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I I n t r o d u c t i o n .  
How can we make such a classification? One has to choose a group G acting on the set of ODE 
(ordinary differential equations). The stabilizer G~ of the equation 6 = 0 is its symmetry group. 
The equations of the orbit G.£ have "same symmetry": their stabilizers are conjugated to G~. 
More generally, the union of the orbits with stabilizers conjugated to Ge form the stratum of 
ODE with symmetry G~ (up to a conjugation). Such a classification of ODE symmetries was 
implicitly carried by S. Lie at the end of the last century. The number of strata is infinite; but 
we shall explain how they can be obtained, summarizing Lie's work (only a small part  of it is 
preserved in text books) and adding some recent contributions. 

In the X I X  ~h century, analytic transformations: 

~ X ( , , y ) ,  y ~ Y ( * , y ) ,  i(1) 

were applied to ODE in order to bring them to a simpler form: when possible to a form whose 
solutions are known. The order of ODE is preserved by transformations 1(1). More general 
transformations were also considered, for instance to decrease the order of equations. Soon 
groups of transformations were considered: for instance LODE (linear ODE) are transformed 
into themselves by the subgroup G ~ depending on three funct ions/ ,  h, s of z: 

X = / ( ¢ ) ,  Y = hC~)(y-  s(~)). 1(2) 

It was also well-known that LODE of order 1,2 form respectively a unique orbit of G': any 
such equation can be transformed into yl = 0, y" = 0 respectively; however the corresponding 
transformations are built from solutions of the starting equations: indeed, for the second order 
inhomogeneous equation, choose one solution for s(z) and h(¢) = u(z) -i, /(z) = v(z)u(z) -i 
where u, v are linearly independent solutions of the homogeneous equation. 

For LODE's of order n > 2, from their coefficients, Laguerre, Brioschi, Halphen, Forsyth 
and others built G'-invariants (labelling the group orbits for small n's). LODE can be written 
with the coefficient c ,  of the term y(") equal to 1. It  was well known that the coefficient c,,_l 
of the term y(,-1)  can be made zero by the transformation X = ¢ , Y  = yexp(~ ~'_~ c,,-l(~)dt). 
So any order n linear ordinary differential equation can be written: 

n--2 

k=0 

In 1879, as a by-product of his study of invariants, Laguerre [1] showed the existence of a 
diffeomorphism, which does not require the knowledge of the solutions of 1(3), and transforms 
to 0 the coefficient c,_~ in equation 1(3). Indeed, in 1(2) make ~(¢) = 0 and define f(~),  h(z) 
from the function 8(=), a solution of the equation: 

( , : l )  0" + cn- ,0  = 0, f ' =  0 - ' ,  h =  0 i- '*. I(4) 

Beware that  the set of LODE with constant coefficients is not stable under such a transformation. 
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2 L i e ' s  w o r k  o n  t h e  s y m m e t r y  o f  d i f f e r e n t i a l  e q u a t i o n s .  
Soon after, Lie published a series of  four papers  classifying all ODE's  with a given symmet ry  
group [2]. His a im was to extend to differential equations the Galois theory of polynomial  
equations. This extension cannot be  completely carried through but  this is stil l  present ly  a 
topic in mathemat ics .  However Lie obtained many  results,  thanks to his powerful differential 
method  using Lie algebras! 

Transformations 1(1) form DhT2(z,y), the group z of  analyt ic  diffeomorphisms act ing on 
the 2-dimension space of the complex variables z, y. This group act ion can be extended to the 
functions y(z)  and their  derivatives. The Lie algebra Diff,~ of Diffn is the algebra of vector  fields 
E ~ ' ( ~ , . . .  ,~")o,, (o, i~ a short for ~ )  whose Lie bracket i,: 

t j ~j 

The act ion of the Lie algebra Z)iff~(z,y) on ttl'e successive derivatives y~, #~ , . . .  ,y(~) of the 
function y(z )  is given by the Lie algebra homomorphisms 

where YI, Yz, Y~, . . . ,  Yh, . . .  are the derivative of y(z)  = Y0 considered as independent  variables. 
Given a vector  field 

= ~(~,~) o= +,7(=, ~) o=, 2Ca) 

pr~(~) is called the n th prolongat ion of  ~. 
Consider a basis {~'a}, 1 < a < m of a m-dimensional  subalgebra g C Z)iff2(z,y). This 

algebra G is a symmet ry  algebra of the order n equation 

¢(x,y, y~, y2, . . . ,  ~,) = 0 2(4) 

i f  the n Jr 2 variable function £ satisfies the sys tem of  m linear pa r t i a l  differential equations =: 

prn(~)a)£ = A(z, y, Y t , . . . ,  Y,)£ = 0. 2(5) 

