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0. INTRODUCTION 

Since you mathematicians and we physicists came here to meet together, 

there is no need to emphasize that we both believe that the progress of physics 

requires for its theoretical formulation more and more advanced mathematics. I 

thought fit however to give you the opportunity to read what Dirac wrote on this 

subject, 38 years ago, as an introduction to the very paper where he predicted the 

existence of the "antielectron", which we now call positron. 

Notwithstanding Dirac's prediction, when positrons were observed one year 

later by Blackett and Occhialini, and by the Joliot-Curies, they were not immediately 

recognized. And Anderson who was the first to identify a positron (in cosmic rays) 

did not know Dirac's paper. This illustrates the communication difficulties which 

existed and still exist between theoretical and experimental physicists. You should 

also expect them between mathematicians and physicists. (Not to speak of the diffi- 

culties due to my use of English.) You and I are here determined to overcome them, 

but I beg your patience in advance. 

Extract from Proc. Roy. Soc., Ser. A, 130, 60 (1930): 

Quantised Singularities in the Electromagnetic Field 

By P. A. M. DIRAC, F. R. S., St. John's College, Cambridge 

§ i. Introduction 

The steady progress of physics requires for its theoretical formu- 
lation a mathematics that gets continually more advanced. This is only natural 
and to be expected. What, however, was not expected by the scientific workers 
of the last century was the particular form that the line of advancement of the 
mathematics would take, namely, it was expected that the mathematics would get 
more and more complicated, but would rest on a permanent basis of axioms and 
definitions, while actually the modern physical developments have required a 
mathematics that continually shifts its foundations and gets more abstract. 
Non-euclidean geometry and non-commutative algebra, which were at one time con- 
sidered to be purely fictions of the mind and pastimes for logical thinkers, 
have now been found to be very necessary for the description of general facts 
of the physical world. It seems likely that this process of increasing abstrac- 
tion will continue in the future and that advance in physics is to be associated 
with a continual modification and generalization of the axioms at the base of 
the mathematics rather than with a logical development of any one mathematical 
scheme on a fixed foundation. 

There are at present fundamental problems in theoretical physics 
awaiting solution, e.g. , the relativistic formulation of quantum mechanics and 
the nature of atomic nuclei (to be followed by more difficult ones such as the 
problem of life), the solution of which problems will presumably require a more 
drastic revision of our fundamental concepts than any that have gone before. 
Quite likely these changes will be so great that it will be beyond the power of 
human intelligence to get the necessary new ideas by direct attempts to formu- 
late the experimental data in mathematical terms. The theoretical worker in the 
future will therefore have to proceed in a more indirect way. The most power- 
ful method of advance that can be suggested at present is to employ all the re- 
sources of pure mathematics in attempts to perfect and generalize the mathemati- 
cal formalism that forms the existing basis of theoretical physics and after 
each success in this direction, to try to interpret the new mathematical 
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features in terms of physical entities (by a process like Eddington's Principle 
of Identification). 

A recent paper by the author# may possibly be regarded as a small step 
according to this general scheme of advance. The mathematical formalism at 
that time involved a serious difficulty through its prediction of negative 
kinetic energy values for an electron. It was proposed to get over this diffi- 
culty, making use of Pauli's Exclusion Principle which does not allow more than 
one electron in any state, by saying that in the physical world almost all the 
negative-energy states are already occupied, so that our ordinary electrons of 
positive energy cannot fall into them. The question then arises as to the 
physical interpretation of the negative-energy states, which on this view 
really exist. We should expect the uniformly filled distribution of negative- 
energy states to be completely unobservable to us, but an unoccupied one of 
these states, being something exceptional, would make its presence felt as a 
kind of hole. It was shown that one of these holes would appear to us as a 
particle with a positive energy and a positive charge and it was suggested that 
this particle should be identified with a proton. Subsequent investigations, 
however, have shown that this particle necessarily has the same mass as an 
electrontt and also that, if it collides with an electron, the two will have a 
chance of annihilating one another much too great to be consistent with the 
known stability of matter.+tt 

