 we will begin the study of the 
band representations. FinaIly, in section 6 we establish the complete list of inequivalent 
elementary band representations. 

3 S p a c e  g r o u p  a c t i o n s .  Space E is partitionned into orbits by the action of the space 
group G. The isotropy groups of an orbit G.z form a conjugation class [G~] of G-subgroups. 
Orbits are naturally classified by the conjugation class of their isotropy subgroups. The 
union of all orbits of the same type is called a s t ra tum (see e.g., [6]). In physical problems 
the number  of s t ra ta  is usually finite: they can be listed. For space groups, this has 
been done in the International Tables for Crystallography [7]; there the s t rata  are called 
"Wyckoff positions". 

No translation leaves fixed x 6 E so G~NT = {1} and G~ ~ u(G~) C P where ~r is the 
surjective homomorphism cr : G - ~  P of kernel T. Hence isotropy groups G~ are finite 
subgroups of G. If z is chosen as origin G~ C O(n), the elements of G~ have vanishing 
non-primitive translations; hence T.G~ is a symmorphic space group C G. One can also 
show that  for the action on E of the space groups, the intersections of isotropy groups are 
isot ropy groups. 

There is a natural  order (by inclusion up to a conjugation) on the set of conjugation 
classes of finite subgroups of an arbitrary group. Maximal finite subgroups of G are isotropy 
groups (consider the barycenter of any orbit of such a subgroup); the corresponding strata 
are closed: they are sets of symmetry centers, rotation (or skew- rotation) axes, sym- 
metry (or glide-reflexion) planes, or, for 230 104 63 5 13 38 2 4 1 
13 of the 230 space groups, there is only 
one s t ra tum,  the whole space £ (see Ta- 
ble 1). The trivial subgroup is the min- 
imal isotropy group and the correspond- 
ing s t ra tum is called generic; it is open 
and dense. 

d i m 0  x x x x 
dim 1 x x x x 
dim 2 x x x x 

E 

dim 3 I x _ 
T a b l e  1. Number  of space groups with 
given dimension of closed s t ra ta  

In 3 dimensions there are 32 geometric classes of point groups (i.e., conjugation classes 
in O(3)), forming only 18 isomorphic classes. Among the 32 point groups, 10 of them are 
polar groups, i . e ,  the s t ra tum with an isotropy group G~ ~- P~ has dimension > 1 when 
P~ is a polar group; this dimension is: 

3 for C1 ~ 1, 2 for Cs, 1 for C2,Cs,C4, Co,Cz,,,Cs,,,C4~,,Cov; (2) 

the dimension is 0 for the 22 non-polar groups. Assume that  t t i  and/-/2 are two non-polar 
isotropy groups; then H0 = / / 1  N/ /2  is a polar isotropy group; the s t ra tum S([H0]) is the 
union of axes or planes or the whole space, minus the symmetry  centers of S([H1]) and 
S([H~]). 

The orbit space W = E I T is a n-dimensional torus represented by the "Wigner-Seit~ 
cell" with opposite faces idendified. The action of G on £ induces an action of G/T = P 

on E [ T = W; the natural map ¢ : E ~ , W is continuous, open, closed. If  q = ¢(z) ,  then 
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P.q ---- ¢(G.z)  and Pq = a(G=) ~ G=. One shows that  the different connected components 
of a s a m e  P s t ra tum in W are e-images of d i f f e r en t  G-s t ra ta  in £.  Except  for the 
enantiomorphic pairs (there are 11 of them in dimension 3) different space groups define 
inequivalent actions of P on W. 

Similarly, the quotient of the p-space E' modulo the reciprocal lattice T '  is the Brillouin 
zone B with opposite faces identified. Moreover B carries a natural  group structure T, 
the dual group of T i.e., the set of all (one dimensional) irreducible representations of T 
with the group multiplication defined by the multiplication of the character values. With 
the notation of k for the wave vector of the T representation ~ ~-* e 2 ~ ' t ,  the group law 
of ~b is the addition of k 's  with their coordinates defined modulo 1 (i.e., up to a vector of 
the reciprocal lattice). In the natural  action of G on T ,T acts trivially, so the G and P 
orbits (and strata) on B = T are the same; moreover these actions are the same for all 
space groups of the same arithmetic class. Note also that  P~ = a(G~) = Gk/T. 

4 I n d u c e d  R e p r e s e n t a t i o n s .  We recall here the results (see e.g.,[8,9]) that  we shall need 
concerning induced representations; we explain them first in the easier case of a finite 
group G with a subgroup H .  The complex valued functions on G form an Hilbert space 
with the Hermitian scalar product (]G] = cardinal of G): 

(fig)a ---- IGi -1 ~ ](z)g(w) (3) 
=EG 

The central functions satisfy f ( z )  = f(yzy-1); these functions form a sub-Hilbert space 

that  we denote by 7-/a. The characters X (=) of the unirreps (---unitary irreducible represen- 
tations) of G form an orthonormal basis of 7/o. So we can say that  the characters separate 
the conjugation classes or ,equivalently, if we denote by [z]o the conjugation class of z in 
G and by G the set of equivalence classes of unirreps of G: 

w e 0 ,  = '-[=]o = [y]a (4) 

Let CC[G] the set of conjugation classes of the group G; to each group homomorphlsm 

H ~ G corresponds a map: CC[H] ~ CC[G]. When H is subgroup of G, ~ is injective 
and we denote it by ~; the corresponding map i defines a linear map between the spaces 

of functions defined on CC[G] and CC[H]: 7"/G Re% 7"/~. Res is a short for "Restriction"; 
indeed, if Xa is the character of a linear representation of G, Res~ Xa = Xa o ~ is the 
character of the representation of H obtained from that  of G by restriction to the elements 

of the subgroup H.  The adjoint map is called 7~/~ ~ 7-/a; to any H-representat ion of 
character X~ ) corresponds the induced representation of G. Its character is denoted by 

By definition of the adjoint of an operator we obtain Frobenins reciprocity relation: 

where ( I /K is the Hermitean scalar product in 7~g. I t  means that ,  in the reduction 

of " -G (p) xna~ XH into a direct sum of unirreps of G, the multiplicity of X (~) is equal to the 
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multiplicity of X~ ) in the restriction of X (a) to H.  From the associativity of linear maps 
one deduces the Induction Chain Rule: 