Since the pr,,(V=)'s form a basis of a Lie subagebra of Z)iff,.,+2(z,y,yz, . . .  ,y,~) of dimension n 
this sys tem is integrable.  We will give more details in the next  section. Lie extended his theory 
to pa r t i a l  differential equations and considered also the symmet ry  of differential equations under  
mfinitesimal contact  t ransformations:  

~iffs(~, y, ~ )  .~ Dif~,,+~ (=, ~, y~, y= , . . . ,  y,) 2(~) 

so useful in classical mechanics and used for years before in their  integral  form. Lie theory is 
explained in many  textbooks:  recent ones are [3] [4] [5]. They deal more with pa r t i a l  differential 
equations and,  mainly  [5], with generalisations of  the  symmetry.  Except  for the beginning of 
the next  section, none of  the mater ia l  of this lecture can be found in the text  books a. About  

1 In his contribution to these proceedings, A. Kirillov explains the existence of different such groups, with 
different topologies. Moreover one needs that the functions X(z, y), Y(z, y) be defined only locally, around a 
regular point of the  coefficients of the ODE.  So one should consider pseudo-groups or, simply, local Lie groups. 

For lack of time, these technical points (ignored by Lie) cannot be discussed here. 
2 W e  consider ~ (z ,  y, yt~ . .  • ,Y~*)£ "~ 0 ~,nd £ ---~ 0 as the same equation; using 2(4) we  can write the second 

members  of  the equations 2(5) as 0. 

3 and ~Iso in the  lectures given in previous ICGTMP by H~mermesh,  Olver,  Winterni tz .  
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ten years later Lie proved [6] that the dimension d of the symmetry algebra of an ordinary 
differential equation of order n satisfies: 

d < n + 4 f o r n > 2 ,  d < 8 f o r n = 2  2(7) 

(d is mfirdte for n = 1). For the order n, the maximal dimension of the symmetry algebra 
is reached by the equation y('~) = 0. During the same period Lie published [7] the list £ of 
equivalence classes (under the adjoint action of Diff2) of the finite dimensional Lie subalgebras 
of ~Diff2. Implicitly this yields the classification of symmetries of ODE since we have the list £ 
of strata and, as explained in the next section, for each finite dimensional subaigebra ~ C ~Diff2 
one can find all ODE invariant by G. 

3 O D E  wi th  a g iven  s y m m e t r y  a lgebra .  
Equation 2(5) gives the system of ra linear partial differential equations that must satisfy an 
order n ordinary differential equation £ = 0 which has the m dimensional subalgebra ~ C 9iff2 
as symmetry algebra. We need now to give the explicit form of the n th prolongation of a vector 
field ~ (see [2J-X) or any text book on the subject: 

pr.(V) = ~0= + n[~]Su,, with r/[k] = (0 - Yt~) + Y(h+~)~, 3(1) 
k=O 

where ~ is the total derivative: for a function ~o(~, y) 

d 
~ = ~ .  + ~1 ~ .  3(2) 

One verifies that the ~'s satisfy the recursion relation: 

We give here the first two rfs: 

d ~[kl = r/[k-ll _ yk~_~.~. 

~I~J = ~ + y ~ ( ~  _ ~ )  _ ~ ,  3(3)  

,/~J = ,~ . .  + ~ ( 2 ~ . ~  - ~ . . )  + y ~ ( , j ~  - 2 ~ )  - ~ + y ~ ( ~  - 2 ~ . )  - 3 y ~ y ~ .  3(4)  

Equation 3(1) shows that ~7 Ih] is a polynomial in y~, 1 < i < k; indeed the terms in Yk+l cancel. 
The number of terms of r/| k] increases very fast with k (17,29,47 for/a = 3~4, 5) and t h e r e  are 
computer programs for determiulng them. However some families of their coefficient can be 
given in a compact form. Writing the polynomial as: 

PI J>~ ,..* ,P t j 

we have found for instance : 

(see also [8] equation (10)for other general terms). 
For a Lie subalgebra of ~Diff, one has to distinguish between its usual dimension (linear rank 

of its elements for linear combinations with constant coefficients) and its functional dimension 
(linear rank of its elements for linear combinations with function coefficients), which is its di- 
mension as a Lie algebra over the ring of functions. From the theory of systems of linear partial 
differential equations one knows that the most general solution of 2(5) depends of n + 2 - m I 
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arb i t ra ry  functions, where rn' is the functional dimension of the Lie algebra pr , (Q) .  Assume 
m'  = m = n + 2 ;  then a ~-invariant  differential equation is given by the Lie determinant  ([2]-X,p. 
245): 

• . ,1 a1,,,_1 e ~,,1 o~,~ \ 
A =_ I ~'a'e: ~,a~,e: ~lia~le'"~7~"-lia~"~-le~"la~"e[: .. : : = o. 3(7) 

" m . ]  " 

 o+ o.e . . .  