It thus appears that we must abandon the identification of the holes with 
protons and must find some other interpretation for them. Following 
Oppenheimer,tttt we can assume that in the world as we know it, all, and not 
merely nearly all, of the negative-energy states for electrons are occupied. A 
hole, if there were one, would be a new kind of particle, unknown to experi- 
mental physics, having the same mass and opposite charge to an electron. We 
may call such a particle an antielectron. We should not expect to find any of 
them in nature, on account of their rapid rate of recombination with electrons, 
but if they could be produced experimentally in high vacuum they would be quite 
stable and amenable to observation. An encounter between two hard x-rays (of 
energy at least half a million volts) could lead to the creation simultaneously 
of an electron and antielectron, the probability of occurence of this process 
being of the same order of magnitude as that of the collision of the two y-rays 
on the assumption that they are spheres of the same size as classical electrons. 
This probability is negligible, however, with the intensities of y-rays at 
present available. 

The protons on the above view are quite unconnected with electrons. Pre- 
sumably the protons will have their own negative-energy states, all of which 
normally are occupied, an unoccupied one appearing as an antiproton. 

Let me just remind you that antiprotons were first observed twenty-four 

years later (1955). 

There will be many advanced seminars on the applications of group theory to 

quantum physics. So I believe that these lectures must be introductory~ and that I 

have to present concepts that will be used by all physicists here. That will be 

Part i. 

t Proc. Roy. Soc., Ser. A, 126, 360 (1930). 

#t H. Weyl, Gruppentheorie und Quantenmechanik, 2nd ed., p. 234 (1931). 

tit I. Tamm, Z Physik, 62, 545 (1930); J. R. Oppenheimer, Phys. Rev., 35, 939 (1930); 
P. Dirac, Proc. Cconb. Philos. Soc., 26, 361 (1930). 

tttt J. R. Oppenheimer, Phys. Rev.,35, 562 (1930). 
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The ultimate goal of these lectures will be to bring you to the present 

problems on the subject, mainly in the field of the fundamental particle physics. 

Then there might be some overlap with Professor O'Raifeartaigh's lectures, but there 

should be no inconvenience to see some aspects of physics from probably two differ- 

ent points of view. We have to face the factthat fruitful discussions of frontier 

problems of physics between mathematicians and physicists are difficult, because 

these problems often cannot be presented in a formalized language, but only through 

some physical analogy. So, obviously, to understand what is the problem, one must 

know some physics! 

In these lectures I will therefore present a quick survey of applications 

of group theory to atomic, molecular and nuclear physics. Often, I will even 

follow an historical approach. Indeed, physicist minds are partly conditioned by 

the recent history of physics. But I also hope to use the power of your language, 

mathematics, to convey to you a maximum of physics in a minimum of time. Of course 

I shall have succeeded only if I have also been able to convince you that physics 

is fascinating~ 

It is fit to end this introduction by the history of the birth of our sub- 

ject. Less than three years after the first paper on quantum mechanics 

(W. Heisenherg, Z. Phys., 33, 879 (1925), there appeared the first two papers de- 

voted to the application of group theory to quantum mechanics: 

• E. P. Wigner, "Einige Folgerungen aus der Schrodingerschen 

Theorie fur die Termstrukturen", Z. Phys., 43, 624 (1927). 

• F. Hund, "Symmetriecharaktere von Termen bei Systemen mit 

gleichen Partikeln in der Quantenmechanik", Z. Phys., 43, 

788 (1927). 

Wigner will surely be the most quoted author on our subject. Let us just say that, 

with J. von Neumann, he applied group theory to atomic spectra ("Zur Erkl~rung 

einiger Eigenshaften der Spektren aus der Quantenmechanik des Drehelektrons I., II., 

III., Z. Phys., 47, 203; 49, 73; 51, 844 (1928)), and published a self-contained 

book on this question: E. P. Wigner, Gruppentheorie und ihre Anwendung auf die 

Quantenmechanik der Atomspektren, Vieweg, Braunschweig (1931). 

It is remarkable that two famous mathematicians, Hermann Weyl and 

Van der Waerden, also published very early books on our subject: 

• H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig (1928). 

