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1 Introduction.
How can we make such a classification? One has to choose & group G acting on the set of ODE
(ordinary differential equations). The stabilizer G¢ of the equation £ = 0 is its symmetry group.
The equations of the orbit G.£ have “same symmetry”: their stabilizers are conjugated to G¢.
More generally, the union of the orbits with stabilizers conjugated to G¢ form the stratum of
ODE with symmetry G¢ (up to a conjugation). Such a classification of ODE symmetries was
implicitly carried by S. Lie at the end of the last century. The number of strata is infinite; but
we shall explain how they can be obtained, summarizing Lie’s work (only a small part of it is
preserved in text books) and adding some recent contributions.
In the XIX*®" century, analytic transformations:

T - X(:c,y), Yy Y(z,y), 1(1)

were applied to ODE in order to bring them to a simpler form: when possible to a form whose
solutions are known. The order of ODE is preserved by transformations 1(1). More general
transformations were also considered, for instance to decrease the order of equations. Soon
groups of transformations were considered: for instance LODE (linear ODE) are transformed
into themselves by the subgroup G depending on three functions f,k, s of z:

X =f(z), Y=h()y—s(=)). 1(2)

It was also well-known that LODE of order 1,2 form respectively a unique orbit of G': any
such equation can be transformed into ' = 0, y" = 0 respectively; however the corresponding
transformations are built from solutions of the starting equations: indeed, for the second order
inhomogeneous equation, choose one solution for s(z) and h(z) = u(z)™!, f(z) = v(z)u(z)™*
where u, v are linearly independent solutions of the homogeneous equation.

For LODE’s of order n > 2, from their coefficients, Laguerre, Brioschi, Halphen, Forsyth
and others built G'-invariants (labelling the group orbits for small n's). LODE can be written
with the coefficient ¢,, of the term y(") equal to 1. It was well known that the coefficient ¢p—1
of the term y(®) can be made zero by the transformation X = z,Y = yexp(l ; cn—-1(t)dt).
So any order n linear ordinary differential equation can be written:

-2

En= g™+ a(z)y™® =o0. 1(3)
k=0

In 1879, as a by-product of his study of invariants, Laguerre [1] showed the existence of a
diffeomorphism, which does not require the knowledge of the solutions of 1(3), and transforms
to 0 the coefficient ¢,.; in equation 1(3). Indeed, in 1(2) make s(z) = 0 and define f(z), h(z)
from the function #{z), a solution of the equation:

(":‘) 6" 4 cna@ =0, f'=072, h=g"" 1(4)

Beware that the set of LODE with constant coefficients is not stable under such a transformation.

+ Permanent address: Dept. Fisica, Pontificia Universidad Catélica de Chile, Casilla 6177, Santiago 22,
Chile
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2 Lie’s work on the symmetry of differential equations.
Soon after, Lie published a series of four papers classifying all ODE’s with a given symmetry
group [2]. His aim was to extend to differential equations the Galois theory of polynomial
equations. This extension cannot be completely carried through but this is still presently a
topic in mathematics, However Lie obtained many results, thanks to his powerful differential
method using Lie algebras!

Transformations 1(1) form Diffy(z,y), the group ! of analytic diffeomorphisms acting on
the 2-dimension space of the complex variables z,y. This group action can be extended to the
functions y(z) and their derivatives. The Lie algebra Diff,, of Diff,, is the algebra of vector fields
¥ ai(zt,...,2")8;, (0; is a short for %;) whose Lie bracket is:

[Doot0 3o p105]= 3 (a'(0:8%) - B(0:0)) 0. - 2(1)
i J ij

The action of the Lie algebra Diffs(z,y) on the successive derivatives y',3",...,5™ of the
function y(z) is given by the Lie algebra homomorphisms

Diﬁ%(”’y)ez‘ Diﬁ'n+2(2»y;yi,yz,-~-'yn) 2(2)

where 1, ¥2,¥s, .-+ ¥k, - - » are the derivative of y(z) = yp considered as independent variables.
Given a vector field

7= {(2,y) 0z +n(z,y) 8y 2(3)
Pr,(9) is called the n** prolongation of o.
Consider a basis {74}, 1 < a < m of a m-dimensional subalgebra ¢ C Diff2(2,y). This
algebra G is a symmetry algebra of the order n equation