-["] a e ] \ ~,,+2 O= e n ,+2 a~ e -,+2"[I] 0 ~  e . . .  ~"+']i] 0~ ._~  ~ . , ,+2 ~ ,  - 

For n = m '  - 2 -i- k, k > I Lie denotes each solution which appears  for increasing values of n,  
b y  ~1(z,~,yl,... ,Y,,,-I), ~.(z,y, y1,... ,y,,,),..., ~ ( z , y , y ~ , . . . ,  Y , , , -2+~) .  

From the recu~sion relat ion 3(3 / one can prove [5], eq.(2.92): 

= + v',,+,(,,1) 3(8)  

So, when aa-~= = 0 one can choose ~os = ~ a { ,  . . . ,  ~ h  = ~ a h - 1 .  In  the general case 4: 

d~2 {d~l ~-I d ~ - i  d~t _~ 3(9) 
~ = -j~-,-~-, ,.,~ = ~--V-(-~-) 

This means that with the solutions of the system 2(5) for/¢ = 2, one can build up to an arbitrary 
order the general form of the ODE with a given symmetry algebra. Lie gave many examples; 
we give here three of them s . 

: {O:~,zO~,,z ~ O=,O~, you,  ys ~ }  ,,~ ,qL~ X ~L~; then r~' = m = 6 and the  Lie determinant  
gives the th i rd  order invariant  equation: 

3 
e - m~ - ~ ~ = o, 3 0 0 )  

Beside this equation, all ~-inwriant ODE of order n >_ 5 are of the form ~ .  = 0, with f~n an 
arbitrary functions of ~o~, 1 < ~ < n - 4; with the notation ' for the total derivative e: 

= (~11 - l e ,  ¢~1 "~" (4S8"  -- ~.~'~1~{ - s ,  (~2 = ( 4~ '9 ' , ,  -- 185~ ' 8 "  -{- lSS 'S)~- -9 /2 ;  3(111 

the other ~k 's  are computed according to 3(9). 
Q = {@ffi,O~,z@f,y~,y~,mO~,zD, yD} with D = mOf+yO~; so Q .~ ~Ls .  Then 

A ~- - 2 y s u  s = 0 with u = 9y~y5 - 45~/s~/sy4 + 40y~ 3(12) 

yields two invariant  equations: y" = 0 and a fifth order one: u = 0. The  expressions of ~ ,  
i = 1,2 given by  Lie would take one page 7 i So we skip them. 

= {u= ~ } ,  1 < ~ < m > 2, with the u= linearly independent ,  i.e. the  Wronskian w(u=) ~ 0. 
So ~ is isomorphic to a m-dimensional Abelian Lie algebra. Then m' = m- 1, which implies that 
the Lie determinant va,!sh identically. The u~'s are solutions of the linear differential equation 

mo = 0, 3(13) 

4 LIE [2]-X,p. 247 obtained heuristically relation 3(9): in his very short  proof, one step is incorrect. 
S Their choice will become clear in the two next sections. 

6 This example is in [2]I,section 2.12, bu t  with the Lie's implicit remark in [2]II-1.9 tha t  the expressions 
he introduced are successsive total  derivatives of m ,  

7 Using total  derivatives, probably they could be greatly simplified. 
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where: 

So the ODE of order m + k, invanant by 

. . .  | 
; " ' ,  " / 

~. . . .  ~(m-~) ~(-~+0/ 

~, are of the form s 

s( 4) 

= o, 3(15) 

As a trivial application of this powerful method, for the one dimensional symmetry algebras 
generated by 0= (respectively, a~, ~; 0u) we obtain the obvious result: the invariant ODE £ = 0 
do not depend explicitly on x(resp, y,.~/), i.e. 0=£ = 0, (resp. 0~£ = 0, 0~, £ = 0. Since an one 
dimensional subalgebras of vector fields are equivalent, any ODE with a non trivial symmetry 
algebra can be put under one of these forms. 