H~ C H~-a  C ... C H0 C G, Ind~k - (p) o Ho Hk-~ XH, = IndH0(IndH,("-(Indn, X~)- . ) )  (6) 

We can prove the 
L e m m a  A. If, and only if, CC[H] r CC[G] is injective, Ind is injective i.e., inequivalent 
representation of H induce ineqnivalent representations of G. 
Indeed z injective ¢~ Res surjective; mad from the general property Ker Ind = (Ira Res) ±, 
Ind is injective. 
Ind is always injective when G is Abelian. When H is a subgroup of a point group G, Ind 
is injective for the following 16 subgroups H of the point groups: 

1, C~, C,, 02, O2h, Os~, D3, Dsa, T~ (7)  

Co, C,,,, Ds, Ds~, Dsh, O, Oh (7') 

(For the subgroups of equation (7) ~- is injective when G = 0(3)  so it is true afort iori  when 
G is a point group containing H).  

Given a matrix representation h ~ D(h) of H C G, one can write explicitly the 
matrices A(9 ) of the induced representation A = Ind~ D. First choose arbitrarily an 
element si E G in each left H-coset of G; A(g) is given by blocks Aij: 

c = U , , n ,  A = A q ( a )  = (8)  
i 

with the definition: 
D((k)) = D(k) if k E H, = 0 otherwise (8') 

SO: 

dimA = (dimD) x IG/: t l  (s") 
where IG/HI is the index of H in G. The character of the induced representation is: 

la/HI 
trA(g) = xga)(g) = ~ x~)((s.Sl gs,)), with X~)((k)) = trD((k)) (9) 

i=1  

If we denote by [g](~ the conjugacy class of g in G, we see that: 

[g]o n = = o (9') 

Let us first study the case H ~ G (where ~ reads "invariant subgroup"). Then there 
is a natural group homomorphlsm G ~ A u t H .  It defines an action of G on ~ r  the set of 
equivalence classes of unirreps of H.  This action defines a linear representation of G on T//¢: 
for n C G, (n.x(HD))(h) = X(~)(n-lhn). Let G D the isotropy group of the representatioia 
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D of H and G.D the orbit. Since the set of elements of H(<G) is a disjoint union of 
G-conjugation classes, equation (8) becomes: 

H<IG, A=Ind~_zD; g~H,x(A)(g) 0; h6 U, x(A)(h) GD[ = = I-~- Z x~')(h) (10) 
D' E O .D 

Hence the d i f f e r en t  H-representations of the G-orbit G.D induce the s a me  representation 
of G. In the particular case GD = G: 

H.~G,GD=G; g~H,x(')(g)=O; heltx~")Ch)=lGIIIix~)Ch) (10') 

This equation applies to the interesting particular case of G Abelian; adding the properties 
that  the characters of one dimensional group representations never vanish, one obtains: 
T h e o r e m  A. Induced representations of an Abelian group are equivalent if and only if 
they are induced from equivalent representations of the same subgroup. 
This theorem generalizes Lernma A for Abelian groups. 

We can now deal with the general case for computing the character of an induced 
representationfrom the character of the unirreps of H.  To complete (9') we need only to 
know the characters of the conjugation classes [h]o for all h e H.  Let No(H) be the 
normalizer of H in G. From the coset decompositions one defines the positive integer c(h) 
for any h 6 H:  

O = UsoNo(H) ,  ~ o ( H )  = U , , H ,  c(h) = # { 8 ~ , , ; ~ h ~  e ~ }  (11) 
a i 

Another way to compute c(h) is: 

c(h)= IGI / INo(H)I = ICa(h)l 
#[h]o #[h]No(m ICNo(H)(h)I 

(11') 

where the centralizer of h in G, Ca(h) is the subgroup formed by the elements which 
commute with h. From (9) and (11) we obtain: 

x~')(h) = Z ~ x(ff)(('; ~ ~2  hso,,)) = ~(h) Ind~ o(H) X(ff)(h) (12) 

with, from equation (10): 

D t indHNO(H) X(~)(h ) = ING(H)DI ~ x~ )(h) (13) 
IHt D'eNG(H),D 

In plain words we have found that in the induced representation, the character of a group 
element conjugate to h E H is a multiple of the character of h in the direct sum of the 
H-representations in the Na(H) orbit of the character X(H D) of the inducing representation. 
The positive integer e(h) defined in equation (11) is independent from the choice of the 
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representation of H. So the remark following equation (10) generalizes to: 
T h e o r e m  B. The unirreps in/~r belonging to the same orbit of the normalizer Na(H) ,  
induce equivalent representations of G. 
The converse of this theorem is not true: as we have seen Ind is not injective when ~ is 
not. However all elements of G which conjugate two elements not conjugated in H may 
be outside the normalizer Na(H) .  Moreover the induced representation from a unirrep 
might be equivalent to the induced representation from a reducible representation of the 
same subgroup. In point groups, the only exceptions to the converse of theorem B are (we 
follow reference [11] for the labelling of the unirreps of the point groups): 

ind o.  ,fls),,~ indO (X~ ~ ~(4)~ indz~ ~ ,,(s) ,,~ ind~a(X(~a ~ ~(4)~ 
~tD4 A.D 4 ] ~ , 't D~d A-D~d 1, 

Ind°:h xD,~'fls) ,~ Ind°:s (X~h (9 ~D,,'~(') ~/, Ind°:~ -xD,h(l°) "~ Ind°:~ (X(/~h ~ xD,,"(9)/' (14) 

We will find more exceptions in space groups and list in table 3 those related to elementary 
band representations. 

