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Abstract
An energy band in a solid contains an infinite number of states which transform
linearly as a space group representation induced from a finite dimensional representation
of the isotropy group of a point in space. A band representation is elementary if it cannot
be decomposed as a direct sum of band representations; it describes a single band. We
give a complete classification of the inequivalent elementary band representations.

1 Space groups. A crystallographic space group is a discrete closed subgroup of the Eu-
clidean group E(n) = R™><0(n) which contains a lattice of translations T' ~ Z™; when
a choice of origin is made its elements can be written as g = (¢ + v(R), R) € E(n), with
R € O(n), t € T and v(R) is either = 0 or a non-primitive translation ¢ T. The quotient
G/T = P is the point group, a finite subgroup of O(n). The action of P on T ~ 2" is
given by an injective homomorphism P «— GL(n, Z) up to a conjugation in GL(n, Z), i.e.,
by a conjugation class of GL(n, Z) subgroups isomorphic to P. Such a class is called an
arithmetic class: there are 73 of them in n = 3 dimensions [1]. In each arithmetic class
there is one symmorphic space group G = T><P. For such a group, with a suitable choice
of origin, all v(R) ’s can vanish. In the general case the action of G on a point z of space

€ is defined by
gx=Re+v(R)+1t (1)

2 Band Representations. Let 9(z — ) be the wave function of an electron localized
around an atom sitting at o in a crystal whose symmetry group is G. The wave functions
¥(g7.(z — =), for all g € G are those of the corresponding electrons in all similar
atoms of the crystal; they span a vector space H of functions which also contains the state
vectors of delocalized electrons in a band. G acts linearly on H; by definition of induced
group representations, the linear representation of G on H is Indgm0 7&?0 where G, is the

(»)

isotropy group of zo and VGa, is the linear representation of G, on the space spanned

by the functions P(g~t.(z — zg)), for all g € G,,. This representation Indg% 72;20is
called a band representation. These representations are of great interest for solid state
Physics; they have been studied by des Cloizeaux [2], Zak [3], Evarestov and Smirnov
[4]. The most interesting band representations are the elementary ones: those which
cannot be decomposed into a direct sum of band representations, so they describe a single
band !. Using Bloch functions as main tool, we are making a complete classification of

1 Of course, as group representations, elementary band representations are highly reducible. So we

Prefer to avoid here the expression irreducible-band representations used as a synonym in [3] and [5].



202

elementary band representations [5]. We think worthwhile to present here a purely group
theoretical method. Sections 3 and 4 recall the basic notions on space group geometry and
on induced representations that we shall need. In section 5 we will begin the study of the
band representations. Finally, in section 6 we establish the complete list of inequivalent
elementary band representations.

3 Space group actions. Space £ is partitionned into orbits by the action of the space
group G. The isotropy groups of an orbit G.z form a conjugation class [G;] of G-subgroups.
Orbits are naturally classified by the conjugation class of their isotropy subgroups. The
union of all orbits of the same type is called a stratum (see e.g., [6]). In physical problems
the number of strata is usually finite: they can be listed. For space groups, this has
been done in the International Tables for Crystallography [7]; there the strata are called
“Wyckoff positions”.

No translation leaves fixed z € € s0 G,NT = {1} and G, ~ ¢(G;) C P where o is the
surjective homomorphism ¢ : @ -2 P of kernel T. Hence isotropy groups G, are finite
subgroups of G. If 2 is chosen as origin G, C O(n), the elements of G, have vanishing
non-primitive translations; hence TG, is a symmorphic space group C G. One can also
show that for the action on € of the space groups, the intersections of isotropy groups are
isotropy groups.

There is a natural order (by inclusion up to a conjugation) on the set of conjugation
classes of finite subgroups of an arbitrary group. Maximal finite subgroups of G are isotropy
groups (consider the barycenter of any orbit of such a subgroup); the corresponding strata
are closed: they are sets of symmetry centers, rotation (or skew- rotation) axes, sym-

metry (or glide-reflexion) planes, or, for 230 [104]63[ 5 [13]38f 2411
13 of the 230 space groups, thereis only {dim 0 | x x| x x
one stratum, the whole space £ (see Ta- | dim 1 x x x| x
ble 1). The trivial subgroup is the min- | dim 2 x x| x|x
imal isotropy group and the correspond- | dim 3 x

ing stratum is called generic; it is open Table 1. Number of space groups with
and dense. given dimension of closed strata

In 3 dimensions there are 32 geometric classes of point groups (i.e., conjugation classes
in O(3)), forming only 18 isomorphic classes. Among the 32 point groups, 10 of them are
polar groups, i.e., the stratum with an isotropy group G, ~ P, has dimension > 1 when
P, is a polar group; this dimension is:

3for Cy ~1, 2forC,, 1 forC;3,Cs,C4,Cs,Cay,Csy,Coy,Cov; (2)

the dimension is 0 for the 22 non-polar groups. Assume that Hy and H, are two non-polar
isotropy groups; then Hq = Hy N H, is a polar isotropy group; the stratum S([H,]) is the
union of axes or planes or the whole space, minus the symmetry centers of S([H;]) and
S([Hz))-

The orbit space W = £ | T' is a n-dimensional torus represented by the “Wigner-Seitz
cell” with opposite faces idendified. The action of G on £ induces an action of G/T = P

on £ | T = W; the natural map ¢: & 2 W is continuous, open, closed. If ¢ = ¢(z), then
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P.g = ¢(G.z) and P, = 0(G;) ~ G5. One shows that the different connected components
of a same P stratum in W are ¢-images of different G-strata in £. Except for the
enantiomorphic pairs (there are 11 of them in dimension 3) different space groups define
inequivalent actions of P on W.