• Van der Waerden, Die Gruppentheoretische Methode in der Quanten- 

meehanik, Springer, Berlin (1932). 

Then the excellent, but more elementary book, by E. Bauer, In~oduction & 

la Th~orie de8 Groupes et 8es Applioation ~ la Physique Quantique, Presses Univer- 

sitaires de France, Paris (1933), continued a list of books which, today, may have 

reached several dozen. 
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For the interested mathematicians I would still recon~nend the two very 

first books, but in their second, revised and enlarged edition: H. Weyl, The Theory 

of Groups and Quantum Mechanics, Methuen, London (1931); Paper Back reprint, Dover, 

New York (1949); the translation by J. J. Griffin of Wigner's book, Group ~eory 

and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, 

New York (1959). 

For The Mathematician Readers 

Physics will be injected in these notes as needed. However, it seems con- 

venient to gather here some information on physical constants which might be useful 

at any time. 

We will study quantum phenomena. In atomic, nuclear, fundamental particle 

physics, the key number to pass from macroscopic scale is the Avogadro number: 

a = 6.0228 × 1023 ~ 6.03 × 1023 (0.i) 

It is the number of atoms in a mass of one gram of hydrogen. 

A hydrogen atom is made of one proton (mass mp) and one electron 

(mass ms). 

m 

-J~ = 1836.5 
m 

+ - 
These two particles are electrically charged, p , ~ , the absolute value of this 

charge is 

1 Faraday 96,600 
e = = Coulombs 

a 6.03 × 1023 

The most convenient unit systems, for us, will use 

h = (elanck constant) x (27)-1= i 

c = (velocity of light) = i 

In this system e (137.04) -1/2 = , indeed 

2 
e i 

hc 137.04 

is a dimensionless number. Atoms of the other elements are made of Z electrons 

and a nucleus which contains Z protons and N neutrons; Z is the atomic number, 

A = Z + N the atomic mass number, e.g., for hydrogen Z = i; hydrogen has 3 iso- 

topes N = 0, A = i; A = 2, deuterium; A = 3, tritium (unstable, lifetime 12 years). 

For uranium Z = 92; the most abundant isotope is A = 238. The neutron has no 

electric charge and its mass is nearly equal to that of the proton, 
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m 
n 

--= 1839.0 
m 

So the atom mass is practically concentrated in its nucleus. 

Many more particles will be introduced, e.g., the photon X, and the four 

different neutrinos all with zero rest-mass and zero charge, etc.., see 3.5 and 3.6. 

We remind the reader that in relativistic physics mass is not conserved; 

mass is a form of energy. The energy of a particle of mass m, velocity v is 

me2(l_(v/c)2)-I/2. 2 E = The rest energy (v = 0) is mc . 

We need to choose another unit to complete our unit systems. The best 

choice for atomic physics is the electron mass m . ° Then the other units are: 

momentum m e g 

2 
energy m c g 

l e n g t h  h/m c 3 . 8 6  10 - 1 1  = x em 

time him c 2 = i . 2 8  x 10 - 2 1  s e c .  

However, due to the nature of its measurement, the most conxnon energy unit 

used for particles is the electron volt (eV). It is the energy that a particle with 

the universal electric charge e gains by traversing an electric field of potential 

difference one volt. 

The conversion with the preceeding unit system is 

2 
m c = 0.511 × 106 eV ~'i/2 MeV 
s 

2 
m c = 938.256 MeV ~ 1 GeV = 109 eV 
P 

Note that 1 = ~ ~ (10 -13 cm) × (200 MeV) 

Before 1932, only two kinds of interactions were known, gravitation and I 

electromagnetism. In the static approximation the two interactions can be described 

by proportional potentials K/r where r is the distance. So the absolute ratio 

of the (attractive) gravitational energy to the (repulsive) electrostatic energy 

between two protons is independent of their distance. 