4 S y m m e t r y  a l g e b r a  o f  a n  ODE;  exam pl e s  of  L O D E .  
The previous section sunn-narizes Lie's paper [2]I; the three other papers were essentially devoted 
to the (eventually partial) integration of ODE with given symmetry algebra. The paper [2]-I 
also gives implicitly a method for finding the symmetry algebra g ~e of a differential equation 
e = 0. This technique is explained in detail in text books and powerful (interactive) computer 
programs have been developed for solving this problem, although an explicit expression for ~e 
often requires solving the equation! Lie knew that the symmetry algebras of the LODE ~/(n) = 0 
are respectively, for n = 1, ¢ = {~(~,y) 0~ +~(.V) 0~}, for r~ = 2, ¢ = SLs given z0 in section 3, 
for n > 2, ¢ = .~,~ (1, ~, ~2 . . . ,  ~(n-t)) ~ ~L~, the center ~ ~ of the general linear algebra acts 
on A~ by dilatation while its shnple subalgebra SL2 (~z, 2z 0= + ( ~ -  1)y 0~, - z  2 0= - ( n -  1)zy 0v) 
acts through its (unique up to equivalence) n-dimensional irreducible representation. It seems 
that a general study of the symmetry of order r~ > 2 LODE has been done only recently [81 
[9]. Up to an isomorphism the subalgebra .An~.AI(~O~) belongs to the symmetry algebra of 
an LODE. This is easy to understand: given an order n linear differential equation £n = 0, 
we know that its solutions form a n-dimensional vector space, so the set of solutions {z~} (and 
therefore the equation) is invariant under the translations by the solutions: infinitesimally they 
are represented by the n-dimensional Abelian Lie algebra of vector fields Jt~ = {u0~}. Since 
the equation is homogeneous in ~, the symmetry algebra contains also ,41(~a~). We will now 
characterize the LODE with a larger symmetry algebra. 

Without loss of generality we write the order r~ linear differential equation in the form 1(3). 
To belong to its symmetry algebra, a vector field ~ must satisfy the equation: 

pr( )e  - + + = 0. 40) 

As we have seen, this is a polynomial in the independent varlablea ~/~ = ~/(~), I < ~ < s; to be 
zero, all coei~cients of its independent monomia~ must vanish. For instance, from the terras/n 

8 Note  t h a t  for a l l  vector  fields ~ = 0 and  t h a t  up  to  t e r m s  in  ~oa, the success ive  de r iva t ives  of too are the 

9 T h a t  is  the  s t ab i l i ze r  in  ~l~ii~ of  the  equation. 
lO Indeed  $L3  is the projective linear algebra ac t ing  on the  two d imens iona l  l i nea r  man i fo ld  of so lut ions ;  

here i t  ac ts  locally.  We reca l led  in  the  i n t roduc t i on  t h a t  a l l  order  2 L O D E  are  on the  s a m e  o rb i t  of Di f f . .  
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Y ~ Y . - z  and  Y l Y . - t  we obtain ~ = 0 and 7/#~ - n~= v = 0, so ~7~ = 0. With  these results we can 
write explicitly 11 the non vanishing terms of ~[k]: 

I=1 

Moreover we know a general form for ~, 7: 

= f(z), ~ = g(z)y + ~(~). 4(3) 

Using the expression 4(2) for ~[k] replacing y. by its value in £n = 0, interchanging the two 
sums on k,t and separating the term in Y.-t, equation 4(I) becomes: 

rt--2 
n--1 

L=0 

(:) () - " - =  " k ~ = , + , - , )  + ~ CkW=, = 0. 4(4) 
¢=1 k=£ /.=0 

The term in Y~-I yields: 
#, = . - t  . " - ~  f '  + K .  4 (5)  - ; - f ,  i.e. g = --f- 

So the functions f ,  u in 4(3) and the constant K in  4(5) are the only unknowns. The equations 
they satisfy are obtained directly from 4(4): 

/. = n - 2 : + 4 c . _ : f  + 2 c : _ ~ f  --  0 

(=) - - '  (:) (:), i < l < . -  3: ( .  - I - l) I p.+~-o + ~ ~ ( ( . _  i)  - I¢"+~-% 
k=l+l 

+2c~( . -  l ) f  + 2~ f  = 0 4(7) 

~-~( . -  1)ckf(k+~) + 2.~of ÷ 2 4 f  = O, ~(~) = O. 4(S - 9) 
k=l 

Equation 4(9) corresponds to the Abelian algebra ~4.({u}) and no condition is imposed on the 
constant K: this corresponds to the algebra .Ai(yO~). The symmetry algebra of the linear 
equation £. = 0 is strictly larger iff (=if and only if) the n - 1 equations 4(6-7-8) have at least 
one common solution. We verify that this is the case when the equation £ = 0 has constant 
coefficients: then f = constant is a solution. To study the general case we can assume that the 
Laguerre transformation 1(4) has been performed. Then equation 4(6) reduces to f" = 0, so 
the equations 4(7-8) have a common solution with it iff the following simpler system of n - 1 
equations 