From the properties of induced representations it is evident that equivalent represen- 
tations of conjugate subgroups induce equivalent G-representations. But the converse is 
not true as the chain induction property already shows. Another obvious counterexample 
is given by the induction from the regular representation from any G-subgroup H: one 
obtains the regular representation of G. In this paper we will only be interested by the 
following problem: given a unirrep X~ ) of a subgroup H,  find all conjugate classes [H']o 
of G-subgroups (which do not contain H) and representations X(HD, ) (which might be re- 

ducible), such that Ind~ X~ ) ,v Ind , ,  x(HD, ). Equations (9') and (12) are very relevant; in 
section 5 we will solve this problem for band representations. Here we make only some 
remarks. For simplicity, let us assume that H is its own normalizer in G : NG(H) = H. 
If Yh e H, X~)(h) ~ 0 (for example p e ~r is a one dimensional unirrep), (9') shows that 
every element of H should be conjugate to an element of H';  an example of such a case is 
studied in the: 
L e m m a  B. Equivalent representations of non conjugate, isomorphic: H -~ H r, subgroups 
of G induce equivalent representations if i(h) and h are conjugate for every h E H. 
In any unirrep X (~) of G, conjugate elements have the same characters, so Resas X ('~) ,'~ 
Rest ,  X~); we complete the proof of the theorem by using Frobenius reciprocity (5). 
This lemma does not apply to point groups; however, as we shall see later, it can apply to 
some finite groups and to a dozen of space groups in the search of equivalent elementary 
band representations: table 4 gives the list of occurences. 

For the point groups it is easy to find all solutions to the problem we have defined. 
Indeed we need only to consider the 9 isomorphic classes of non Abellan point groups. 
Moreover any multidimensional unirrep X~ ) of a point group H is monomial, i.e. induced 
from a one dimensional representation of a subgroup, e.g., X~ ) ,,, Ind~ X~); then a solution 

for any subgroup H* ~ K is X(~D, ) = Ind/~' X~ ). The only solutions not obtained by this 
method are: 

~ S ,  AS4 " "  lnfls4 AS4 .~D2 XD= "~ 
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I n d ~  X~2. I n d ~ : - ' ( ' )  .,(5) (15) 
and the similar cases obtained from the isomorphlsms Dzd ~- D4 ~-- 04~ or by chain 
induction to larger point groups: D4h, Td, O, Or,. 

5 I n d u c e d  s p a c e  g r o u p  r e p r e s e n t a t i o n s .  There is no difficulty for constructing repre- 
sentations of space groups induced from a subgroup of finite index, e.g., one obtains the 
unirreps of a space group G by induction from (one dimensional) representations k of T: 
this yields ]PI dimensional representations r (k,1) of G; their restriction to T contains all 
representations belonging to the orbit G.k = P.k.  The representation F (k,1) is irreducible 
if k belongs to the generic s t ra tum in B. If not, the P.k orbit has IP/Pk] elements and 
each k appears with a multiplicity IPkl. For a fixed k one has a representation of G/, which 
contains all  "allowed" 2 unirreps of G/¢, each one with a multiplicity equal to its dimension. 
To summarize: the unirreps of G are labelled : 

IF' (k'=) = Ind~k X(a2, k G B,c t  E allowed Gk (16) 

k' E G.k,  a ,.~ ct' .¢==~ F (k' 'a') -~ F (/~'') (16') 

A space group has a continuous infinity of unirreps and the decomposition of a unitary 
representation into unirreps requires a direct integral on the Brillonin zone B = ~'. 

It is also possible to extend all results of the theory of induced representations of finite 
groups to the space group representations induced from finite dimensional representations 
of finite subgroups; for instance one can work explicitly on the space 7"/~ of functions on 
the space group G which are different from zero only on a finite subset of G; the space 
7 ~  is a Hilbert space with the scalar product ~ z e a / ( z ) g ( z ) .  This Hilbert space carries 
the regular representation of G. Let H a finite subgroup of G; one knows how to define 
a sub-representation h ~ D(h)  of the regular representation of H on the space 7-~. The 
functions on H define functions on G with zero va~ue on the elements of G which are not 
in H;  this identifies 7-/~/as a sub-Hilbert space of 7 ~ .  We define a set of functions on G 
that  we denote by f~, z E G: 

vf e c u b ,  v ,ve v, I.(v) = / ( . - ly )  (17) 

These functions form a sub-Hilbert space of 7 ~  which carries the unitary representation 
z ~ A(z)  of G which is the induced representation from the H-representat ion D: 

These induced representations satisfy Frobenlus reciprocity. It is true that  band repre- 
sentations are realized on another space of functions: the functions on £ which decrease 
lastly enough at  infinity; they form a Hilbert space, but  when one makes an infinite sum 
of them (for instance to compute Bloch functions) one must take care of the problem of 

"allowed" means  here that  the restriction to T of the G~-representat ion is a mult iple  of  the 

T-representat ion k E B -- T.  
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convergence. We assume here that the two realizations of the induced representation A 
are equivalent. 

Two points r and r ~ of E on the same translation orbit yield equivalent band repre- 
sentations; so these can be labelled by points of the Wigner Seitz cell W: 

B(q'P) = Indg, ~(")xo,, q e W,p e Oq .., Pq (19) 

q' e Stratum(q), / ,'~ p ==~ B (q' ' / )  ~ B (q'#) (19') 

All q's of the same G-stratum yield equivalent band representations. The problem is to 
find which representations are elementary and~ among those, which are the (q, p) labels of 
equivalent pairs. 

Let us now study some consequences of the application of Frobenius reciprocity to 
band representations. We can compute --~,a the multiplicity of the G unirrep F (k,a) in 7tl, q , p  

the band representation B (~,p). For this we need a formula due to Mackey (see e.g.,[8]) 
which tells how to commute Rea and Ind. We also need to use double cosets of G for 
Gq and Gk; they are the subsets Gq*Gk C G for arbitrary a 6 G. If Pq <~ P (respectively 
Pk < P), then T.Gq < G (Gk ,~ G) and the double cosets are simple left (fight) cosets of the 
G-subgroup Gq.Gk = Gk.Gq. With the definition K ,  = ,G/,s -1 N Gq and the use of the 
adjoint identity and of Mackey's formula ( we denote by [G~ : G : Gk] the set of double 
cosets): 

k,~ = <lZesg i n d g k x ~ l X ~ ) a .  ~ (Ind~ q, R o~ <a) (p), r~q,p = esm-tKo, XG/, XGq)Gq "~- 

#6[Ga:GtG~] 

a * gGK. 