8(“’,3/,311;312»--~,?n)=0 2(4)
if the n 4 2 variable function £ satisfies the system of m linear partial differential equations 2:
Pra(Ba)€ = Az, %, 41, -, ¥a)E = 0. 2(5)

Since the pr,(74)’s form a basis of a Lie subagebra of Diff,12(2,%,%1,...,¥n) of dimension n
this system is integrable. We will give more details in the next section. Lie extended his theory
to partial differential equations and considered also the symmetry of differential equations under
infinitesimal contact transformations:

Diﬁ'a(%:‘hyx) 'c—"’ Diffn-l'-z(w,yyylayh"':yﬂ) 2(6)

8o useful in classical mechanics and used for years before in their integral form. Lie theory is
explained in many textbooks: recent ones are [3] [4] [5]. They deal more with partial differential
equations and, mainly [5], with generalisations of the symmetry. Except for the beginning of
the next section, none of the material of this lecture can be found in the text books 3. About

1 In his contribution to these proceedings, A. Kirillov explains the existence of different such groups, with

different topologies. Moreover one needs that the functions X(z,y), Y(z,y) be defined only locally, around a
regular point of the coefficients of the ODE. So one should consider pseudo-groups or, simply, local Lie groups.
For lack of time, these technical points (ignored by Lie) cannot be discussed here.

2 We consider A(%, ¥, ¥1:...,¥n)€ = 0 and £ = 0 as the same equation; using 2(4) we can write the second
members of the equations 2(5) as 0.

3 and also in the lectures given in previous ICGTMP by Hamermesh, Olver, Winternitz.
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ten years later Lie proved [6] that the dimension d of the symmetry algebra of an ordinary
differential equation of order n satisfies:

d<n+4forn>2 d<8forn=2 2(7)

(d is infinite for » = 1). For the order n, the maximal dimension of the symmetry algebra
is reached by the equation ¥(*) = 0. During the same period Lie published [7] the list £ of
equivalence classes (under the adjoint action of Diff;) of the finite dimensional Lie subalgebras
of Diff,. Implicitly this yields the classification of symmetries of ODE since we have the list £
of strata and, as explained in the next section, for each finite dimensional subalgebra G C Diffy
one can find all ODE invariant by G.
3 ODE with a given symmetry algebra.

Equation 2(5) gives the system of m linear partial differential equations that must satisfy an
order n ordinary differential equation £ = 0 which has the m dimensional subalgebra G C Diffy
as symmetry algebra. We need now to give the explicit form of the n*® prolongation of a vector
field © (see [2]-X) or any text book on the subject:

n . d k
pra() = £0a + kz::on[k]au“ with ni*l = (2;) (n— né) + ye+n)é, 3(1)

where -“f—a- is the total derivative: for a function (z,y)

d
E‘:;‘P = P2 + NPy 3(2)
One verifies that the 7’s satisfy‘ the recursion relation:
d d
(6] o doll=1] _ 0 g 3
T = = vegé 3(3)
We give here the first two 7’s:
o = n + g (my — &) — 314, 3(3)

7 = Moo + Y1(2Nay — €ae) + ?/i!(”h/u ~ 28ay) — Z‘Iffw + y2(ny — 262) — 391126y 3(4)

Equation 3(1) shows that #*! is a polynomial in y;,1 < ¢ < k; indeed the terms in yj4; cancel.
The number of terms of nl*! increases very fast with k (17,29,47 for k = 3,4,5) and there are
computer programs for determining them. However some families of their coefficient can be
given in a compact form. Writing the polynomial as:

M =Prt Y Phiom. el uft with €<k, [[irs<k+1,  3(5)
P1.P2ssP2L 7

we have found for instance :

tp k ktl—t-p
2<iLk>3, PXth = ( . ) (t+p-1)( pron Ngh=t=p yp#1 — Egiti=tmp 3’)‘ 3(6)

(see also [8] equation (10) for other general terms).