Similarly, the quotient of the p-space £ modulo the reciprocal lattice T' is the Brillouin
zone B with opposite faces identified. Moreover B carries a natural group structure T,
the dual group of T i.e., the set of all (one dimensional) irreducible representations of T
with the group multiplication defined by the multiplication of the character values. With
the notation of k for the wave vector of the T representation t > e**** the group law
of T' is the addition of k’s with their coordinates defined modulo 1 (i.e., up to a vector of
the reciprocal lattice). In the natural action of G on T' T acts trivially, so the G and P
orbits (and strata) on B = T are the same; moreover these actions are the same for all
space groups of the same arithmetic class. Note also that Py = o(G) = Gi/T.

4 Induced Representations. We recall here the results (see e.g.,[8,9]) that we shall need
concerning induced representations; we explain them first in the easier case of a finite
group G with a subgroup H. The complex valued funciions on G form an Hilbert space
with the Hermitian scalar product (|G| = cardinal of G):

(fla)a = 1617 Y, f(=)g(=) (3

zE€G

The central functions satisfy f(z) = f(yzy™!); these functions form a sub-Hilbert space
that we denote by Hg. The characters ng) of the unirreps (=unitary irreducible represen-
tations) of G form an orthonormal basis of Hg. So we can say that the characters separate
the conjugation classes or ,equivalently, if we denote by [z]a the conjugation class of z in
G and by G the set of equivalence classes of unirreps of G:

Vae G, x9=)=xP) = [tle = lvle (4)

Let CC[G] the set of conjugation classes of the group G; to each group homomorphism
HS ¢ corresponds a map: CC[H] £ CC|[G). When H is subgroup of G, ¢{ is injective
and we denote it by ¢; the corresponding map I defines a linear map between the spaces

of functions defined on CC[G] and CC[H]: Hg Re 25 Res is a short for “Restriction”;
indeed, if x¢ is the character of a linear representation of G, Resf’} X@ = Xg o ¢ is the

character of the representation of H obtained from that of G by restriction to the elements
Ind

of the subgroup H. The adjoint map is called Hg — Hg; to any H-representation of
character x(‘,g) corresponds the induced representation of G. Its character is denoted by
Ind§ x(lg).

By definition of the adjoint of an operator we obtain Frobenius reciprocity relation:

nd$ X2 e = D | Res x5V (5)

where ( | )i is the Hermitean scalar product in Hg. It means that, in the reduction

of Indg xg:) into a direct sum of unirreps of G, the multiplicity of xg") is equal to the
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multiplicity of x(p ) in the restriction of xa) to H. From the associativity of linear maps
one deduces the Induction Chain Rule:

HiCHin C. CHoCG,  Ind§, x§) = Ind§ (Indfe(...(Ind*~* x$).))  (6)

We can prove the
Lemma A. If, and only if, CC[H] - CC|G] is injective, Ind is injective i.e., inequivalent
representation of H induce inequivalent representations of G.
Indeed t injective < Res surjective; and from the general property Ker Ind = (Im Res)*,
Ind is injective.
Ind is always injective when G is Abelian. When H is a subgroup of a point group G, Ind
is injective for the following 16 subgroups H of the point groups:

1,01',0-)027021'”031”D37D8d9Td (7)

041), Cem DG) Dsh, Deh, 01 Oh (7,)

(For the subgroups of equation (7) T is injective when G' = O(3) so it is true a fortiori when
G is a point group containing H ).

Given a matrix representation b — D(h) of H C G, one can write explicitly the
matrices A(g) of the induced representation A = Ind$ D. First choose arbitrarily an
element s; € G in each left H-coset of G; A(g) is given by blocks A;:

G=\|Js:H, A=(Ay5), Ay lg)=D((s7"gs;5)) ®
with the definition:
D((k)) = D(k)if k€ H, =0 otherwise (8"
so:
dimA = (dimD) x |G/H| (8")

where |G/H| is the index of H in G. The character of the induced representation is:

IG/H|
trA(g) = x3(9) = Z X (s gs:)), with x5 ((k)) = trD((k)) Q

If we denote by [g]g the conjugacy class of g in G, we see that:

GoNH=0=x3(g) =0 (9"

Let us first study the case H 4« G (where < reads “invariant subgroup”). Then there

is a natural group homomorphism G SAutH. It defines an action of G on H, the set of
equivalence classes of unirreps of H. This action defines a linear representation of G on Hp:

for n € G, (n. X(D))(h) = XH )(n‘lhn) Let Gp the isotropy group of the representation
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D of H and G.D the orbit. Since the set of elements of H(<G) is a disjoint union of
G-conjugation classes, equation (8) becomes:

H«G,A=1nd§';n;g¢H,x$;”(g>-=o;heH,xG’(M—l 21 5 () (10)
Dte@G.D

Hence the different H-representations of the G-orbit G.D induce the same representation
of G. In the particular case Gp = G:

H<G,Gp=G; g¢ H,xP(g)=0; he HxP(h)=IG/HIX (h) (10")

This equation applies to the interesting particular case of G Abelian; adding the properties
that the characters of one dimensional group representations never vanish, one obtains:
Theorem A. Induced representations of an Abelian group are equivalent if and only if
they are induced from equivalent representations of the same subgroup.

This theorem generalizes Lemma A for Abelian groups.

We can now deal with the general case for computing the character of an induced
representationfrom the character of the unirreps of H. To complete (9') we need only to
know the characters of the conjugation classes [h]g for all h € H. Let Ng(H) be the
normalizer of H in G. From the coset decompositions one defines the positive integer c(k)
for any h € H:

G =|JsaNo(H), No(H)= Ur,—H, c(h) = #{sa,57 hse € H} (11)

Another way to compute c(h) is:

o(h) = i[G'}k /ING(H)l |Ca(h)]

#hlvamn  ICNa(n(R)]

(1)

where the centralizer of h in G, Cg(h) is the subgroup formed by the elements which
commute with h. From (9) and (11) we obtain:

O(hy = sz"”((r;" 2 hsami)) = c(h) Indye ) XD (k) (12)
with, from equation (10):
Ng(H '
Laallr® P = HEl S ) (19)
D'€Ng(H).D

In plain words we have found that in the induced representation, the character of a group
element conjugate to h € H is a multiple of the character of k in the direct sum of the
H-representations in the Ng(H) orbit of the character XE:?) of the inducing representation.
The positive integer c(h) defined in equation (11) is independent from the choice of the
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representation of H. So the remark following equation (10) generalizes to:

Theorem B. The unirreps in H belonging to the same orbit of the normalizer Ng(H),
induce equivalent representations of G.