(20) 

When k is in the generic stratum of B the corresponding ,,~q,p--k'a is the number of branches 
of the band; equation (20) yields: 

number of branches in the band = IP/P~ ] .d im(x~)  (27) 

When k = 0, the translations are represented trivially, Go = G, so the corresponding 
G-unirreps are simply the P-unirreps. Then: 

= IXp, >P, (X<p~')t Ind~ ,, (p)' = Xpq )P r/~q .p (22) 

Hence the necessary condition for equivalence of band representations: 

B(q',p') ~ B(~,p) ==~ Ind P, ..(P) .., IndP¢ X(~ ') xp, p; (23) 

(In section 2, we have defined: Pq = a(Gq)). 
On any stratum of the Bfillouin zone B,  the l,~q,p s are constant: at least it is evident 

on each connected component of a s tratum since _k,a,,~q,{, is on it an integer valued continuous 
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function. Since the number of s t ra ta  on B is finite and for each s t ra tum the number of 
values of ~ is also finite we need only to apply equation (20) a finite number  of t ime for 
comparing the m components of two band representations; if their respective components 
are all equal, the two band representations are equivalent. 

The  characters of the infinite band representations are not defined and, for instance, 
the equations (9') and (12) have no meaning. To avoid this difficulty we will prove a 
lemma which allows us to use these equations for finite groups Gu's. These groups are 
considered by solid s tate  physicists when they use the periodic boundary conditions in- 
troduced first by Born and von Karman.  For any integer v consider vT ,  the subgroup of 
T formed by the translations vt, t E T. I t  is an invariant subgroup of G and we define 

G~ = G / v T .  By the surjective homomorphlsm G ~-~ Gv the translations T < G are sent 
unto Tv = T / ( v T )  ~ (Zv) s and the Brillouin zone is replaced by By = ~'~ .-~ (Z~) s. Para-  
doxically the choice of v is critical, even if it is very large: for instance if v is relatively 
prime to [PI, G~ = Tv><IP even if O is not symmorphic. However one can prove that  if (in 
three dimensions) v is taken as a multiple of 12, non isomorphic space groups have non 
isomorphic Gu and there is a natural  bijective map between the s t ra ta  of the action of G 
on B and that  of Gv on Bu. May be, as it is done heuristically for many  problems of solid 
state physics, one could replace the study of the band representations of the countable 
space group G by those of the countable set of finite groups Gl~v and one could formally 
define the limit v --* co. Here we will be rigourous; we only need to prove lemma C be- 
low. Since the isotropy groups Gq contain no translations, ~,,(Gq) ~ Gq; to simplify our 
expressions we will identify these two groups and write Gq C Gv. 

Ind°..~ (P) IndGG- x(D_! .Equlva - L a m i n a  C.  If " - o  . (a) ~ Indg¢ ..(D) then for any v, J-n°Gq ~Glq ~Gtq, , Gt~ AOq ~ q 

leutly IndS;-.< a> Indg;,-.<"> " "° Indg,, x ]~Gq 7 ~ ~.G~, =~ lnaGvXoq 75 G¥ 
We remark that  s for/c 6 Bu = Ker~  i.e., for the wave vectors of the Brillouln zone k 6 B 
such that  vk = 0 (many physicist prefer to say " modulo the reciprocal lattice") the kernel 
of the G-unirrep F (k,a) contains vT  so r (h,a) is also a unirrep of Gv and all unirreps of Gv 
can be so obtained. By Frobenlus reciprocity, the assumption of the lemma is equivalent 

~, l,,~ = ~'~ Since this is true for all k E By, by Frobenius reciprocity to V(k, a)  E ~ ,  rn~.p raq,,D. 
applied to the group G~ we conclude the proof of the lamina. 

6 T h e  e l e m e n t a r y  b a n d s  r e p r e s e n t a t i o n s .  Elementary band representations must be 
induced from unireps of G, since Ind~  X~ ) = Ind~  X~ ) ~ I n d ~  X~ ) when X~ ) = X~ ) ~ X ~  ). 
If Gq is not a maximal  finite G-subgroup, i.e. G~ < G~ maximal,  then from the chain 
induction: 

B(q't') "" B('') with X(G ") = IndGO; "'(,)xo, (24) 

This band representation might be  elementary; in any case we have the necessary condition: 
L a m i n a  1. Elementary bands representations are induced from unirreps of maximal 
isotropy subgroups of space groups. 

To determine the exact sufficient conditions we will need the following results. 
L a m i n a  2. For non-polar isotropy subgroups: Na(Gq) = Gq. 

s The dual of the exact sequence O --* T -*~ T --, Tv --* O is O 4- T ~- T ~-- T~ *-- O,i.e., 

B~, = ~ ,  = Ker ~ C B. 
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Indeed all points of the normalizer orbit Na(Gq).q have same isotropy group Gq. As- 
sume that Gq is a strict sugroup of its normallzer; so there exists q' # q with G¥ = Gq; 
then all points of the line Aq' + (1 - A)q are left fixed by Gq which is therefore a polar group. 

The finite order elements of space groups belong to ten conjugation classes in O(3). 
They are called the geometric classes of the elements. The notation used in the interna- 
tional crystallographic tables [7] for labelling them is given in equation (25). It is usual 
to denote by £g the set of points in our space which are fixed by g. This set is a linear 
sub-manifold of £ whose dimension d(g) depends only on the geometric class of g- This 
dimension is given in (25'). 

geometric classes: 1, 2, 3, 4, 6, i ,  m, ~, ;{, 

d(g) : Z, 1, 1, 1, 1, 0, 2, 0, 0, 0 (25') 

(1 is the identity, 2, 3, 4, 6 are rotations of this order, i is the space inversion, 3, 4, 6 are the 
product of the space inversion by the corresponding rotation; rn is used instead of 2 and 
means "mirror" reflection). The elements whose d(g) = 0 are called non polar elements; 
they leave invariant a unique point of S. 