For a Lie subalgebra of Diff,, one has to distinguish between its usual dimension (linear rank
of its elements for linear combinations with constant coefficients) and its functional dimension
(linear rank of its elements for linear combinations with function coefficients), which is its di-
mension as a Lie algebra over the ring of functions. From the theory of systems of linear partial
differential equations one knows that the most general solution of 2(5) depends of n + 2 — m'
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arbitrary functions, where m' is the functional dimension of the Lie algebra pr,(J). Assume
m' = m = n+2; then a §-invariant differential equation is given by the Lie determinant ([2]-X,p
245):

68,6 mo,e nle,e ... q4vte, e gMe, £
£0,6 md,E nla,e .. "’” ayn_ e oMoy, ¢
A= : : : . : : = 0. 3(7)
bnt102€ a1 Gy € ”&ii o€ ... ’Tg:ill 3yn—1 € :11-1 9y, €
bn42 028 Mas2 8y € "?iﬂ-z 8,€ ... nE:;;U 9y, . ¢ ngfiz 8y, £

For n=m'— 24k, k > 1 Lie denotes each solution which appears for increasing values of n,

by @1(2, 8,315 Ymi=1)s P2(& Uy ¥ts e s Ut )y oo P28 V1 -y Y —24)-
From the recursion relation 3(3) one can prove {5], eq.(2.92):

d _ (%€ d¢
T (Pra(v)d) = (52 + prava(v) o 3(8)
So, when %5— = 0 one can choose pg = -‘Lm, ceny P = d—(pk_l. In the general case :
dips depy d doy . _
Pz = —— m ‘pl)‘ = ";’;‘( ‘P‘)l 3(9)

This means that with the solutions of the system 2(5) for & = 2, one can build up to an arbitrary
order the general form of the ODE with a given symmetry algebra. Lie gave many examples;
we give here three of them ® .

0 = {0,,204,%% 82,0, y8,,¥* 8y} ~ SLy X SL3; then m' = m = 6 and the Lie determinant
gives the third order invariant equation:

3
E=yys - ¥ =0, 3(10)

Beside this equation, all §-invariant ODE of order n > 5 are of the form 2, = 0, with {1, an
arbitrary functions of ¢, 1 < k < n — 4; with the notation / for the total derivative %:

s=(n)"'E, ¢ = (438" —5s?)s73, = (4s%s" — 18ss's" + 155'3)s™%/2; 3(11)

the other ¢} ’s are computed according to 3(9).
G = {0.,0y,28:,y8y,y0s,28,,2D,yD} with D = 28, +y d,; s0 G ~ SL3. Then

A= -2yu =0 withu = 9viys — 45y yays + 40y§ 3(12)

yields two invariant equations: y” = 0 and a fifth order one: u = 0. The expressions of ¢;,
i =1,2 given by Lie would take one page 7 ! So we skip them.

9 = {ua8y},1 £ a < m > 2, with the u, linearly independent, i.e. the Wronskian w(u,) # 0.
So § is isomorphic to a m-dimensional Abelian Lie algebra. Then m' = m~1, which implies that
the Lie determinant vanish identically. The u,'s are solutions of the linear differential equation

wy =0, 3(13}
4 LIE [2}-X,p. 247 obtained heuristically relation 3(3): in his very short proof, one step is incorrect.
5 Their choice will become clear in the two next sections,
é

This example is in [2]I,section 2.12, but with the Lie’s implicit remark in {2]I1-1.9 that the expressions
he introduced are successsive total derivatives of m.
7 Using total derivatives, probably they could be greatly simplified.
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where:

v ou oW .. W™ u§"‘+f}
P A R S Y
we| s TR 314)
Um Uy Uiy oo uﬁ,f‘—l) uS,?‘""f)
y yl yn . y(m—l) y(m-i-x)
So the ODE of order m + k, invariant by G, are of the form ®
Qmar(®, wo, wr, ..., we) =0, 3(15)

As a trivial application of this powerful method, for the one dimensional symmetry algebras
generated by 9, (respectively, 8, ¢ 8,;) we obtain the obvious result: the invariant ODE £ =0
do not depend explicitly on z(resp. ¥,¥'), i.e. 8,& =0, (resp. 8,€ =0, 8, £ = 0. Since all one
dimensional subalgebras of vector fields are equivalent, any ODE with a non trivial symmetry
algebra can be put under one of these forms.