It is 

Gem 2 
P = I =  137 x 10 - 3 6  

2 ~ 175 
e 

Thus, gravitation will be completely neglected in these lectures.+ 

t The gravitational energy of a system increases roughly as the square of the number 
N of nucleons while, in neutral matter, the electrostatic energy is roughly pro- 
portional to N. So gravitation becomes important only for masses as large as that 
of asteroids, planets (we know it on the earth!) or stars. It is not a coincidence 
that most stars have a number of nucleons ~ ~{-3/2 = IOS7 (see for instance E. E. 
Salpeter, "Dimensionless Ratio and Stellar Structure", in Frontier in Physics, 
Bethe Festschrift, p. 463, R. Marshak Editor). 
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The binding energy of atoms, molecules, solids, etc., is of electro- 

magnetic origin. This energy can be released in chemical form, with an order of 

magnitude: 

a × i eV = 23 cal/mole i 

which is ~ 10 -9 to i0 -II the rest-mass energy. If the energy we receive from the 

sun came from chemical reactions, the sun would produce it for less than 105 years! 

There are two other known kinds of interactions: the nuclear interaction 

(see part 3 and 5), stronger than the electromagnetic interaction at distance 

smaller than 10 -13 cm; the Fermi or "weak interaction" (see 3.6 and 5), which is 

very short range. Both interactions are important in stars and nuclear reactions 

and can yield an energy up to 10 -3 the rest mass energy. 

For the Physicist Reader 

All mathematical terms used here are not defined. Of course many of them 

are known to physicists (e.g., for the notion of root vectors of Lie algebra, see 

Salam's lectures in High Energy Physics and Elementary Particles, Trieste Seminar 

196~ (International Atomic Energy Agency, Vienna (1963)). Some terms (used mainly 

in I) come from a modern mathematical terminology. They were not absolutely neces- 

sary and they are used explicitly as synonyms of other terms generally used by 

physicists. Physicists should know the proper mathematical terms of the mathematical 

concepts they need: indeed their students, and even their young children know them 

and physicists want to communicate with their students and their children! 

An excellent and elementary exposition of this modern mathematical language 

is given in the text Algebra by S. Mac Lane and G. Birkhoff, Macmillan, New York, 

(1967), particularly Chapter I; note also the list of symbols, p. XVII to XIX. 

i. COVARIANCE IN QUANTUM THEORY AND ITS MATHEMATICAL TOOLS 

i.i. What Is Quantum Mechanics 

Less than two years after the first paper (quoted above) of Heisenberg on 

quantum mechanics, J. von Neumann answered this question in three successive papers 

in Gottingen Nachrichten, (1927), (pp. i, 245, 273) expanded in a book: Mathe- 

matische Grundlagen der Quanten Mechanik, (1930) (English translation, Princeton 

University Press (1955)).# 

He later published with G. Birkhoff, "The Logic of Quantum Mechanics", Ann. of 
Math., 37, 935 (1936). This subject is still controversial and lively. 



Two early books on quantum mechanics by physicists are reedited and still 

very advisable reading: P. A. M. Dirac, The Principles of Quantum Mechanics, 

Clarendon Press, Oxford Ist ed. (1930) 4th ed. (1958). W. Pauli, "Prinzipien der 

Quanten Theorie", Handbuch der Physik, i, Springer (1958) ist ed. (1933).t 

If you have not read these books it is not too late to do it, but today 

let us just give a mlni-description of quantum mechanics. 

a) To each physical system corresponds a separable complex Hilbert 

space ~C. A physical state is represented by a vector x> 6 ~C. 

(Normed to 1 for convenience: <x,x> = I.) 

b) Each physical observable a (e.g., energy, electric charge, etc.) 

is represented by a self adjolnt operator A on ~C. The spectrum 

of A is the set of possible values of a. 

c) Quantum mechanics does not predict, in general, the value of a 

for the state x>, it gives only its expectation value: 

<x,Ax> = Tr A P (i.I) 
X 

where P is the Hermitian projector (Px = Px *) onto the one dimensional space 
X 

spanned by x>. Note that unit eigen vectors of Px (with eigen-value i) differ 

only by a scalar phase factor and describe the same state since they yield the same 

physical predictions. The projectors P are themselves observables. Indeed 
x 

TrP P = I<x,y>I 2 (1.2) 
xy 

is the probability to observe in the state x> (respectively y>) the physical 

system which is known to be in the state y> (respectively x>). Part of the art 

of the quantum physicist is to code what he sees in nature into vectors of Hilbert 

space! This always requires "physical approximations". 