The converse of this theorem is not true: as we have seen Ind is not injective when 7 is
not. However all elements of G which conjugate two elements not conjugated in H may
be outside the normalizer Ng(H). Moreover the induced representation from a unirrep
might be equivalent to the induced representation from a reducible representation of the
same subgroup. In point groups, the only exceptions to the converse of theorem B are {we
follow reference [11] for the labelling of the unirreps of the point groups):

IndD4 (5) ~ Ind (X(Z) (4))’ Indgdu X(DSZJ Indg‘aa (ngd ® xDu)’

5 2 10 7 1)
ndQ:, x5, ~mdQ:, (x5), @ x5),), mdQ, x50 ~IndZs (x5, @5),)  (14)

We will find more exceptions in space groups and list in table 3 those related to elementary
band representations.

From the properties of induced representations it is evident that equivalent represen-
tations of conjugate subgroups induce equivalent G-representations. But the converse is
not true as the chain induction property already shows. Another obvious counterexample
is given by the induction from the regular representation from any G-subgroup H: one
obtains the regular representation of G. In this paper we will only be interested by the

following problem: given a unirrep x(”) of a subgroup H, find all conjugate classes [H'|g

of G-subgroups {which do not contain H) and representations X(}?) (which might be re-
ducible), such that Ind$ XE!?) ~ Ind$, qul?) . Equations (9°) and (12) are very relevant; in
section 5 we will solve this problem for band representations. Here we make only some
remarks. For simplicity, let us assume that H is its own normalizer in G : Ng(H) = H.
IfVhe H, x(” )(h) # 0 (for example p € H is a one dimensional unirrep), (9°) shows that
every element of H should be conjugate to an element of H'; an example of such a case is
studied in the: .

Lemma B. Equivalent representations of non conjugate, isomorphic: H - H', subgroups
of G induce equivalent representations if i(h) and h are conjugate for every h € H.

() G ()
G

In any unirrep xg° of G, conjugate elements have the same characters, so Resg x

Res5y x( *): we complete the proof of the theorem by using Frobenius reciprocity (5).
This lemma does not apply to point groups; however, as we shall see later, it can apply to
some finite groups and to a dozen of space groups in the search of equivalent elementary
band representations: table 4 gives the list of occurences.

For the point groups it is easy to find all solutions to the problem we have defined.
Indeed we need only to consider the 9 isomorphic classes of non Abelian point groups.
Moreover any multidimensional unirrep x(”) of a point group H is monomial, i.e. induced
from a one dimensional representation of a subgroup, eg., x%’) ~ Indﬁ x(I?); then a solution
for any subgroup H' D K is x( ) = IndH g x(“) The only solutions not obtained by this
method are:

Indg:d xf;) ~ IndDzd (4) ~ Indgad xg) ~ Indg:d ng ~
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D 2 D 4 5
~ Indg2 x&), ~ Ind¥ x5, ~ x5, (15)
and the similar cases obtained from the isomorphisms Dyy & Dy &= Oy, or by chain
induction to larger point groups: Daj, Ty, 0, On.

5 Induced space group representations. There is no difficulty for constructing repre-
sentations of space groups induced from a subgroup of finite index, e.g., one obtains the
unirreps of a space gronp G by induction from (one dimensional) representations k of T
this yields |P| dimensional representations I'*!) of G; their restriction to T contains all
representations belonging to the orbit G.k = P.k. The representation I'*1!) is irreducible
if k belongs to the generic stratum in B. If not, the P.k orbit has |P/P;| elements and
each k appears with a multiplicity | Py|. For a fixed k one has a representation of G which
contains all “allowed” 2 unirreps of G, each one with a multiplicity equal to its dimension.
To summarize: the unirreps of G are labelled :

Tk Indgk xg‘:, k€ B,a € allowed Gy (16)

K € Gk, a~a ¢+ o k) (16")

A space group has a continuous infinity of unirreps and the decomposition of a_unitary
representation into unirreps requires a direct integral on the Brillouin zone B =T.

It is also possible to extend all results of the theory of induced representations of finite
groups to the space group representations induced from finite dimensional representations
of finite subgroups; for instance one can work explicitly on the space Hy, of functions on
the space group G which are different from zero only on a finite subset of G; the space

%7 is a Hilbert space with the scalar product 3., f(z)g(z) . This Hilbert space carries
the regular representation of G. Let H a finite subgroup of G; one knows how to define
a sub-representation h +— D(h) of the regular representation of H on the space Hjy;. The
functions on H define functions on G with zero value on the elements of G which are not
in H; this identifies H}y as a sub-Hilbert space of H;. We define a set of functions on G
that we denote by f.,z € G:

Vf € Hy C Hg, Vo,y € G, fo(y) = f(z7'y) ¢%)]

These functions form a sub-Hilbert space of H; which carries the unitary representation
z — A(z) of G which is the induced representation from the H-representation D:

A =Tnd§ Du, A(R)fy = fap (18)

These induced representations satisfy Frobenius reciprocity. It is true that band repre-
sentations are realized on another space of functions: the functions on £ which decrease
fastly enough at infinity; they form a Hilbert space, but when one makes an infinite sum
of them (for instance to compute Bloch functions) one must take care of the problem of

2 “allowed” means here that the restriction to T' of the Gj-representation is a multiple of the

T-representation k € B = 7.
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convergence. We assume here that the two realizations of the induced representation A
are equivalent.