4 Symmetry algebra of an ODE; examples of LODE.

The previous section summarizes Lie’s paper [2]I; the three other papers were essentially devoted
to the (eventually partial) integration of ODE with given symmetry algebra. The paper [2]-I
also gives implicitly a method for finding the symmetry algebra 9 Ge of a differential equation
€ = 0. This technique is explained in detail in text books and powerful (interactive) computer
programs have been developed for solving this problem, although an explicit expression for Ge
often requires solving the equation! Lie knew that the symmetry algebras of the LODE y(® =0
are respectively, for n = 1, ¢ = {£(z,¥) 8= +1(y) 8y}, for n = 2, G = SL3 given '° in section 3,
forn> 2,0 = A.(1,2,22,...,2(" 1)) ><GL,, the center Ay 9, of the general linear algebra acts
on A, by dilatation while its simple subalgebra SL3(8a, 22 8, +(n—1)y 8, —z* 8, —(n—1)zy 8,)
acts through its (unique up to equivalence) n-dimensional irreducible representation. It seems
that a general study of the symmetry of order n > 2 LODE has been done only recently [8]
[9]. Up to an isomorphism the subalgebra A, >a.4;(y8,) belongs to the symmetry algebra of
all LODE. This is easy to understand: given an order n linear differential equation £, = 0,
we know that its solutions form a n-dimensional vector space, so the set of solutions {u} (and
therefore the equation) is invariant under the translations by the solutions: infinitesimally they
are represented by the n-dimensional Abelian Lie algebra of vector fields A, = {u8,}. Since
the equation is homogeneous in g, the symmetry algebra contains also A;(y8y). We will now
characterize the LODE with a larger symmetry algebra.

Without loss of generality we write the order n linear differential equation in the form 1(3).
To belong to its symmetry algebra, a vector field  must satisfy the equation:

n—2

pr(0)En = 17 + 3 (e + chéy™) = 0. 4(1)
k=0

As we have seen, this is a polynomial in the independent variables y; = y®*), 1 < k < n; to be
zero, all coefficients of its independent monomials must vanish. For instance, from the terms in

8 Note that for all vector fields ¢ == 0 and that up to terms in wg, the successive derivatives of wp are the

w;'s,
8
10

That is the stabilizer in Diff; of the equation.
Indeed SLj is the projective linear algebra acting on the two dimensional linear manifold of solutions;
here it acts locally. We recalled in the introduction that all order 2 LODE are on the same orbit of Diff;.
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Y2Yn~1 and Y1 Yn-1 We obtain &, = 0 and #,y — néyy = 0, 50 9y = 0. With these results we can
write explicitly '* the non vanishing terms of nl*l:

k
k k
0<k, &=0=my=>n" =n+ ;y'((t) Tlyat=t — (t~1) borams). @)
Moreover we know a general form for §,
£=f(2), n=g(z)y+uz) 4(3)

Using the expression 4(2) for n!*), replacing y, by its value in £, = 0, interchanging the two
sums on k,{ and separating the term in y,..1, equation 4(1) becomes:

n-2
-1
ny"“""(n"’v - "2 f-"ﬂ) + Z Ye (—Cl('ﬂu - fm) + C',EE"I‘
{=0
n—2 n x . n
+ Z Yt Z Ck(([) Myab=t — (t—l) E,,Hx—z) + ch%i =0, 4(4)
=1 k=4 40
The term in y,—; yields:
g = :;—l'f", ie. g= :Eif‘ + K. 4(5)

So the functions f,u in 4(3) and the constant K in 4(5) are the only unknowns. The equations
they satisfy are obtained directly from 4(4):

L=n-2: (”:‘) P+ denaf' +2¢,_,Ff=0 4(6)