When we can describe a state by a rank one projector (or a vector up to a 

phase) we say that we have a pure state and that we have a complete information on 

it. 

More often our information on the state is only partial. In the simplest 

case we know only a set of probabilities c. (with Ec. = i) for the system to be 

in the set of orthogonal pure states Pi (i.e., PiPj = ~ijPj) so the expectation 

value is 

E.c. Tr A P. = Tr A R (1.3) 
i i 1 

with 

Since 

R = E.c.P. Tr R = E.c. = 1 
i I I i i 

0 ~ ci, the self adjoint operator R is positive and it is called the 

(1.3') 

# There are also books on the mathematical foundation of quantum mechanics by 
mathematicians: G. Mackey, L. Schwartz. 
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density matrix# of the mixture (= not pure) state of the system. Pure states are 

extremal points of the convex domain of states. 

This leads us to a natural generalization. One defines a Banach*-algebra 

B with unit I, generated by the observables.tt (More specifically it is usually a 

C*-algebra). Then a state is a linear functional ~ on B which is positive, that 

is VA E B, ~(A*A) ~ O. For systems with a finite number of degrees of freedom this 

is not an essential generalization. It becomes so for infinite degrees of freedom 

as in quantum field theory and statistical mechanics. Classical statistical 

mechanics can also be put in the same mathematical mould with an abelian algebra.ttt 

1.2 Group Invariance 

We assume that there is a relativity group G for every physical theory 

considered here. That is G acts on a physical system S, and there is an isomor- 

phism between the physics of S (its Hilbert space of states ~, its algebra of 

observables B c L(~)tttt, etc...) and the physics of ~(S), the transform of S, 

by K E G (e.g., ~ can be a rotation). This will be called the "active" point of 

view of G-invariance. The "passive" point of view for a transformation group is 

simply the isomorphism between the physical description of the same system S by 

two observers choosing different coordinate frames, G-transforms of each other. 

For any g E G, we denote by P the transformed of the state P . To 
gx i x i 

say that G is an invariance group is equivalent to saying that all probabilities 

of Equation (1.2) are invariant 

x> E ~, g E G, TrP P = TrP P (1.4) 
gx I gx 2 x I x 2 

t 

tt 

J. von Neumann introduced the density-matrix in 1927 in the papers quoted above. 

Quite early physicists also considered non-associative algebras formed by the 
observables and introduced Jordan algebras The first fundamental paper on those 
algebras is by P. Jordan, J. von Neumann and E. Wigner; "On an Algebraic General- 
ization of the Quantum Mechanical Formalism", Ann. of Math., 35, 29 (1934). 

it* I. E. Segal advocated twenty years ago the use of C*-algebra for quantum physics. 
The fundamental paper showing the benefits from this choice (physical approxi- 
mation and Feld's s-equivalence; introduction of super-selection rules) is that 
of R. Haag and D. Kastler, "An Algebraic Approach to Quantum Field Theory", J. 
Math. Phys., Supplement 848 (1964). Most of the C*-algebra physics is published 
in the journal: Communications in Mathematical Physics, and is written in a 
rigorous mathematical style. For statistical mechanics, see D. Ruelle, 
Statistical Mechanics, Benjamin, New York (1969). Soon there will appear in the 
collection of C. N. R. S. Colloquia (France) "Rigorous Results on Interacting 
Systems with Infinite Degrees of Freedom". 

tttt We denote by i(~) the space of linear operators on ~. 
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or 

1 <gxl,gx2> 1 2= I <Xl,X2> [ 2 

This means that G acts on ~C by isometrics. 