Two points r and r' of £ on the same translation orbit yield equivalent band repre-
sentations; so these can be labelled by points of the Wigner Seitz cell W:

B =1mdd x¥), qeW,peG,~F (19)

q’ S Stra.tum(q),p' ~ p == B(q"p') ~ B(qnp) (19})

All ¢'s of the same G-stratum yield equivalent band representations. The problem is to
find which representations are elementary and, among those, which are the (g, p) labels of
equivalent pairs.

Let us now study some consequences of the application of Frobenius reciprocity to
band representations. We can compute m % the multiplicity of the G unirrep (ke jn
the band representation B(%?), For this We need a formula due to Mackey (see e.g.,[8])
which tells how to commute Res and Ind. We also need to use double cosets of G for
G, and Gj; they are the subsets G sG C G for arbitrary s € G. If P, 4 P (respectively
P, a P), then T.G¢ <G (G < G) and the double cosets are simple left (right) cosets of the
G-subgroup G,.Gx = G4.G,. With the definition K, = sGrs~* NG, and the use of the
adjoint identity and of Mackey’s formula ( we denote by (G, : G : Gj] the set of double
cosets):

mq (Resg Inda,.Xa)|X(p)) = Z (Ind Res®* K, ‘xa)lx("))
1E[Gg: (iG]
=D (ResLig,, x5) | Resge! x4)) ., ZIKI Y w59 (20)
Fl gGK.

When k is in the generic stratum of B the corresponding m% is the number of branches
of the band; equation (20) yields:

number of branches in the band = |P/FP,|. dxm(x(" ) (21)

When k = 0, the translations are represented trivially, Gy = G, so the corresponding
G-unirreps are simply the P-unirreps. Then:

mde = (Resp x5 [x0)p, = (7 Indf, x$0)p (22)

Hence the necessary condition for equivalence of band representations:
B@#) ~ B9 — ndf, x{ ~ mdf, 1§ (23)
q

(In section 2, we have defined: P, = o(G,)).

On any stratum of the Brillouin zone B, the mb:>

Iea
9P

5 are constant: at least it is evident

on each connected component of a stratum since m ' is on it an integer valued continuous
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function. Since the number of strata on B is finite and for each stratum the number of
values of « is also finite we need only to apply equation (20) a finite number of time for
comparing the m components of two band representations; if their respective components
are all equal, the two band representations are equivalent.

The characters of the infinite band representations are not defined and, for instance,
the equations (9') and (12) have no meaning. To avoid this difficulty we will prove a
lemma which allows us to use these equations for finite groups G,’s. These groups are
considered by solid state physicists when they use the periodic boundary conditions in-
troduced first by Born and von Karman. For any integer v consider T, the subgroup of
T formed by the translations vf,t € T. It is an invariant subgroup of G and we define

G, = G/vT. By the surjective homomorphism feR % G, the translations T <« G are sent
unto T, = T/(vT) =~ (.’Z,,,)3 and the Brillouin zone is replaced by B, = T, ~ (Z,)*. Para-
doxically the choice of v is critical, even if it is very large: for instance if v is relatively
prime to |P|, G, = T,><P evenif G is not symmorphic. However one can prove that if (in
three dimensions) » is taken as a multiple of 12, non isomorphic space groups have non
isomorphic G, and there is a natural bijective map between the strata of the action of G
on B and that of G, on B,. May be, as it is done heuristically for many problems of solid
state physics, one could replace the study of the band representations of the countable
gpace group G by those of the countable set of finite groups Gy, and one could formally
define the limit v — oo. Here we will be rigourous; we only need to prove lemma C be-
low. Since the isotropy groups G, contain no translations, 8,(G,) = G,; to simplify our
expressions we will identify these two groups and write G4 C G,.

Lemma C. If IndG X(c;) ~ IndG » xG , then for any v, IndG X(c?) Indg:, xg':,) .Equiva-
lently IndG X(c?) & IndG ,x(GD? = IndG X(cf) b IndG , xg),)

We remark that 3 for k E B, = Ker? i.e., for the wave vectors of the Brillouin zone k € B
such that vk = O (many physicist prefer to say “ modulo the reciprocal lattice”) the kernel
of the G-unirrep I'*®»®) contains vT so I'®) is also a unirrep of G, and all unirreps of G,
can be so obtamed By Frobemus reciprocity, the assumption of the lemma is equivalent

to V(k,a) € G, mhe = m ip- Since this is true for all k € B,, by Frobenius reciprocity
applied to the group G, we conclude the proof of the lemma.

8 The elementary bands representatlons. Elementary band representations must be
induced from unireps of G, since Ind$ i x(o) Ind m@lnda x( ) when x(o) (1) EBx(z)
I G, is not a maximal ﬁmte G-subgroup, i.e. G’ < G\ maximal, then from the chain
induction:

B9 ~ B with x§) = Ind§; x&) (24)

This band representation might be elementary; in any case we have the necessary condition:
Lemma 1. Elementary bands representations are induced from unirreps of maximal
isotropy subgroups of space groups.

To determine the exact sufficient conditions we will need the following results.
Lemma 2. For non-polar isotropy subgroups: Ng(Gy) = Gy.

s The dual of the exact sequence O — T KPP, 0is 0T Py Tu — Ojie,

B, =T, = Kerv C B.
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Indeed all points of the normalizer orbit Ng(G,).q have same isotropy group G4. As-
sume that G is a strict sugroup of its normalizer; so there exists ¢' # ¢ with Gy = Gy;
then all points of the line Ag'+ (1 — A)gq are left fixed by G, which is therefore a polar group.