Similarly, if H is a subgroup of a space group, we denote by En the linear manifold 
set of the points fixed by H.  Obviously: £H = NheHEh; so when h E H, £ n  C £n. We 
say that an element g of the isotropy group Gz is dominant when £u = £0 ,  ; e.g. non polar 
elements are dominant in their groups G~ (those are non polar); similarly (non trivial) 
rotations are dominant in their groups if those are polar. We denote by S[G®] = S[Gq] 
the s t ra tum corresponding to these isotropy groups. There are only six point groups Pq 
without dominant elements: 

D2~ Ds, D~, De, T, O (26) 

L e m m a  3. £g N S[G~] = @ ¢~ [gig f3 G~ = @, i.e. g is not conjugate to an element of G~. 
We prove the equivalent statement Eg f3 S[G~] ~£ (3 ¢:~ [g]u f3 G~ # (3. Proof  =~: r 6 
£gNS[Gz], so g 6 G~. Conversely ¢=: 3k e G, kgk -1 .z  = z so g . k - l z  = k - l z  6 Sgr3S[Gz]. 
Finally we consider explicitly the conjugation class of an element of finite order g by taking 
as origin a point that it leaves fixed, for instance the barycenter of an orbit; so g = (0, G). 
It  is to  compute (see [9]): 

(s + v(A), A)(0, G)(s + v(A),  A) -1 = ( ( I  - AGA -1)(s  + v(A)), A G A  -1) (27) 

This equation shows that  gl and g2 are conjugated in G if and only if G1 = cr(gl),G~ = 
er(g2) are conjugated in P. 

We study now when a band repsentation induced from a unirrep of a maximal isotropy 
group can be equivalent to another band representation. We first deal with the case: 
i) equivalence o[ band representations at the same site q E W.  

From lemma 2 and theorem B we must study the action of the normalizers of the polar 
maximal isotropy groups on the set Gq of their unirreps. From (2?), for the normalizer 
of a G-subgroup H : ~r(NG(H)) C Np(o'(H)) .  Given a subgroup H of an arbitrary group 
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G, one defines the centralizer Co(H)  as the set {g E G,Vh E H, gh = hg}. There is 
a natural injective map:No(H)/(H.C~(H))  = Qo(H)  "---* OutH,  the group of classes of 
outer automorphisms of H.  In the case of a space group G and an isotropy subgroup Gv, 
if a translation is in NH(Gq) , it is in CH(Gq), so (~  means isomorphic groups): 

(28) 

This group acts effectively on tbq. When Gq is a polar maximal isotropy group with a 
strictly larger normalizer, on the axis or more generally the linear manifold whose every 
point is fixed by Gv, the action of NG(Gq) is not trivial and must be without fixed points; 
so tr(NG(Gq)) must be polar and moreover G must contain a screw rotation or a glide 
reflexion 

In dimension 3, from the list of the ten polar groups (given in equation (2)) and the 
determination of their normalizer in the point groups which can contain them, one finds 
easily that there are only four non polar point groups with a non trivial Qo,  and that in 
the four cases: Qo ~ Z2. In the next equation we give the list of these four polar isotropy 
groups and, for each of them, the pairs of their unirreps which are exchanged by the action 
of QG(Gq) or No(Gq) on Gq: 

c,o(2,4), c4(3, 4), Cs(2,3), c (3, 4)(5, 6). (29) 

Note that  all these unirreps have dimension one. There are only 52 space groups with non 
Abelian point groups and polar maximal isotropy groups; in 15 of them there are pairs of 
equivalent band representations: they are listed in table 2. 

101 = P42crn a C:~,, 2,4 
b C2~ 2,4 

103 = P4cc a C4 3,4 
b C4 3,4 

105 = P42mc a C2,, 2,4 
b C2v 2,4 

107= I4mm b C2v 2,4 

108 = I 4 c m  .......... a C4 3,4 
b C2v 2,4 

130 = P/4ncc c C4 3,4 
137 = P42/nmc d G2v 2,4 
138 ----- P42/ncm e C2v 2,4 
158 = P3cl a Cs 2,3 

b Cs 2,3 
c Cs 2,3 

1 5 9 = P 3 1 c  a Cs 2,3 
1 6 1 = R 3 c  a Cs 2,3 
1 6 5 = P 3 e l  d Ca 2,3 
1 8 4 = P 6 c c  a C6 3,4 

5,6 
b Ca 2,3 

185 = P 6 s e m b  Cs 2~3 
220 = I 4 3 d  c Cs 2,3 

Tab le  2. Equivalent band representations induced from the same polar maximal isotropy 
group Gq by nnirreps froming an orbit of the normalizer NG(Gq). There are 23 pairs of 
them belonging to 15 space groups. After the n ° and the symbol of the space group, the 
columns of this table give the Wyckoff position, the corresponding isotropy group and its 
Uairreps (notation of [11]) yielding equivalent elementary band representations. 

Lemma A suggests another possibility for obtaining equivalent band representations 
at the same site: the map between the set of conjugation classes CC(Gq) --~ CC(G) is 

not injective; we do know that  this cannot happen when ~, o ~ (with CC(G) ~-~ CC(P )  ) 
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is injectlve, which is the case for the 16 geometric classes of Ge listed in equations (7,7'). 
The following geometric classes of isotropy group can be also excluded for our search of 
equivalent band representations at the same site, not given in table 2: 

~ ,  ~ ,  s~, ~ ,  ~ , ,  ~ ,  ~ ,  ~ ,  T~. (30) 

For the three first groups, the only elements which can be conjugated are group generators, 
so the conjugating elements are in the normalizer and we have already studied these cases; 
this argument can be extended to Ce because any 9 E G which conjugates the elements of 
order 3 has to preserve the rotation axis and therefore it conjugates also the two generators 
(of order 6). The five other groups have non polar elements: these cannot be exchanged by 
a conjugating g E G not in the isotropy group because q is a point isolated in its stratum 
and g.q ~ q. So only the rotations of order respectively 3,3,3 and 6, 4,3 can be conjugated 
by an element outside the isotropy group. This yields the following kernel for Ind acting 
on 7-/a~ : 

.,(9) ~(4) ~(lo) .,(2) _ (s) .,(s) .,(2) ~.(2) +,,,(s) ,,,(s) ~(2) ,.,(2) + ~ c ~  ,',-c6~ ~o6h, 

- t-  XOe~ .  A, Oa~, ,'%0,,,~, .x ,O, t ,  - -  . '%C,a / ~ C e h  - -  - -  A, Oet,  t 

Hence different sum of two unirreps can induce equivalent non elementary band represen- 
tations, but this cannot happen with one unirrep only. Therefore we have only 7 geometric 
classes of isotropy groups to sudy; we give their list, the corresponding unirreps wich in- 
duce equivalent representations and the point groups of the possible space groups where 
this equivalence could occur: 