I " '  = o, o < ~ < . -  3, (~ + ~)(n-  ~ - ~)c~+~" + ~(,~- Z)cJ' + ~c~f = o 4(zo) 

has non  trivial solutions. The first equation is of order three, that  with l = n - 3 is simply: 

3c._~f' ' + c._~i = o, 4(11) 

11 Use 3(1), begin by a partial derivative Oy on ~/, and continue with the condition to never use @y on ~ oI 
again on ~. 
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and the other  are at  most  of order two (depending on the values of their  coefficients 1. So the 
sys tem has three l inearly independent  solutions (the set of  polynomials  in • of  degree < 21, iiT 
all cl vanish: 
Theorem The symmetry algebra o[ an order ~ > 2 ~near dif[erential equation has dimension 
n÷ 4 J~ by the Laguerre trans/orrnatJon the equation reduces to ~(") = O. Then the synnnetry 
algebra is ,A~ >~ Q L2. 
This theorem has been s ta ted  in [9] in an equivalent form. In [8] we obtained a similar theorem 
with the condit ion tha t  the order r~ equation be i terative,  tha t  is of the  form: 

= L"[y] = L ~-t [L[y]] = 0 with L[~] - ~(=)~' + q(~)~. 4(12) 

Reference [9] gives a similar s t ructure  for the equation, bu t  in the  form 1(31: 

( . - 1 ) / 2  . . d2 
n odd : ~ d-~ + (2k)=c'~-2 ~ = 0 4(13' I 

i 
~/2 / \ 

n((% )) r~ even:  -1- ( 2 k -  1)2c._2 # = 0. 4(13") 
/ = = 1  - -  

I te ra t ive  equations 4(12 / have a set of  l inear independent  solutions of the form tLr=-l-kv/~, 0 _< 
k < n -  1; this is a well known form for building the irreducible representat ions of,SLz by  tensor 
symmetr ic  power from the two dimensional one with basis u, v. 

I f  after the Laguerre t ransformat ion the coefficients are not  all zero~ let k _< r ~ -  3 be the 
largest index of the non-vanishing ones; 4(10) shows tha t  the equation for l = k is a first order 

equation in f whose solutions satisfy / = L~c~/(h-n) where L;= is a constant  and,  moreover,  ~ a 
polynomial  of  degree < 2. This  shows tha t  the  dimension of the  symmet ry  a lgebra  of an  order n 
LODE is e i ther  r~ ~- 4 or  r~ + 2 or r~ -F 1, bu t  12 i t  cannot  be  r~ % 3. I t  is z= Jr 2 iff, for the  equat ion 
in the  Laguerre form, its coefficients satisfy the non tr ivial  equations of  4(10); explicitly: 

.f=A= 2+Bz+C, k < t < n -  3, cz = O, ck = K k / k - " ,  

/; 0 _< ¢ < k, cL = .f~-"(KL + A(¢ + 1)(n - l - 1) cL+l ( t ) / '~-~- l ( t )dt) .  4(14) 

We can prove here a simpler 
T h e o r e m  If" the symmetry algebra  o£ an order  n Jinear o rd inary  d J ~ e r e n t i a / e q u a t b n  has 
dimension n-i-2, this equation can be t ransformed into  a Jinear d~lTeren~JaI equat ion w~th constant  
coefJ~cients. 
We have al ready proven (see 4(3-4)) tha t  the s~n~netry algeSra has the structure:  ~ . ( ~ ( = )  0~) > .  
~4=(~, ~1 with ~ = f(z I ~= + ~ f'y~ which normalizes the subalgebra ..4.(u(z I @~) where 
the u's are the solutions of the equation. The linear ordinary differential equation 1(31 with this 
symmetry a1~ebra is transformed by the dhTeomorphism of type I(2): 

1" x = I ( t ) - l e t ,  Y = ~r(=), with r = f - ( '~ -~ '2  4(lS) 

into another one with s etry atgebra 0 =   4 (rOr,Ox) where 
z = ~(X) is the inverse function of X(z) in 4(15). In the symmetry algebra the term in Ox shows 

12 This result is g iven  in [9]. Although the contrary has s o m e t i m e s  be  st&ted, a non llnee~rlz~ble differential 
equation of order w m~y have ~t symmetry e/gebza of dimension n + -~: this is the case for the equation u = 0 
With ~ = ~ in 3(12). 
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that the new linear equation has constant coefficients. In :Diffz there are many non isomorphic 
subalgebras ~ as defined above: by a suitable basis in ~ the linear map induced on it by ax  
can be put in the form of a Jordan matrix whose trace can be removed by a suitable combination 
with the multiple of the identity operator Y a r .  So the generic family has n - 1 parameters of 
isomorphic classes. 