The finite order elements of space groups belong to ten conjugation classes in O(3).
They are called the geometric classes of the elements. The nofation used in the interna-
tional crystallographic tables [7] for labelling them is given in equation (25). It is usual
to denote by £9 the set of points in our space which are fixed by g. This set is a linear
sub-manifold of £ whose dimension d(g) depends only on the geometric class of g. This
dimension is given in (25%),

geometric classes: 1, 2, 3, 4, 6,1, m, 3,4, 8 (25)

d(g) :3,1,1,1,1,0, 2,0,0,0 (25")

(1 is the identity, 2,3,4, 6 are rotations of this order, I is the space inversion, 3,4, 6 are the
product of the space inversion by the corresponding rotation; m is used instead of 2 and
means “mirror” reflection). The elements whose d(g) = 0 are called non polar elements;
they leave invariant a unique point of £.

Similarly, if H is a subgroup of a space group, we denote by £¥ the linear manifold
set of the points fixed by H. Obviously: £H = NycyEt; s0 when h € H, £H C £+, We
say that an element g of the isotropy group G, is dominant when £9 = £9=; e.g. non polar
elements are dominant in their groups G, (those are non polar); similarly (non trivial)
rotations are dominant in their groups if those are polar. We denote by S[G,] = S[G,]
the stratum corresponding to these isotropy groups. There are only six point groups Py
without dominant elements:

D27D3aD-hD6)TaO (26)

Lemma 3. £9N S{G;] =0 & [g]e NG, = 0, i.e. g is not conjugate to an element of G..
We prove the equivalent statement £9 N S[G,] # 8 & {gla NG # 0. Proof =: r €
E9NS[G.], 50 g € G,. Conversely <=: Ik € G, kgk™ .z = z 80 g.k 1z = k™ 'z € £9NS[G.]
Finally we consider explicitly the conjugation class of an element of finite order g by taking
as origin a point that it leaves fixed, for instance the barycenter of an orbit; so g = (0, G)-
It is easy to compute (see [9]):

(s +v(4),A)(0,G)(s +v(A4),A)* = (I — AGA™?)(s +v(A4)), AGA™") (27)

This equation shows that g1 and g, are conjugated in G if and only if G; = ¢{(4:),G2 =
o{g:) are conjugated in P.

We study now when a band repsentation induced from a unirrep of & maximal isotropy
group can be equivalent to another band representation. We first deal with the case:
i} equivalence of band representations at the same site g € W.

From lemma 2 and theorem B we must study the action of the normalizers of the polar
maximal isotropy groups on the set (7, of their unirreps. From (27), for the normalizer
of a G-subgroup H : o(Ng(H)) C Np(e(H})). Given a subgroup H of an arbitrary group
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G, one defines the centralizer Cg(H) as the set {g € G,Vh € H,gh = hg}. There is
a natural injective map:Ng(H)/(H.Ce(H)) = Qa(H) — OutH, the group of classes of
outer automorphisms of H. In the case of a space group G and an isotropy subgroup G,
if a translation is in Ny(G,), it is in Cy(G,), so (=~ means isomorphic groups):

Qa(Gy) ~ 7(Na(G))/(9(Gq)-0(Cal(Gy))) (28)

This group acts effectively on 139. When G, is a polar maximal isotropy group with a
strictly larger normalizer, on the axis or more generally the linear manifold whose every
point is fixed by Gy, the action of Ng(G,) is not trivial and must be without fixed points;
s0 0(Ng(Gy)) must be polar and moreover G must contain a screw rotation or a glide
reflexion

In dimension 3, from the list of the ten polar groups (given in equation (2)) and the
determination of their normalizer in the point groups which can contain them, one finds
easily that there are only four non polar point groups with a non trivial Qg, and that in
the four cases: Qg ~ Z,. In the next equation we give the list of these four polar isotropy
groups and, for each of them, the pairs of their unirreps which are exchanged by the action
of Qa(Gy) or Ng(Gq) on Gy

C2v(2,4), Ca(3,4), Cs(2,3), Cs(3,4)(5,6). (29)
Note that all these unirreps have dimension one. There are only 52 space groups with non

Abelian point groups and polar maximal isotropy groups; in 15 of them there are pairs of
equivalent band representations: they are listed in table 2.

101 = P4,cma Capy 2,4 | 108 = Idcm a Cy 34| 159 = P31c
b Cz,, 2,4 b 02,, 2,4 161 = R3c
103 =P4ec a Cy 34| 130 =Pfdnece ¢

a 03 2,3

& Cg 2,3
Cy 34| 165=P3c1 d C; 23

a

b Cy 3,4 | 137 =P4y/nmecd Csp 2,4 | 184 = Péec Ce 3,4
105 = P4ymca Cyy 2,4 | 138 = P4y/nem e Ca, 2,4 5,6
b Cz,, 2,4 158 = P3cl a Cs 2,3 b Cg 2,3
107= I4mm b 02,, 2,4 b Cs 2,3 185 = P63cm b 03 2,3

¢ Cs 23| 220=I43d ¢ C; 23

Table 2. Equivalent band representations induced from the same polar maximal isotropy
group G, by unirreps froming an orbit of the normalizer Ng(G,). There are 23 pairs of
them belongmg to 15 space groups. After the n® and the symbol of the space group, the
columns of this table give the Wyckoff position, the corresponding isotropy group and its
Unirreps (notation of [11]) yielding equivalent elementary band representations.

Lemma A suggests another possibility for obtaining equivalent band representatxons
at the same site: the map between the set of conjugation classes CC(G,) A CO(G) is
ot injective; we do know that this cannot happen when 7 o T (with CC(G) % cep))
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is injective, which is the case for the 16 geometric classes of G, listed in equations (7,7°).
The following geometric classes of isotropy group can be also excluded for our search of
equivalent band representations at the same site, not given in table 2:

Cs3,C4,54,C6,Csi, Csny Cany Cany Th- (30)

For the three first groups, the only elements which can be conjugated are group generators,
so the conjugating elements are in the normalizer and we have already studied these cases;
this argument can be extended to Cy because any g € G which conjugates the elements of
order 3 has to preserve the rotation axis and therefore it conjugates also the two generators
(of order 6). The five other groups have non polar elements: these cannot be exchanged by
a conjugating ¢ € G not in the isotropy group because q is a point isolated in its stratum
and g.g # ¢. So only the rotations of order respectively 3,3,3 and 6, 4,3 can be conjugated
by an element outside the isotropy group. This yields the following kernel for Ind acting
on Hg,:

2 5 8 2 2 11 (3 2 2 ] 4 10
X 4 x8) — B - 18 A8 18, -8 - xEhs X8 a8 -8 A5

(5)

11 [ 12 3 ) 4) 8) [} 3 7
X8 x5 — x5~ x5, A&+ ¢ ¢ & =X - x5, (31)

Can ~ XCan ~ XCgp? X%) + X7, — X1, ~ XT3 >
Hence different sum of two unirreps can induce equivalent non elementary band represen-
tations, but this cannot happen with one unirrep only. Therefore we have only 7 geometric
classes of isotropy groups to sudy; we give their list, the corresponding unirreps wich in-
duce equivalent representations and the point groups of the possible space groups where
this equivalence could occur:

T(2,3) C 0,T4,0n; Dun(5,204)(10,709) C Op; D24(5,204) C Tu; Du(5,204) C O;

Dzh(2, 3)(637) C D&h)Thy Oo‘t; 020(2a 4) - c&v, D2da DéhyTh;Td’ Oh;
D(2,3) C Dy, D3q, Dan, T, Ty, O, T4, Oh,. (32)

A systematic study of the partial ordering of the Wyckoff positions in the potential case
yields 34 pairs of equivalent band representations . They appear in 25 space groups. {We
remark that the isotropy groups Dy, D24, Dys do not occur; they were the only ones with
two dimensional representations). We tabulate these cases in table 3.
ii} equivalence of band representations at different sites of W.

‘We want first to prove some inequivalence; lemma C allows us to work with the finite Born
von Karman groups Giz,. By definition of different sites ¢ # ¢', the strata S[G,] and
S[Gg'] have no common points, 80 from lemma 3 a dominant element g € G is not conju-
gate to any element of G,:; then equation (9') shows that it has character zero for any band
representation induced from Gy (the inducing representation might be reducible). There-
fore if the dominant element g € G, has a non zero character in the band representation
B induced from a unirrep of a maximal isotropy group, this representation is inequiv-
alent to any band representation at an other site, therefore it is elementary ( from tables
2 and 3 this property is not spolied by equivalences at the same site). This is the case of
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90 = P42,2 a D, 23| 127 =Pj/dmbm ¢ Dy, 2,3 {197=123 b D, 23

b D, 23 Dap 671201 =Pn3 d D; 23
07T =1422 d D, 23 d Dip 2,3 (204 =Im3 b Dy 2,3
100 = P4bm b Co, 2,4 Day 6,7 Dy 6,7

102 = P43nma Cy, 2,4 | 128 =P4/mnc d Dy, 2,3 | 208=P4,32a T 2,3

109 =J4;md a Cy, 2,4 | 130 =P4/ncc a D, 2,3 |200=F432 ¢ T 23
113 =Pé42;m ¢ Cyy 2,4 | 133 =Pdy/nbc ¢ Dy 23 |211=1432 d D, 23
117=P42 ¢ D, 2,3 | 135 =P4;/mbcd D, 2,3 | 218 =P43n a T 23
d D, 23| 140=1I4/mem d Dy, 23| 219=F43c a T 23

120=J4c2 a D; 2,3 d Dy 6,7 b T 23
d D, 23| 142=1I41/acd b D; 2,3 | 228=Fd3c a T 23

230 =Ja3d ¢ D 2,3

Table 3. Pairs of equivalent band representations induced from the same maximal isotropy
group Gy, by unirreps which do not form an orbit of the normalizer Ng(Gg). There are
34 pairs of them belonging to 25 space groups. After the n° and the symbol of the space
group, the columns of this table give the Wyckoff position, the corresponding isotropy
group and its unirreps (notation of [11]) yielding the pair of band representations.

induced representations from one dimensional unirreps xg’zz indeed the characters of one

dimensional representations do not vanish, and equation (12) shows that the character of
the induced representation is a multiple of that of the inducing representation except when
the normalizer Ng(G,) has non trivial orbits in Gy, i.e. for the cases listed in equation
(29). The latter do not yield exceptions: indeed the dominant elements 2,2,3,3,3 have
Tespectively —2,—2,—1,—1,—1 as characters in the direct sums of the unirreps given in
(29), and the corresponding characters of the band representation are a multiple of these
Values, Thus we have proven:

Femma 4. At a site ¢ whose isotropy group ie not listed in (26), all band representations
Induced from one dimensional unirreps are elementary and inequivalent except for the 57
Pairs listed in tables 2 and 3.

Remark that the character of (the dominant) space inversion never vanishes in a
Unirrep of G, since 1 is in the center of the group and is therefore represented by a multiple
of the identity. Other dominant elements may have vanishing character in a unirrep of G,.

D the next equation we list the multidimensional unirreps of point groups in which all
Ominant elements have vanishing characters:

Da(5), Ta(3) (33)
Thege two representations are two dimensional; we can enlarge lemma 4 to:

Theorem 1. At asite g whose isotropy group is not listed in (26), all band representations
nduced from unirreps of G, are elementary except possibly those induced from the two
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2-dimensional unirreps listed in (33).

We now study the maximal isotropy groups whose geometrical classes are listed in
equation (26). If two groups satisfy lemma B, i.e. they are isomorphic, not conjugate
but their corresponding elements are pairwise conjugate; hence these two groups belong
to the same geometric class. The search for such pairs of maximal isotropy groups can be
made from the study of the partial ordered set of strata (the Wyckoff positions listed in
[7]). We find 17 such pairs belonging to 14 space groups; they are listed in table 4. This
corresponds to 63 pairs of equivalent band representations.