1<<n=3: (n~1-1) (ﬂ;‘l) k1= 4 "z—:z cu((n—1) (’;) - (:1>))¢(k+1-z)+

k=1{+1
+2¢i(n—)f +2c;f =0 4(7)
D (n = 1) fRHY 4 2neof 4 2¢hf = 0, E(u) = 0. 4(8 - 9)

k=1
Equation 4(9) corresponds to the Abelian algebra A, ({u}) and no condition is imposed on the
constant X: this corresponds to the algebra A;(y8,). The symmetry algebra of the linear
equation &, = 0 is strictly larger iff (=if and only if) the n — 1 equations 4(6-7-8) have at least
one common solution. We verify that this is the case when the equation £ = 0 has constant
coefficients: then f = constant is a solution. To study the general case we can assume that the
Laguerre transformation 1(4) has been performed. Then equation 4(6} reduces to f* = 0, so

the equations 4(7-8) have a common solution with it iff the following simpler system of n — 1
equations

f"=0,0<4<n=-3, (1+1)(rn—1~Lcg1 ' +2(n— ey f' +24f =0 4(10)
has non trivial solutions. The first equation is of order three, that with £ = n — 3 is simply:

3cp-sf + C::—af =0, 4(11)

i1 Use 3(1), begin by a partial derivative 8, on 4, and continue with the condition to never use 8y 0n  or

again on 9.
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and the other are at most of order two (depending on the values of their coefficients). So the
system has three linearly independent solutions (the set of polynomials in & of degree < 2), iff
all ¢; vanish:

Theorem The symmetry algebra of an order n > 2 linear differential equation has dimension
n+ 4 iff by the Laguerre transformation the equation reduces to (™) = 0. Then the symmetry
algebra is A, >4GL,.

This theorem has been stated in [9] in an equivalent form. In [8] we obtained a similar theorem
with the condition that the order n equation be iterative, that is of the form:

£ = L*[y] = " [L{y]] = 0 with L{g] = r(a)y’ + (). 4(12)
Reference [9] gives a similar structure for the equation, but in the form 1(3):
(n-1)/2 2
. n41 _d__ 2 _ I
nodd : E( ;;l._.]; (( . ) et (2k) c,,_z))y =0 4(13")
n/2 2
. ntl L _1)}2 — »
n even: (g(( ' ) 5+ (k-1) cn2) )y =0. 4(137)

Tterative equations 4(12) have a set of linear independent solutions of the form u~1~*v¥,0 <
k < n~—1; this is a well known form for building the irreducible representations of SL; by tensor
symmetric power from the two dimensional one with basis u, v.

If after the Laguerre transformation the coefficients are not all zero, let & < n — 3 be the
largest index of the non-vanishing ones; 4(10) shows that the equation for £ = k is a first order
equation in f whose solutions satisfy f = ch}c/ (k=) where Ly is a constant and, moreover, f a
polynomial of degree < 2. This shows that the dimension of the symmetry algebra of an order n
LODE is either n+ 4 or n+2 or n+1, but *? it cannot be n4- 3. It is n + 2 iff, for the equation
in the Laguerre form, its coefficients satisfy the non trivial equations of 4(10}; explicitly:

f=Aa:’+B:c+C, E<t<n-3,¢,=0, ck=ka""‘,

0KLl<k, o= f(Ki+ AL+ 1)(n—£-1) /om cer ()1 ()dt). 4(14)

We can prove here a simpler

Theorem If the symmetry algebra of an order n linear ordinary differential equation has
dimension n+2, this equation can be transformed into a linear differential equation with constant
coefficients.

We have already proven (see 4(3-4)) that the symmetry algebra has the structure: A,(u(z) 8,) >
Az (y8y,v) with v = f(2) 8, + 251 f'y 6, which normalizes the subalgebra A,(u(z)d,) where
the u's are the solutions of the equation. The linear ordinary differential equation 1(3) with this
symmetry algebra is transformed by the diffeomorphism of type 1(2):

X= / Ff(t)~ldt, Y = yr(z), with r = f~(n-1)/72 4(15)
0

into another one with symmetry algebra § = A, (u(o(X))r(w(X)) 8y) >a A (Y Oy, Ox) where
z = (X)) is the inverse function of X () in 4(15). In the symmetry algebra the term in 8x shows

12 This result is given in [9). Although the contrary has sometimes be stated, a non linearizable differential

equation of order n may have a symmetry algebra of dimension n + 3: this is the case for the equation u = ¢
with n = § in 3(12).
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that the new linear equation has constant coefficients. In Diff, there are many non isomorphic
subalgebras § as defined above: by a suitable basis in A, the linear map induced on it by dx
can be put in the form of a Jordan matrix whose {race can be removed by a suitable combination
with the multiple of the identity operator ¥ 8y. So the generic family has n — 1 parameters of
isomorphic classes.