To summarize: there is an infinity of strata for the LODE of order n > 2, and equivalently 
an infinity of Lie subalgebras of :Diff~ containing a ,4n algebra. For the Lie algebras Jr,, and 

:>~ ~41, this last factor acting by dilation on the first one, the equivalent classes are labelled 
by r t - 2  arbitrary functions, and this is also true of the strata of the generic LODE: the functions 
are their coefficients in the Laguerre form. There are n -  1 parameter families of order n LODE 
strata with a r t  + 2 diinensional symmetry algebra. Finally, as we have seen, the order rt LODE 
with rt + 4 dimensional symmetry algebras form a unique orbit (and stratum) of Diff2; their 
symmetry algebra class: W ,  = An :>aGL2 are maximaJ finite dimensional subalgebras of ~iff2. 

5 T h e  equivalence classes o f  finite dimensiona]~ algebras  o f  Diff2. 
As we explained at the end of section 2, the publication by Lie [7] of the list £ of equivalence 
classes (under the adjoint action of Diff,) of the finite dimensional Lie subalgebras of 2)iff2 
completed implicitly the problem of the classification of symmetries of ODE since we have the 
list £ of strata and, as explained in section 3, for each finite dimensional subalgebra ~ C :Diff2 one 
can find all g-invarlant ODE. Classification of finite dimensional Lie algebras was just beginning, 
but Lie used very cleverly the concept of primitive and imprimitive actions (the latter transform 
a given family of curves into themselves) of equivalence classes of finite subgroups of Diff 2 on 
the plane z,y.  Indeed these concepts are very relevant to the problem~ As we have already seen 
from some examples in the preceding section, this list £ is infinite. Remark that £ is a partially 
ordered set (by inclusion of subalgebras up to conjugation in Diffz). Of course, with the results 
we now know on the structure and classification of finite dimensional Lie algebras, this list can 
be obtained faster Is. This will be done in the companion snmrner school (at Rachov, Ukraine) 
and will be published in its proceedings. Here we just give the essential results; most of them 
are given in tables 1,2 and diagram 3. 

ad d 

type 
[a ^ b] = 0 

dim ~t 
d ime( f )  

[d ^ a] = a 
[d ^ b] = ~b 

2 
0 

('0 
•¢2J1 

[d ^ ~1 = a 
[ d A b ] = a + b  

2 
0 

o) 

[d ^ a] = 
[d A b] = 0 

1 
1 

(o lo) 

,/~2 ,1 
[~ ̂  ~] = o 
[d ^ b] = 

1 
1 

(o 

[d ^ =] = 0 
[d ^ b] = 0 

0 
3 

Table  I Types (=Isomorphism classes) of non simple 3-dimensional Lie algebras. 
The symbols  8,.~" means  respectively solvable, ni lpotent  Lie algebras; their first index is the  dimension of the 
maximal  Abelian ideal and the  second is the  dimension of  the  corresponding quotient .  There is an  infinity of  
types "q~tl ~'~ S1/;~ ~,1 so we assume here 0 < l~l < 1. A(2,I is the Heisenberg algebra of center  a. 

13 Also the  results  c~n be given with greater precision. Instead of  giving the  llst ~,  Lie gives examples  of  

subalgebre.s, he is somet imes redundant  and  it is not  ~]w~ys obvious how to construct  the  partial  ordering of ~: .  
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T h e r e  a re  (29 + three one parameter families) equivMence classes of Finite dimensional ~ i f f  = 
subalgebras which do n o t  contain a three dimensional Abelian algebras; t he se  c/asses  a re  those 
of  t he  subalgehras of  S Z , x 5 L, and 5 La. T h e  two corresponding classes [ I L~ X 5 L= ] and [SLy] 
are m a m m a l  in  £ .  T h e  p a r t i a l l y  o r de r ed  se t  of  t h e s e  equ iva lence  classes is g iven  in  d i a g r a m  3. 

T h e  n o t a t i o n s  a re  exp l a ined  in  t h e  p r ev ious  t ab les .  