22 =F222 D,

D,
68 = Ccea D,
70 = Fddd D,
94 = P4,2,2 D,
98 = I4,22 D,

118 = Pin2 Dyc=d | 210 =F4,327 a=0b
163 :Pﬁlc DsCEd DsCEd
182 =P6322 Dsc=d | 212 =P4332 D3a=D)b
196 =F23 T a=b ! 213 =P4;32 D;a=b

T c=d | 214 =14,32 Dy c=d
203 =Fd3 T a=bh

- - I e -

e ne e

cCogo T

B: they are isomorphic, not conjugate, but their corresponding elements are pairwise
conjugated. There are 17 pairs of such isotropy groups belonging to 14 space groups. They
yield 63 pairs of equivalent band representations. After the n® and the symbol of the space
group, the columns of this table give the isotropy group and the pair of Wyckoff positions.
All band representations induced from the equivalent unirreps of these pairs of subgroups
are equivalent.

When we search for equivalence of band representations, lemma C shows that working
with the Born von Karman groups G, yields a necessary condition; then we have to check
in each case if it is sufficient (as a matter of fact it will always be s0), for instance we verify
the equality of the m";:: components. The isotropy groups G, of the eight geometric classes
listed in (26) and (33) are non polar, so they are equal to their normalizer in G. To continue
our study of equivalence of a band representation B{%?) induced from a maximal isotropy
group Gy, with another one induced from a non conjugate maximal isotropy group Gy'»
we have to consider the multidimensional unirreps of G, because they have elements with
zero character. When their elements with non vanishing character form a subgroup (we
call it K;) we list these representations in the equations (34) giving also the representation

a
Res I{: Xg:) ):

Cs(2®3) C Ds(3), Co(3 ®4) C Dg(3), Cs(5® 6) C Dg(6), (34
D;(20304)CT(4), T(2®3) C 0(3), T(203) C Tu(3), (34)
C3(2®2) C Dy(5), C3(2@2) C D14(5) (347)

It is only in the 3-dimensional unirreps of O that the elements with non vanishing characters
do not form a group; we give in the next equation the geometric class of elements with
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zero character:

(3] in O(4),0(5). (35)

There are only five space groups which contain O as maximal isotropy groups; by studying
the partial ordering of their Wyckoff positions we find in two of them that the elements
with non vanishing characters in the 3-dimensional representations of O (i.e. the elements
of order # 3 ) are all conjugate to the elements of another isotropy group, namely Dy, but
a class of rotations of order 2 in D4 is not conjugate to that of O. So exceptions can only
arise for the unirrepes od D4 in which the order 2 rotations have vanishing characters.
This is the case with the 2-dimensional unirrep D4(5); it is induced from C4(3) or C4(4)
and this C, subgroup is the intersection Cy = O N Dy so the two corresponding exceptions
will appear in the family of not elementary band representations given in table 7 (groups
207, 211).

The equations (34) have been divided in three cases on the following grounds:
i) in (34) and (34’) the unirreps of G, is induced by the corresponding one dimensional
representation of K,
ii) in (34’) the K,'s are non polar and have no dominant elements. In the other cases, they
are polar, cyclic and therefore have a dominant elements
We first study the partial ordering of Wyckoff positions for the space groups which contain
T,0 or T; as maximal isotropy groups, looking for pairwise conjugation of the elements of
the corresponding K : this yields 4 pairs of equivalent elementary band representations,
also listed in table 5. Note that none of them concern D,(2 & 3 @ 4) C T(4).

09 =F432 a O(3) ~ b O(3) R16 =F43m a Ty4(3) ~ b Ty(3) P27 =Fd3m a Ty(3) ~ b T4(3)
¢ Ty(3) ~ d Ta(3)

Table 5. Pairs of elementary equivalent band representations induced from unirreps
of maximal isotrophy groups whose elements with non vanishing characters are pairwise
conjugate. There are 4 pairs belonging to 3 space groups. After the n° and the symbol
?f the space group, the columns of this table give for each pair the Wyckoff positions, the
Isotropy group and its unirrep.

When the K’s are polar and their elements are pairwise conjugated with a subgroup
Ly of another maximal isotropy group Gy, these two groups are conjugate because all
their non trivial elements are dominant. Then by a conjugation on G they can be brought
to coincide: K, ¢ = Ly C GyNGy. When the last relation is an equality, we denote this
group by G,.r; as an intersection of isotropy groups it is a polar isotropy group. This is
the case of the groups of (34) because the K, subgroups are maximal. We have to study
those of (34”): indeed C% is not a maximal subgroup of D4 or D3g, so the intersection can
De strictly larger. If G, &~ Dy the points of the z-axis containing r have isotropy group Cj:
Indeed since the rotations of order 4 around the z-axis leaves the point r fixed, they leave
2ll points of the z-axis fixed; moreover this isotropy group cannot contain other elements
Such as a reflection plane) because these elements should be also in the isotropy group
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of r. Since the non conjugate group Gy contains C§, it must contain C,, the isotropy
group of the z-axis 50 Ggy = G4 N Gy = Cy. By a similar sequence of arguments when
C; € G4NGy for two pairs of non conjugate maximal isotropy groups and Gg & Djq one
proves that G = C,,. So we can replace equation (34”) by:

Ci(3 @ 4) C Dy(5), C3,(2® 4) C D3a(5) (38)

in which the subgroup is Gggr.

By searching among the list of non polar point groups, one finds that the only unirreps
of point groups induced by any one of the unidimesional representations of the subgroups
Ggq listed in (34) and (36), are exactly the 2-dimensional unirreps listed in the same equa-
tions for the groups G,. This yields equivalent elementary band representations induced
from non conjugate maximal isotropy groups with a common z-axis, and belonging to the
same geometric classes: Dg, Dg, Dy or Dya.

There are 33 pairs of such equivalent band representations. They belong to 23 space
groups. They are listed in table 6. Note however that five of those pairs are implicitly
contained in iable 4.