To summarize: there is an infinity of strata for the LODE of order n > 2, and equivalently
an infinity of Lie subalgebras of Diff; containing a A, algebra. For the Lie algebras A, and
A, >a A, this last factor acting by dilation on the first one, the equivalent classes are labelled
by n—2 arbitrary functions, and this is also true of the strata of the generic LODE: the functions
are their coeflicients in the Laguerre form. There are n — 1 parameter families of order n LODE
strata with a n+ 2 dimensional symmetry algebra. Finally, as we have seen, the order n LODE
with n + 4 dimensional symmetry algebras form a unique orbit {and stratum) of Diff;; their
symmetry algebra class: W, = A, >aG L, are maximal finite dimensional subalgebras of Diff,.

5 The equivalence classes of finite dimensional algebras of Diff,.

As we explained at the end of section 2, the publication by Lie [7] of the list £ of equivalence
classes (under the adjoint action of Diff;) of the finite dimensional Lie subalgebras of Diff,
completed implicitly the problem of the classification of symmetries of ODE since we have the
list £ of strata and, as explained in section 3, for each finite dimensional subalgebra G C Diff; one
can find all G-invariant ODE. Classification of finite dimensional Lie algebras was just beginning,
but Lie used very cleverly the concept of primitive and imprimitive actions (the latter transform
a given family of curves into themselves) of equivalence classes of finite subgroups of Diff; on
the plane z,y. Indeed these concepts are very relevant to the problem. As we have already seen
from some examples in the preceding section, this list £ is infinite. Remark that £ is a partially
ordered set (by inclusion of subalgebras up to conjugation in Diff;). Of course, with the results
we now know on the structure and classification of finite dimensional Lie algebras, this list can
be obtained faster ', This will be done in the companion summer school (at Rachov, Ukraine)
and will be published in its proceedings. Here we just give the essential results; most of them
are given in tables 1,2 and diagram 3.

a | GO G GO CH G

type 821 81 S31 M, As
[anbl=0] [dAal=a [dhal=a [dAal=a | [dAa]=0 | [dAa]=0
[dAbl=Xb | [dAbl=a+b | [dAB]=0 | [dAbl=a | [dAD]=0
dimg’ 2 2 1 1 0
dim¢(Q) 0 0 1 1 3

Table 1 Types (=Isomorphism classes) of non simple 3-dimensional Lie algebras.

The symbols 5, N means respectively solvable, nilpotent Lie algebras; their first index is the dimension of the
maximal Abelian ideal and the second is the dimension of the corresponding quotient. There is an infinity of
types 5,",1 ~ S; ";’\ 80 we assume here 0 < [A] < 1. MN,1 is the Heisenberg algebra of center a.

13 Also the results can be given with greater precision. Instead of giving the list £, Lie gives examples of

subalgebras, he is sometimes redundant and it is not always obvious how to construct the partial ordering of £ .
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There are (29 + three one parameter families) equivalence classes of finite dimensional Diff;
subalgebras which do not contain a three dimensional Abelian algebras; these classes are those
of the subalgebras of SL; X SLs and SLy. The two corresponding classes [SL; X 8L:] and [SL3]
are maximal in £. The partially ordered set of these equivalence classes is given in diagram 3.
The notations are explained in the previous tables.