[{~] [,,42] + [ .42]-[SI,z] + [Sl, l]- b,h. c,d,e+ centrallzerC normalizerH 

[.4~]+* • o~ ~(=)o~, ~"(=) # o ~C~(~ )o~ )  ~ i~bl~  

[s~]+ 1 oo x O~ -0 + ,Xx o= 4~(x(1-~) - '  0~) .43 x .4 ; -  

[s~,l]+ z ~o oo ~ o~ -D AI(~ o~)o [sf,~ • sc, d 

[s~,l 1+ 1 oo = o~ - , j  o~ o [z~d 

[s~,t- , oo o. - (a=  o= +yo~) o [s,+~ e s~ j  

[N,~]- * o= -(= o. +~ o~) o Hfr=]- 

[S~,l- ~ o,  - (~o=+ (~  + ~)o~) o [sl,,,,] 

i [~ , , ]  oo ,jo= o= ~ , (o , )o  ~ >~(so,,) - 

sL,]+ too 12vo, -v=o~ ~ i a ( = )  c e g  

tsL=]- oo 12D -v(~.~o=+~o~) ~tz(= o=) ce~  

sz.2] ° oo t 2D -2=~jo= -(=~ + ~=) O~ o 

T a b l e  2.  E(  u i v a l e n c e  d a s s e s  o f  t w o  a n d  t h r e e  d i m e n s i o n a l  s u b a l g e b r a s  o f  Di/e.{, ( z ,  tJ). 
The first column lists the conjugation classes of the three dimensional subalgebras. There is an infinity of 
equivalence classes for algebras .A3; they are l~belled by -F and the function ~. In lines 2 and 6 there is an infinity 
°f isoluorphism types; they are labelled by the parameter A ~ 1, 0 < IAI < 1 snd they are defined in t~ble 1. 
The columns 2,3,4,5 give the incidence of the four equivalence classes of two dimension&l subalgebras into those 
of dlraenslon three. A typical representative eubalgebra is given by a basis of three vector fields: a or e_ = 0~; 
the two other generators are given in columns 6,7: D is a short for z 0= +~0~. The last two columns glve the 
centralizer and the normalizer in :Diff(z~ ~/) of e~.ch subalgebra (the upper index ¢ indicates thl~t the centralizer 
iS the center). 
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One can be astonished that Lie did not invent the simple concepts of centralizer and nor- 
malizer of a subalgebra. For example, isomorphic subalgebras of ~Diff= cannot be equivalent ff 
their centralizers and normalizers (respectively denoted by C~ifr=(~) and A/'~ier2(P) ) are not 
isomorphic. The centralizers are easy to compute and, in general, it is not difficult to compute 
the norrnalizers (recall that ~ and C~)tfr=(~) are ideals of Af~i~r=(~)). For the subalgebras of 
GL2 x SL2 and G/Ss, their equivalence classes in ~Piff2 are separated by the isomorphism classes 
of their centralizers and normalizers. 

All one dimensional sub algebras of~)iff2 are equivalent; this class is denoted by [v41]. There 
are two isomorphic classes of two dimensional algebras, one Abelian: v42 and one non Abelian: 
Sz,z (S is for solvable), with commutation relation [a, b] = a. Each of these two isomorphic 
classes has two equivalent classes in ~)iff2 depending on whether the functional dimension of the 
subalgebra is I (upper index +) or 2 (upper index - ) .  We give here an example of a subalgebra 
for each of these four classes: Jt2(@f,y@=) E [~L=] +, Ft~(O=,O~) E [Jt2]-, 8t,~(@e,m a,) E [Sl,t] +, 
s~,~(o.,= a= +z,o~,) e [,s~,~]-. 

Table 1 gives the isomorphy classes of non simple Lie algebras of dimensions 3. The nilpotent 
algebra A/2,1 is also called the Heisenherg algebra; its commutation relations can also be written: 
[a,c] = 0 = [b, c], [a, b] = c. There is one simple Lie algebra of dimension 3: SL2; we can write 
its commutation relations: [h, e±] = +2e±, [e+, e_] = h. 

Table 2 gives the equivalence classes of the 3 dimensional Lie subalgebras of Diff,, their 
centralisers and normalizers. It  also gives the partial order relations between 2 and 3 dimensional 
Lie subalgebra eqtdwlent classes. . ........... 

s [srs] 

s [ax,= x aL=] ~ , ] +  

4 [¢L~]+ 

3 is / 2 ] -  

D i a g r a m  3. Partial ordering of the equivalence'"classes of ~Diff2 subalgebras (of' dimension > 3) 
which are smaller than the two maximal classes: [SL2 X SL2] and [SLs]. 