T(2,3) C O,T.~,Oh; D4h(5,2O4)(10,709) C Oh; D2d(5,204) C Td; D4(5 ,2~4)  C O; 

D2h(2,3)(6,7) C D~l,,Th, Oh; C2,(2,4) C C4,,,D~d, D4h,Th,Td, Oh; 

D2(2, 3) C D4, D2d, D4~, T, Th, O, Td, Ou. (32) 

A systematic study of the partial ordering of the Wyckot~ positions in the potential case 
yidds 34 pairs of equivalent band representations. They appear in 25 space groups. (We 
remark that  the isotropy groups D4, D2d, D~h do not occur; they were the only ones with 
two dimensional representations). We tabulate these cases in table 3. 

ii) equivalence of band representations a~ differen~ sites of W. 
We want first to prove some inequivalence; lemma C allows us to work with the finite Born 
yon Karman groups G12~. By definition of different sites q ¢ q', the strata S[Ge] and 
S[G¢] have no common points, so from lemma 3 a dominant element g E Ge is not conjU" 
gate to any element of Gq, ; then equation (9') shows that it has character zero for any band 
representation induced from Gq, (the inducing representation might be reducible). There" 
fore if the dominant element ST E Gq has a non zero character in the band representatio~ 
B (~'p) induced from a unirrep of a maximal isotropy group, this representation is inequiV" 
alent to any band representation at an other site, therefore it is elementary ( from tables 
2 and 3 this property is not spolied by equivalences at the same site). This is the case of 
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90 = P4212 a D2 2,3 
b D~ 2,3 

97 = I422 d Dz 2,3 
1 0 0 = P 4 b m  b C2~ 2,4 
102 = P42nm a C2v 2,4 
109 = I41rad a C2~ 2,4 
113 -- PZt21ra c C2~ 2,4 
117 = PYlb2 c D2 2,3 

d D2 2,3 
120 = I7tc2 a D~ 2,3 

d D2 2,3 

127 = P/4rabra c D2h 
D2h 

d D2h 
D2h 

128 = P 4 / m n c  d D2 
130 = P4/ncc  a D~ 
133 = P 4 2 / n b c  c D2 
135 = P4z/rabc d D2 
140 = I 4 / m c m  d D2h 

d Dzh 
142 ---- I41/acd b D~. 

2,3 197 
6,7 201 
2,3 204 
6,7 
2,3 208 
2,3 209 
2,3 211 
2,3 218 
2,3 219 
6,7 
2,3 228 

230 

---- I23 b Dz 2,3 
= Pn3  d D2 2,3 
= I r r ~  b Dzh 2,3 

D2h 6,7 
---- P4232 a T 2,3 
----F432 c T 2,3 
= I 4 3 2  d D2 2,3 
= PY43n a T 2,3 
= FTt3c a T 2,3 

b T 2,3 
= Fd3c a T 2,3 
= la3d  c D2 2,3 

Tab le  3. Pairs of equivalent band representations induced from the same maximal isotropy 
group Gq, by unirreps which do not form an orbit of the normalizer NG(G~). There axe 
34 pairs of them belonging to 25 space groups. After the r~ ° and the symbol of the space 
group, the columnn of this table give the Wyckoff position, the corresponding isotropy 
group and its unlrreps (notation of [11]) yielding the pair of band representations. 

--(P)" indeed the characters of one induced representations from one dimensions/unirreps xoq" 
dimensional representations do not vanish, and equation (12) shows that the character of 
the induced representation is a multiple of that of the inducing representation except when 
the normalizer No(Gq)  has non trivial orbits in ~;q, i.e. for the cases listed in equation 
(29). The latter do not yield exceptions: indeed the dominant elements 2 ,2 ,3 ,3 ,3  have 
respectively - -2 , - -2 , - - I , - -1 , - - I  as characters in the direct sums of the unirreps given in 
(29), and the corresponding characters of the band representation are a multiple of these 
Values. Thus we have proven: 
L e m r a a  4. At a site q whose isotropy group is not listed in (26), all band representations 
induced from one dimensional unirreps are elementary and inequivMent except for the 57 
Pairs listed in tables 2 and 3. 

Remark that  the character of (the dominant) space inversion never vanishes in a 
Ualrrep of Gq since i is in the center of the group and is therefore represented by a multiple 
of the identity. Other  dominant elements may have vanishing character in a unlrrep of Gq. 
In the next equation we llst the multidimensional unirreps of point groups in which all 
dominant elements have vanishing characters: 

D2d(5), Td(3) (33) 

~hese two representations are two dimensional; we can enlarge lemma 4 to: 
Theorem.  1. At a site q whose isotropy group is not listed in (26), all band representations 
Induced from unirreps of Gq are elementary except possibly those induced from the two 
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2-dimensional nnirreps listed in (33). 

We now study the maximal isotropy groups whose geometrical classes are listed in 
equation (26). If two groups satisfy lemma B, i.e. they are isomorphi% not conjugate 
but their corresponding elements are pairwise conjugate; hence these two groups belong 
to the same geometric class. The search for such pairs of maximal isotropy groups can be 
made from the study of the partial ordered set of strata (the Wyckoff positions listed in 
[7]). We find 17 such pairs belonging to 14 space groups; they are listed in table 4. This 
corresponds to 63 pairs of equivalent band representations. 

22 = F 2 2 2  D 2 a = - b  
D z c - - d  

68 = C c c a  D~ a =- b 
70 = F d d d  D2 a =- b 
94 = P42212 D2 a - b 
98 =I4122  Dz a - b  

118 =P,~n2 / ) 2 c - - d  
163 = P 3 1 c  D3 c_--d 
182 = P6s22 Ds c -- d 
196 = F 2 3  T a ~ b  

T c - = d  
203 = Fd3 T a =_. b 

210 = F 4 1 3 2 T  a--=b 
D s c - d  

212 = P4s32 Ds a = b 
213 = P4a32 Ds a __ b 
214 = I4132  D2 c _ = d  

B: they are isomorphic, not conjugate, but their corresponding elements are pairwise 
conjugated. There are 17 pairs of such isotropy groups belonging to 14 space groups. They 
yield 63 pairs of equivalent band representations. After the n ° and the symbol of the space 
group, the column.q of this table give the isotropy group and the pair of Wyckoff positions. 
All band representations induced from the equivalent unirreps of these pairs of subgroups 
are equivalent. 