16 [ | [A) 1S a] [[Sia) | 0,8 ¢, d, ey centralizer C | normalizer A/
3] | oo 28y | ¢(2)dy, ¢"(2) #0 | Aw(n(z)8y) variable
S+ | 1 o |z8, -D 428, 4, (z0-M700,) | Ay >4y
(82,0t | 1 o0 « |8, -D A(z8,)° | [S[1 © Siy)
[Shalt | 1 0 z 8, —y 8y 0 (B3]
S o |28y, 8.~y 0y Ai(em®8,) ~ 1 Az>Ay
SN 1 o |8 ~(Az 8: +y 8y) 0 (st ® ST]
(82,0~ o | oo EA —yd, Ay (8,)° [5F @ sty
[$341- 1 oo | 8 —(z 0s +y 8,) 0 [Af, ]~
[557.1]_ 1 o 8 | ~(z8:+(z+v)8y) 0 (8}1.4]
W2,) 1 | o y0: 8, A(8a)° | A >a(S,)”
(SL,]+ o0 2y 8y —y? 8, Diffy (z) cCag
(SL;)- o |2D | —y(228.+ydy) Ar(z 8,) cog
[sL,p © | 2D |-22y8, —(z* + %) 8, 0 g

Table 2. Equivalence classes of two and three dimensional subalgebras of Dif fa(z,y).

The first column lsts the conjugation classes of the three dimensional subalgebras, There is an infinity of
*quivalence classes for algebras .A3; they are labelled by + and the function ¢. In lines 2 and 6 there is an infinity
of isomorphism types; they are labelled by the parameter A # 1, 0 < |A] < 1 and they are defined in table 1.
The columns 2,3,4,5 give the incidence of the four equivalence classes of two dimensional mbalgebras into those
of dimension three. A typical representative subalgebra is given by a basis of three vector fields: a or e~ = 8y;
the two other generators are given in columns 6,7: D is a short for 8y +y8y. The last two columns give the
tentralizer and the normalizer in Diff(z,y) of each subalgebra (the upper index ¢ indicates that the centralizer
is the center).
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One can be astonished that Lie did not invent the simple concepts of centralizer and nor-
malizer of a subalgebra. For example, isomorphic subalgebras of Diff; cannot be equivalent if
their centralizers and normalizers (respectively denoted by Cpis,(G) and Npig,(G) ) are not
isomorphic. The centralizers are easy to compute and, in general, it is not difficult to compute
the normalizers (recall that G and Cpig,(0) are ideals of Npix,(G)). For the subalgebras of
SLy; x 8Ly and SL;, their equivalence classes in Diff; are separated by the isomorphism classes
of their centralizers and normalizers.

All one dimensional sub algebras of Diff; are equivalent; this class is denoted by [4;]. There
are two isomorphic classes of two dimensional algebras, one Abelian: A, and one non Abelian:
81,1 (8 is for solvable), with commutation relation [a,b] = a. Each of these two isomorphic
classes has two equivalent classes in Diff, depending on whether the functional dimension of the
subalgebra is 1 (upper index ) or 2 (upper index ~). We give here an example of a subalgebra
for each of these four classes: A(8,,% 05) € [As]T, A2(8a,8y) € [A2]™, S1,1(8z, 2 8:) € [S14]T,
S 1(8,,2! Oy +y8y) € [81 1] .

Table 1 gives the isomorphy classes of non sxmple Lie algebras of dimensions 3. The nilpotent
algebra A 1 is also called the Heisenberg algebra; its commutation relations can also be written:
[a,¢] = 0 = [b,¢],[a,b] = ¢. There is one simple Lie algebra of dimension 3: SLz; we can write
its commutation relations: [h,es] = £2e4, [e4,e-] = h.

Table 2 gives the equivalence classes of the 3 dimensional Lie subalgebras of Diffz, their
centralisers and normalizers. It also gives the partial order relations between 2 and 3 dimensional
Lie subalgebra equivalent classes.

8 [SLy)

1 {553 X 5&3]

o~

[SLa x 51,1)

L3

wLs)* (St £54) 1904 ISt STl [SDoXSp o1

3 LY [SLI° Sl S Bl B Wil (st (S5 ST (St ISL)-

Diagram 3. Partial ordering of the equivalence classes of Diff, subalgebras (of dimension > 3)
which are smaller than the two maximal classes: [SLy X SL;] and [SLs].