The four direct products in diagram 3 as well as [~L2] + = [.A1 × SL2+], have one factor in 
2~iffl(z) and the other in :Diff=(y). Vie introduce a new family of 4-dimensional algebras: 

[a,b] = c, [~, c] = [b, c] = O, 
.-.~2,~(~,b,c):~X~(d) : [4~] = c, [d,a]= ;~a, [d,b] = (i - ~,)b. 8~, ,I ,1 s(~) 
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1-A One verifies that 8~,t, z and 82,1,1 are isomorphic but inequivalent; however, for each value of 
A (in the complex plane) there exists s unique equivalence class that we denote by [8~,1,z]. A 
representative of this class is: 

(a = a~, b = N0=, c = a=, d = - (=  a=+Aya~)> e [S~,1,1] 5(2) 

As we saw in section 3 (before 3(12)) a natural representative of the class [S/;8] is: 

s L3  = ( a = , a , , = a = , y a , , = a ~ , ~ a = , ~ D ,  yD)  with D = ~a® + y a ~ .  5(3) 

with the natural gIz- subalgebra: 

eL=- = ~t1(D) × SL2-(~ 0., = 0~, = 0. -~ 0~). 5(4) 

The Bore/subalgebra (=ma~mal solvable subalgebra) of SLs is denoted by Bs; it is generated 
by the first five terms of 5(3). The affine algebra .A~ff2 is a maximal subMgebra which belong 
to two classes:[.Aft2] ~F = [~4~ >~gL2-] corresponding respectively to the classes of stabilizers of 
points and of lines in the projective plane (indeed SL3 ~ t PL= ,  the special projective linear 
algebra in dimension 2). The two classes: [fl2f~] ~F are exchanged by the outer automorphisms 
of 8Ls; their representatives in 5(3) are generated by the first (respectively last) six generators 
of this equation. 

6 T h e  s t r a t a  o f  o rde r  2 ODE.  
The classification of the symmetries of order 2 ODE has been given by Tresse [10] in 1896 from 
the study of their differential invariants. This even classifies the orbits, and Lie in [2]-III had 
already given a characterization of all order 2 ODE on the orbit of the linear ones (for a more 
precise formulation see e.g. [11]). To conclude this lecture we apply the general sections 2,3,5 
to order 2 ODE. This yields very fast the complete list of their strata. 

From 3(15) we know that the symmetry algebras of o~ler 2 ODE do not contain an Fts, so 
they be2ong to equlva2ent classes of dim 0,1,2 and those of diagram 3. Consider an arbitrary 
second order differential equation: 

and let Qz be its symmetry algebra. With the prolongation of vector fields, equation 2(5) yields: 

O~/E gg ¢#w~= O; toy  E ~Z ~ zwy-l-wy~ =0; yt)yEQz,~z~w=ywy+ylWyz. 6(2) 

With these relations we obtain: 

~=(a~, = a~) + e ge  * ~, = ~(=),  s , (a~ ,  v or) + e ge = ~2 = ~(=)~ + #(=); 6(2) 
i.e. the equation is linear and~ as we have seen, its s~ mmetry algebra is SL3. All those results 
can be summariezd in the 
L e m m a  Outside S i s ,  the symmetry algebra of  an ODE of  order 2 cannot belong to an equiv- 
a2~nce clas, >_ [~t=]+ or _> [a~,~ ]+ i~ z. 
From table 2, we see that the only possible ~ of dimension 3 are 

[s~,~]-,~ ¢-0, [s~,]-, [ s~ ] - ,  [s~,] °. 6(3) 

Diagram 3 shows that there are no larger symmetry algebra classes outside [SLs]. 
Of course "nearly all" second order ODE have no symmetry, but in practical problems we 

meet mainly equations with symmetry, this property helping to solve them. The equations of 
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the PaJnlev~ Gambier transcendentals are examples of order 2 ODE without symmetry; another 
family of examples is: 

~ = o :  .~ # - 3 ,  ~ = Ay ~ + / ( ~ ) ,  f # c ,  # C(~ + K)  2~ / ( I -~ ) .  6(4) 

For order 2 ODE, even a one dimensional symmetry algebra allows the integration of the 
equation; indeed this algebra can be transformed into ~dz(0=). By a B.iecati transformation 
X = y , Y  = Yt (which is not in 7)iff2(~,y)) we can decrease by one unit the order of the 
equation (it becomes Y Y '  = w(X, r ) ) .  

For each strata with non trivial symmetry we give examples of equations: 

I-2A 
~[sh]-,:~#o,~,l ,2: y..=cy~ -r:r, ~ F L ] - :  ~,=c~-,. 6(8,9) 

;~ ~ [SLq °, ~,. = ~ ( 3  - ~ + Cyi-~/')(= - ~)-~, 6(10) 

Ge E [SL2]- : Y~ = (Y~ + C)(2Y) -1, ~e E [SLa] : linear equations. 6(11.12) 

We leave as an exercise to the reader the listing of the strata (with examples of equations for 
each stratum) for a given order n >_ 3 of ODE! 
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