When we search for equivalence of band representations, lemma C shows that working 
with the Born yon Karman groups Gu yields a necessary condition; then we have to check 
in each case if it is sufficient (as a mat ter  of fact it will always be so), for instance we verify 
the equality of the mqk~ components. The isotropy groups Gq of the eight geometric classes 
listed in (26) and (33) are non polar, so they are equal to their normMizer in G. To continue 
our study of equivalence of a band representation B (~,p) induced from a maximal isotropy 
group Gq, with another one induced from a non conjugate maximal isotropy group Gq,, 
we have to consider the multidimensional unirreps of Gq because they have elements with 
zero character. When their elements with non vanishing character form a subgroup (we 
call it Kq) we list these representations in the equations (34) giving also the representatio~ 
R oq (p),  esKq XGq )" 

C3(2 (3 3) C Ds(3), Co(3 @ 4) C Ds(3), Ce(5 ~ 6) C De(6), (34) 

D2(2 • 3 (~ 4) C T(4), T(2 (~ 3) C 0(3) ,  T(2 (9 3) C Td(3), (340 

C~(2 (~ 2) C D4(5), C~(2 ~ 2) C D2~(5) (34") 

It is only in the 3-dimensional nnlrreps of O that the elements with non vanishing characters 
do not form a group; we give in the next equation the geometric class of elements with 
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zero character: 
[3] in O(4), O(5). (35) 

There are only five space groups which contain O as maximal isotropy groups; by studying 
the partial ordering of their Wyckoff positions we find in two of them that the elements 
with non vanishing characters in the 3-dimensional representations of O (i.e. the elements 
of order ¢ 3 ) are a/1 conjugate to the elements of another isotropy group, namely D4, but 
a class of rotations of order 2 in D4 is not conjugate to that of O. So exceptions can only 
arise for the unirrepes od D4 in which the order 2 rotations have vanishing characters. 
This is the case with the 2-dimensional unirrep D~(5); it is induced from C4(3) or C4(4) 
and this (74 subgroup is the intersection C4 = O A D4 so the two corresponding exceptions 
will appear in the family of not elementary band representations given in table 7 (groups 
207,211). 

The equations (34) have been divided in three cases on the following grounds: 
i) in (34) and (34') the unirreps of Gq is induced by the corresponding one dimensional 
representation of Kq 
ii) in (34') the Kq's are non polar and have no dominant elements. In the other cases, they 
are polar, cyclic and therefore have a dominant elements 
We first study the partial ordering of Wyckoff positions for the space groups which contain 
T, O or Ta as maximal isotropy groups, looking for pairwise conjugation of the elements of 
the corresponding Kq: this yields 4 pairs of equivalent elementary band representations, 
also listed in table 5. Note that  none of them concern D2(2 $ 3 ~ 4) C T(4). 

~ O  =F432 a O ( 3 ) ~  b O ( 3 ) I 1 6  =F.~3maT, t(3),.~b T d ( 3 ) I 2 7  =Fd3ma Td(3),.. b Td(3) [ 
. . . . . . . . . . . . . . . . . . . . .  c T~(3) ~ d T,~(3) ....... 

Table 5. Pairs of elementary equivalent band representations induced from unirreps 
of maximal isotrophy groups whose elements with non vanishing characters are pairwise 
conjugate. There are 4 pairs belonging to 3 space groups. After the n ° and the symbol 
of the space group, the columns of this table give for each pair the Wyckoff positions, the 
isotropy group and its unlrrep. 

When the Kq's are polar and their elements are pairwise conjugated with a subgroup 
Lg, of another maximal isotropy group Gq,, these two groups are conjugate because all 
their non trivial elements are dominant. Then by a conjugation on Gq, they can be brought 
to coincide: Kq = L¢, C Gq N Gq,. When the last relation is an equality, we denote this 
~roup by G~q,; as an intersection of isotropy groups it is a polar isotropy group. This is 
the case of the groups of (34) because the Kq subgroups are maximal. We have to study 
those of (34"): indeed C~ is not a maxima~ subgroup of D4 or D2~, so the intersection can 
be strictly larger. If Gr ~ D4 the points of the z-axis containing r have isotropy group C4: 
i~ldeed since the rotations of order 4 around the z-axis leaves the point r fixed, they leave 
all points of the z-axis fixed; moreover this isotropy group cannot contain other elements 
(such as a reflection plane) because these elements should be also in the isotropy group 



306 

of r. Since the non conjugate group Ge, contains C~, it must contain C4, the isotropy 
group of the z-axis so Gqq, = G¢ N Gq, = C~. By a similar sequence of arguments when 
C~ C_ Gq n G~, for two pairs of non conjugate maximal isotropy groups and Gq ~ D2d one 
proves that  G~, = C~,~. So we can replace equation (34") by: 

C 4 ( 3 ~ 4 )  c D , ( 5 ) ,  C 2 r ( 2 ~ 4 )  CD2d(5) (36) 

in which the subgroup is Gq¢. 
By searching among the list of non polar point groups, one finds that  the only unirreps 

of point groups induced by any one Of the unidlmesional representations of the subgroups 
Gqq, listed in (34) and (36), are exa~ctly the 2-dimensional unlrreps listed in the same equa- 
tions for the groups Gg. This yields equivalent elementary band representations induced 
from non conjugate maximal isotropy groups with a common z-axis, and belonging to the 
same geometric classes: Ds, Ds,D4 or D2d. 

There are 33 pairs of such equivalent band representations. They belong to 23 space 
groups. They are listed in table 6. Note however that five of those pairs are implicitly 
contained in table 4. 