The four direct products in diagram 3 as well as [§L3]* = [4; X SL;7], have one factor in
Diffy (z) and the other in Diffy(y). We introduce & new family of 4-dimensional algebras:

Shaa~Maa(a b, (@ {0 fed ==t o s
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One verifies that 82*‘1'1 and S;;"{ are isomorphic but inequivalent; however, for each value of
A (in the complex plane) there exists a unique equivalence class that we denote by [S};,]). A
representative of this class is:

(a=8,, b=y08;, c=8,, d= —(28:+Ay8y)) € [571,] 5(2)
As we saw in section 3 (before 3(12)) a natural representative of the class [SL3] is:
SLy = {8y,8y,2 82,y 8y, 2 8y, y 8z, 2D, yD) with D = 28, +y 9, . 5(3)
with the natural GL; ™ subalgebra:
GLy”™ = Ay (D)X SLy (y8,,20y,28, -y 8y). 5(4)

The Borel subalgebra (=maximal solvable subalgebra) of SL3 is denoted by Bs; it is generated
by the first five terms of 5(3). The affine algebra Aff; is a maximal subalgebra which belong
to two classes:[Aff3|¥ = [A] ><GL:7] corresponding respectively to the classes of stabilizers of
points and of lines in the projective plane (indeed SLs ~ SPL,, the special projective linear
algebra in dimension 2). The two classes: [Aff,]¥ are exchanged by the outer automorphisms
of SLy; their representatives in 5(3) are generated by the first (respectively last} six generators
of this equation.
8 The strata of order 2 ODE.

The classification of the symmetries of order 2 ODE has been given by Tresse [10] in 1896 from
the study of their differential invariants. This even classifies the orbits, and Lie in [2]-IIT had
already given a characterization of all order 2 ODE on the orbit of the linear ones (for a more
Pprecise formulation see e.g. [11]). To conclude this lecture we apply the general sections 2,3,5
to order 2 ODE. This yields very fast the complete list of their strata.

From 3(15) we know that the symmetry algebras of order 2 ODE do not contain an .43, so
they belong to equivalent classes of dim 0,1,2 and those of diagram 3. Consider an arbitrary
second order differential equation:

E=yp—w@,y,n)=0 6(1)
and let G¢ be its symmetry algebra. With the prolongation of vector fields, equation 2(5) yields:
OyECe v wy=0; 20, €0 Gawy+wy, =0; ydy €0z & w=yw, + pwy,. 6(2)

With these relations we obtain:
A0y, 2 )t €Ge > =w(@),  5:(0,¥8,)" €Ge > m=o(e)n + 8RN 6(2)

ie. the equation is linear and, as we have seen, its s3 mmetry algebra is SL3. All those results
can be suramariezd in the

Lemma Outside SL;, the symmetry algebra of an ODE of order 2 cannot belong to an equiv-
alence class > [A;]* or 2 [S14]F in L.

From table 2, we see that the only possible G¢ of dimension 3 are

[82"'1]_,A;£0, [5{1]-1 [SLZ]—) [8L2]°~ ' 6(3)

Diagram 3 shows that there are no larger symmetry algebra classes outside [SLa).
Of course “nearly all” second order ODE have no symmetry, but in practical problems we
meet mainly equations with symmetry, this property helping to solve them. The equations of
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the Painlevé Gambier transcendentals are examples of order 2 ODE without symmetry; another
family of examples is:

Oe=0: m#-3, w=Ay™+f(z), f#C,# Clz+ KPm/A-m, 6(4)

For order 2 ODE, even a one dimensional symmetry algebra allows the integration of the
equation; indeed this algebra can be transformed into 4;(8,). By a Riccati transformation
X =y, Y = 3 (which is not in Diffy{z,y)) we can decrease by one unit the order of the
equation (it becomes YY’ = w(X,Y)).

For each strata with non trivial symmetry we give examples of equations:

gee Al =w(yn); Ge € [ A7 1 =w(w)i Ge € [S1,1] 32 = p(m1)y ", 5 #0. 6(5,6,7)
12X

1 e _ -
ge € {S:?,l}—:'\ #0, ‘;:1;2 E ' S Cyl ’ Ge € [S’.{,l] i ypp=Ce™® 6(8:9)
4 - -
Ge € [SL:l°, = ;93(3 ~u+Cy Y= - 9, 6(10)
Ge €[SL]": w=(¥+C)2n)™, Gg € [SL3]: linear equations. 8(11.12)

We leave as an exercise to the reader the listing of the strata (with examples of equations for
each stratum) for a given order n > 3 of ODE!
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