Wigner proved in his book (Appendix to Chapter 20) # that 

either a unitary operator U(g) or an antiunitary operator V(g) 

that an antiunitary operator V has the characteristic properties 

x>, y> E ~, V(~x> + ~y>) = EVx> + ~Vy> 

Given an 

realized 

U or V 

(1.4') 

x> ~+ gx> is 

on ~C. We recall 

<Vx,Vy> = <x,y> = <y,x> 

it has an inverse 

isometry on ~, there is a simple criterion ## for deciding whether it is 

by a unitary operator U or an antiunitamy operator V. In either case 

is defined up to a scalar phase factor. The product of two antiunitary 

(1.5) 

(1.51 ) 

(1.5") 

operators is a unitary operator. 

Let V(~) be the group of unitary and antiunitary operators on $C and 

U00 the subgroup of unitary operators. U~) is an invariant subgroup of V(~) 

since it is a subgroup of index two. We assume that G acts effectively on ~C, 

i.e., no other element than i 6 G acts trivially on ~. The U(g)'s or V(g)'s 

for g 6 G generate a subgroup E(G) of V($C) which is an extension of G by the 

group U I (phase multiplication of the vectors of X, leaving invariant the states) 

with the action 

f 
G --+Aut U I 

where Ker f is the invariant subgroup of index two G+ c G which acts by unitary 

transformations and the non-trivial element of Im f is the complex conjugation 
-i 

~--+ ~ = ~ E U(1). 

We can also say that G+ acts by a linear unitary projective representa- 

tion and Wigner has coined the word projective "corepresentation" for the action of 

G (when G is strictly larger than G+). 

Wigner also showed from physical arguments that antiunitary operators are 

to be used with transformations which reverse the direction of time, this in order 

that energy be positive: indeed, the time translation t is represented by the 
iHt iHt 

operator e ; if t ÷ -t, i has to go to -i in order that both H and e 

be invariant. 

# A more explicit proof of Wigner's theorem has been given by V. Bargmann, J. Math. 
Phys., 5, 862 (1964). See also proofs of slight generalizations by U. Uhlhorn, 
Ark~v for Fys~k, 23, 307 (1963). In the framework of Birkhoff and von Neumann 
axiomatics, the equivalent theorem has been proven by G. Emch and C. Piron, J. 
Math. Phys., i, 469 (1963). 

## See Bargmann:# for any triplet of vectors x>, y>, z>, <x,y><y,z><z,x> is in- 
variant under a unitary transformation U and is transformed into its complex 
conjugate under the antiunitary transformation V. 
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Continuous projective linear unitary representation of finite groups or 

Lie groups are well known. For instance, for the three-dimensional rotation group 

SO(3,R) these projective representations are in a one to one correspondence with 

the "linear irreducible unitary representations" (= irrep through all these 

lectures) of SU(2) the universal covering of S0(3,R). This justifies the intro- 

duction of spinors in quantum physics. 

In Part 4 we will study invariance under the relativity groups of non- 

relativistic (= Newtonian) mechanics and of special relativity theory. But there 

are other invariance groups in physics. For instance the permutation group S(n) 

acting on n identical particles (as the electrons of an atom). In nuclear physics 

and fundamental particle physics we shall meet many "approximate invariances". The 

corresponding invariance group is most often a U(n) or SU(n) group (group of 

unitary n × n matrices, with determinant 1 for SU(n)) with n = i, 2, 3, 4, 6. 

We shall have more to say for the word "approximate" symmetry. 

We will also have to study invariance under a group G when G is a 

symmetry group for a physical system, e.g., the symmetry group (one of the crystallo- 

graphic group) of a crystal. This example raises a fascinating question about group 

invariance in physics. Surely the interaction between atoms are translation in- 

variant (and may be invariant under a larger transformation group). How is it 

possible that atoms aggregate to form a crystal whose lattice is invariant only 

under a subgroup of a translation group? When such a phenomenon occurs, i.e., when 

a stable state has a lesser symmetry than that of the physical laws we will say that 

we have a broken symmetry.+ 

We will continue this Part i by introducing some mathematical tools that 

we will use quite frequently. 

1.3 G-Vector Spaces 

Let G be a given group. If you like you can say that we consider a 

category whose objects are vector spaces E (over a given field K) with a linear 

action of G on E (i.e., G D x ~ g(x) E L(E), where L(E) is the algebra of 

endomorphisms of E, with xy ~-+ g(x)g(y) = g(xy). 