89 = P422 ab D4 5 
cd D4 5 

97 = / 4 2 2  ab D4 5 
111 = p3,2m ac D2a 5 

bd D2d 5 
115 = p3,m2 axl D2d 5 

bc D2a 5 
119 = I71m2 ab D2a 5 

cd D2d 5 
121 = I712m ab D2# 5 
125 = P4/racc ab D4 5 

cd D2~ 5 

126 = P 4 / n n e  ab D~ 5 
129 = P 4 / n m m  ab D2d 5 
134 = P 4 2 / n n m  ab D2d 5 
137 = P4~/nmc ab D2~ 5 
141 = I4~/amd ab Dsa 5 
149 = i°312 ab Ds 3 ! 

cd Ds 3 
ef Ds 3 

150 = P321 ab Ds 3 
155 : B32 ab Ds 3 
162 = P ~ l m  cd Ds 3 

163 = P 3 1 c  cd Ds 3* 
1 7 7 = P 6 2 2  ab D6 5 

De 6 
cd Ds 3 

182 = P6s22 ab Ds 3 
cd Ds 3* 

210 =F4132cd Ds 3* 
212 =P4s32ab Ds 3* 
213 =P4132ab Ds 3* 
214 = 14132 ab Ds 3 

Table  6. List of the 33 pairs of equivalent elementary band representations induced from 
two dimensional unirreps of non conjugate maximal isotropy groups belonging to the same 
geometric class. These pairs belong to 23 space groups. The pairs marked with a * are 
already implicitly contained in table 4. After the n ° and the symbol of the space groUP, 
the columns of this table give the Wyckoff positions, the maximal isotropy group and its 
two dimensional unirrep. 

Finally the one dimensional unirreps of the groups Gq¢ listed in equations (34) zmd 
(36) may induce a reducible representation of G¢.  In that case the band representatio~ 
B(q,p) is not elementary. There are 40 such band represenntations induced from the 2- 
dimensional unirreps of maximal isotropy groups listed in equations (34) and (36). They 
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-124 = P4/mcc"  a D4 5 
a D4 5 

131 = P 4 2 / m m c  e D2d 5 
f D~a 5 

132 = P 4 ~ . / m c m  b D2d 5 

d D2d5 
139 = I 4 / m r n m  d Dzd 5 
140 = I 4 / m c m  a D4 5 

b D 2 a 5  
163 = P ~ l c  a Ds 3 
165 = P 3 c l  a Ds 3 
167 = R 3 c  a Ds 3 

188 = P~c2 a Ds 
c D s  
e Ds 

190 = P62c  a D3 
192 = P 6 / m c c  a Do 

c D3 
193 = P 6 s / m c m  d 1)3 
207 = P432 c D4 

d D4 
208 = P4232 b Ds 

c Ds 
210 = F4132 c Ds 

d Ds 

3 211 
3 
3 2 1 5  
3 
5 217 
6 222 
3 223 
3 
5 
5 224 
3 226 
3 228 
3 2 2 9  
3 230 

= / 4 3 2  b D4 5 
c Ds 3 

= PY}3m c Dzd 5 
d D2d 5 

= IY43m b D2,~ 5 
= Pn3r~ b D4 5 
= P m 3 n  c Dzd 5 

d D2d 5 
e D s  3 

= P n 3 m  d Dzd 5 
= Frn3c  c D~d 5 
= F d 3 c  b Ds 3 
= I m 3 m  d D2a 5 
= Ia3d  b Ds 3 

T a b l e  T. List of the 40 bands representations induced from unirreps of maximal isotropy 
groups and not elementary; they belong to 25 space groups. After the n ° and the symbol of 
the space groups the columns of this table give the Wyckoff positions the maximal isotropy 
group and its two dimensional unirrep. 

belong to 25 space groups. They are listed in table 7. They are the only counter examples 
to the converse of lemma 1. 

This ends our systematic search for equivalences of band representations induced from 
Unirreps of maximal isotrpy groups s and proves the: 
M a i n  R e s u l t .  All band representations induced from unlrreps of maximal  isotropy groups 
are e l emen tary  s except for the 40 of them (listed in table 7), and inequiva2ent except for 
152 pairs: 57 at the same site (listed in tables 2 and 3) and 95 at inequivalent sites (listed 
in tables 4,5 and 6). 

The same study can be performed for dimension 2; it can be useful in surface physics. 
All the 132 band representations induced from the inequivalent nnirreps of the maximal 
isotropy groups are elementary and inequivalent but  one pair of them. 

? F ina l  r e m a r k .  It  is not obvious that  the mathematical  equivalence (i.e. the existence of an 
intertwining operator)  found for the elementary band representations always corresponds 
to the needs of physics. Indeed it is physically natural  to choose a basis which diagonalizes 
the translations; then the basis functions are the Bloch functions: they are obtained by 
taking the Fourier t ransform of the electron wave functions over the translation group~ 
so they are defined over the Brillouin zone B. Of course this procedure is rigourous only 
~i th the use of Born yon Karman groups; for the infinite space groups the Bloch functions 
are not basis of the Hilbert space 7~ carrying the band representation but  they are basis 
of the finite dimensional integrand whose 7"/is the direct integral on B. Then s in  th i s  
hasls  s there does not exist an intertwining operator between some pairs of equivalent band 
representations (except if we consider "generalized" Bloch functions defined on a double 
COVering of the Brillonin zone). The equivalence for which we can find an intertwining 
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operator (whose elements are in general continuous functions on B) are those of tables 
2,6 and also 7; this corresponds to 23+33=56 pairs of equivalent representations. For the 
other pairs of mathematically equivalent elementary band representations, we can say that 
they have the same continuity chord but they seems to us physically inequivalent (for more 
details see [5]). 
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NOTE ADDEDINPROOFS. 

At the Varna meeting we heard of the existence of the recent tables (in Russian): 
"Irreducible and induced representations and corepresentations of Fedorov groups". 
Nayka, Moscow 1986, made by O.V. Kovalev. 
We also learned of the following references: 
Burneika and Levinson, Tr. Akad. Nauk Lit. SSR, Ser. B 4, 21 (1961). 
Kovalev O.V., Fiz. Tver. Tela, 17, 1700 (1975). 
As an historical remark, in reL 3,c(1982), Zak showed that all elementary band represen" 
tations (called there,"irreducible band representations") are obtained by induction from 
maximal isotropy groups and he had already found (ref.3,b) that some of these BR (band 
representations) could be equivalent (his table V column (a,3)--(b,3) for group 227 -~ 
Fd3m, ab, Td(3)). Evarestov and Srnirnov, in ref. 4,5(1984) found among these same BR, 
the first example of non elementary BR (for them "non simple"): 167 = R3c, a, Ds(3). 