89 = P422 ab Dy 5126 = P4/nnc ab Dy 5{163 = P3le cd Ds 3*
ed Dy 50129 =P4/nmm ab Dy 5| 177 = P622 ab D¢ 5
07 = J422 ab Dy 5{134 =P4/nnmab Dyy 5 Dg 6
111 = P42m ac Dgg 5| 137 = P4y/nme ab Dyg 5 ed Dy 3
bd Dyq 5| 141 =I4;/amd ab Dyg 5| 182 = P6322ab Ds 3
115 = P4m2 ad D,y 5| 149 = P312 ab Dy 3 cd D, 3*
bec Dy 5 ed Dy 3|210 =F4,32cd Dy 3*
119 =I4m2 ab Dy 5 ef Dy 3|212 = P4332ab Dg 3*
cd D,q 5(150 = P321 ab Dy 3| 213 = P4,32ab D; 3*
121 =J42m ab D,; 5| 155 = R32 ab Ds 3|214 =14,32 ab D 3
125 = P4/mccab Dy, 5|182=P3lm cd Dy 3
cd D2d 5

Table 6. List of the 33 pairs of equivalent elementary band representations induced from
two dimensional unirreps of non conjugate maximal isotropy groups belonging to the same
geometric class. These pairs belong to 23 space groups. The pairs marked with a * are
already implicitly contained in table 4. After the n® and the symbol of the space group,
the columns of this table give the Wyckoff positions, the maximal isotropy group and its
two dimensional unirrep.

Finally the one dimensional unirreps of the groups Gy listed in equations (34) and
(36) may induce a reducible representation of Gy. In that case the band representation
B(9+) ig not elementary. There are 40 such band represenntations induced from the 2-
dimensional unirreps of maximal isotropy groups listed in equations (34) and (36). They
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124 = P4/mce a Dy 5 | 188 = P62 a Dy 31211 =J1432 b Dy 5
a D4 5 C .D3 3 C D3 3

131 = P4,/mmce Dy b e Ds 31215 =Pi3m c Dy 5
f Dyg5 | 190 = P82¢ a Dy 3 d Dy 5

132 = P4;/memb Dgg 5 [ 192 = P6/mcc a D¢ 5 |217 =I43m b Dy 5
d D2d 5 6 222 = Pn3n b D4 5

139 =I4/mmm d Dy 5 ¢ Dy 31223 =Pm3nc Dy b
140 =I4/mem a Dy 5 | 193 = P63/memd Ds 3 d Dy B
b ng 5 {207 = P432 c .D.; 5 € D3 3

163 =P3lc a D; 3 d Dy 5224 =Pn3md Dy 5
165 = P3cl a Dy 3 |208 = P4,32 b Dg 31226 =Fm3cc Dy b
167 = R3¢ a Dy 3 ¢ Dy 3 (228 =Fd3c b D3 3
210 = F4,32 c Ds 3 (2290 =Im3md Dy 5

d Ds 3230 =1Ia3d b Dy 3

Table 7. List of the 40 bands representations induced from unirreps of maximal isotropy
groups and not elementary; they belong to 25 space groups. After the n° and the symbol of
the space group, the columns of this table give the Wyckoff position, the maximal isotropy
group and its two dimensional unirrep.

belong to 25 space groups. They are listed in table 7. They are the only counter examples
to the converse of lemma 1.

This ends our systematic search for equivalences of band representations induced from
unirreps of maximal isotrpy groups, and proves the:
Main Result. All band representations induced from unirreps of maximal isotropy groups
are elementary, except for the 40 of them (listed in table 7), and inequivalent except for
152 pairs: 57 at the same site (listed in tables 2 and 3) and 95 at inequivalent sites (listed
In tables 4,5 and 6).

The same study can be performed for dimension 2; it can be useful in surface physics.
_All the 132 band representations induced from the inequivalent unirreps of the maximal
1sotropy groups are elementary and inequivalent but one pair of them.

4 'Final remark. It is not obvious that the mathematical equivalence (i.e. the existence of an
ntertwining operator) found for the elementary band representations always corresponds
to the needs of physics. Indeed it is physically natural to choose a basis which diagonalizes
the translations; then the basis functions are the Bloch functions: they are obtained by
taking the Fourier transform of the electron wave functions over the translation group,
80 they are defined over the Brillouin zone B. Of course this procedure is rigourous only
With the use of Born von Karman groups; for the infinite space groups the Bloch functions
re not basis of the Hilbert space # carrying the band representation but they are basis
of the finite dimensional integrand whose H is the direct integral on B. Then, in this

asis, there does not exist an intertwining operator between some pairs of equivalent band
Tepresentations (except if we consider “generalized” Bloch functions defined on a double
Covering of the Brillouin zone). The equivalence for which we can find an intertwining
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operator (whose elements are in general continuous functions on B) are those of tables
2,6 and also 7; this corresponds to 23+33=56 pairs of equivalent representations. For the
other pairs of mathematically equivalent elementary band representations, we can say that
they have the same continuity chord but they seems to us physically inequivalent (for more
details see [5]).
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NOTE ADDED IN PROOFS.

At the Varna meeting we heard of the existence of the recent tables (in Russian):
“Irreducible and induced representations and corepresentations of Fedorov groups”.
Nayka, Moscow 1986, made by 0.V. Kovalev.

We also learned of the following references:

Burneika and Levinson, Tr. Akad. Nauk Lit. SSR, Ser. B 4, 21 (1961).

Kovalev O.V., Fiz. Tver. Tela, 17, 1700 (1975).

As an historical remark, in ref. 3,c(1982), Zak showed that all elementary band represen-
tations (called there,“irreducible band representations”) are obtained by induction from
maximal isotropy groups and he had already found (ref.3,b) that some of these BR (band
representations) could be equivalent (his table V column (a,3)=(h,3) for group 227 =
Fd3m, ab, Ty(3)). Evarestov and Smirnov, in ref. 4,b(1984) found among these same BR,
the first example of non elementary BR (for them “non simple”): 167 = R3¢, a, Dy(3)-