The morphisms of the category are the vector space homomorphisms E f~ E ~ 

compatible with the group action, i.e., they are the commutative diagrams for every 

x E G, of vector space homomorphisms. We will call these morphisms G-homomorphisms 

of G-vector spaces. 

+ This short section on group invariance is too sketchy. Much more should be said 
of the symmetry of physical laws (e.g., E. P. Wigner, "Symmetry and Conversation 
Laws", ~oc. Nat. Ac~. Sci., U.S.A.j 51, 956 (1964)) without which symmetries of 
states, that we have considered, would not last. Of course much more will be said 
in these lectures. 



~8 

E ~ (x) ~ E 

L 
E' g' (x) ~ E' 

Diagram i. 

Of course we could have also said that we study bimodules (G- and K- 

modules) or even more simply that we are interested in the linear representations of 

G; and G-homomorphisms are also called "intertwining" operators. Note that the G- 

morphisms from E 1 to E 2 form a vector space that we denote Hom(El, E2)G. 

Indeed, it is the subspace of the invariant vectors of Horn(El, E2); they are the 

intertwining operators for the two representations of G on E 1 and E 2. 

Given G-vector spaces, El, E 2 ... all vector spaces which can be formed 

functorially from them are also G-vector spaces, e.g., E 1 0 E2, Hom(El, E2) , L(E) 

= Hom(E, E), the vector space of the tensor algebra on E: T(E) = n@-~--O E(n) when 

E (n) = E 8 E 8 ... 8 E, n factors, (and E (0) = K), etc. 

Given a physical system, let ~C be the Hilbert space of its state vectors. 

Assume that 3{ is a G-vector space. So is LOC). We are then led to the study of 

the objects (of the category of G-vector spaces) "above" LOC). They are called in 

the physical literature "Tensor operators on $C". (A notable exception is the book 

devoted to this subject, Irreduoible Tensoz~al Sets, by V. Fano and G. Racah, 

Academic Press, New York (1959)). By definition, for physicists, an "E.-tensor 
l 

operator" is a G-morphism (or intertwining operator)from E. to LOC). If the i 
representation of G on E. is irreducible, then the corresponding G-morphism is i 

called in physics an "irreducible tensor operator". If G acts trivially on E. i 

then we have "scalar tensor operator". (Just try to remember that tensor operators 

on ~C are not operators on ~C!)t 

It is time to specify the field K. Generally, of course, it is the field 

of complex numbers since 5£ is a complex Hilbert space. However, reality is also 

essential in physics. So often E is a real vector space and the "E-tensor opera- 

tor" is a G-homomorphism T of real vector spaces from E to the real vector space 

of self-adjoint operators on ~. Of course it is always possible later to enlarge 

the field from IR to ~. 

When G is a Lie group we consider, of course, only continuous differ- 

entiable representations so a G-vector space is also a ~-module for the Lie algebra 

~_ of G. We denote G the vector space of ~. Among the G-tensor operators on 

L~) there is a particular one F' which is also the Lie algebra representation of 

~l on 5£. When the representation of G on ~C is unitary, then F = iF s has self- 

adjoint operators for images which satisfy 

# "Scalar" is often used by physicists for "invariant"! 
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[F(a),F(b)] = (F(a)F(b) - F(b)F(a)) = iF(a A b) (1.6) 

When G is respectively the group of rotations, space translations, time- 

translations, etc., F corresponds respectively to the observables; angular-momentum, 

momentum, energy, ... In the technical sense of i.i, what we called observables 

there, are the elements of the image of F, i.e., for instance, the component of the 

angular momentum or of the momentum, in a given direction. But I hope it is by now 

clear that G-morphisms on L~) are what correspond to the physical concepts with 

a tensorial character with respect to a group G (other examples: velocity, mag- 

netic moment, electric quadrupole moment, energy-momentum tensor, tensor of inertia, 

etc. ). 

Let R and U (unitary) be the representations of G respectively on 

E and on 3£. By definition of the E-tensor operator T 

Vx 6 E, Vg 6 G, U(g)T(x)u-l(g) = T(R(g)x) (1.7) 

If D and F' = iF are the corresponding representations of the Lie algebra 

d ~-0 d D(a) = ~ R(e ~a) ; iF = ~ U(e ~a) 
- ~=0 (1.8) 

then an equivalent definition of the E-tensor operator T is 

Vx 6 E, Va 6 ~, [F(a),T(x)] = iT(D(a)x) (1.9) 

In a nutshell, I would say that much of the application of group theory to 

quantum physics consist in the study of the "tensor-operators" on the G-vector 

(Hilbert) space ~ of a physical system. They form a ring~ (and an algebra). Let 

T 1 and T 2 be respectively E 1 and E2-tensor operators on ~, then 

E 1 E 2 9 x @ y q--+ Tl(X) + T2(Y ) defines a E 1 • E2-tensor operator 

E 1 0 E 2 ~ x 0 y ~ Tl(X)T2(Y) d e f i n e s  a E 1 0 E 2 - t e n s o r  o p e r a t o r  

that we denote respectively T I ~ T 2 and T l O T 2. The latter is generally re- 

ducible and can be decomposed into a direct sum of irreducible "tensor operators". 

I believe that many problems arise which have not been systematically 

studied by physicists although they work very much with this ring (for fixed G, 

and action of G on ~). 

For instance, if G is simple, and T is a G-tensor operator and 

Yx, y 6 G, [T(x),T(y)] = 0. I believe this implies dim Hom(G,~) G is infinite.%+ 

Of course the subalgebra generated by an element is well known; given an 
A 

E-tensor operator T there is a functorial G-morphism T from the tensor algebra 

For infinite dimensional ~, the operators T(x) are not bounded so their product 
is not always well defined. I will forget here this difficulty which has to be 
faced in quantum mechanics and is considered in O'Raifeartaigh's lectures. 

%% C. Moore proved it during the Rencontres. 
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T(E) on E to L O 0 ,  which is moreover an algebra homomorphism. If i is the can- 

onical injection of E into T(E)(Im i = E(1)), then the Diagram 2 is commutative. 

T-(E) 

E ~ ~ L('~) 

Diagram 2. 

in the-particular case where T is the representation F (up to a factor 

i, (see Equation (1.6)) of ~ on ~, then it appears also in the representation of 

U(G), the universal enveloping algebra of 

T(G) s > U(G) 

G F ~ L(SC) 

Diagram 3. 

A 
F (in diagram 2) = F • s 

A remarkable "scalar tensor operator" is the Casimir# operator. 

Let G be a semi-simple Lie group. Let a ~ D(a) the adjoint rep- 

resentation of the Lie algebra ~ on its vector space G 

D(a)b = a A b, [D(a),D(D)] = D(a A b) (i.i0) 

The symmetrical bilinear Caftan-Killing form 

B(a,b) = TrD(a)D(D) 

.J 
is non-degenerate. Therefore, it defines a G-isomorphism i between 

dual G t . This also defines the isomorphism i e @ I, (I = identity) 

i I 
G O G < O I G I O G ~ ~ Hom(G,G) 

(1.11) 

G and its 

The well known canonical homomorphism j is also a G-homomorphism. The identity 

operator i on G is an invariant G-vector E Hom (G,G) G. So 

c = (i S @ I) • j(1) (1.12) 

A 
is an invariant vector of E @ E c T(E) with a fixed normalisation and F(e) is 

the Casimir operator on ~. 

# Casimir is a physicist with a high position in Philips. 
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It occurs that neither physicists, nor some mathematicians (cf., Bourbaki, 

Groupes et Alg~bres de Lie, Chapter I §3 No. 7) use this canonical normalization for 

c. In the physics literature nowadays, the images by F of a set of algebraically 

independant elements of the center of U(~) are called "the Casimir operators". 

In order to induce physicists to use the more canonical point of view ex- 

posed here, let us end this section by a very simple theorem proven elaborately in 

particular cases in the physics literature. 

Theorem 

If G has no non-trivial one-dimensional representation, and if T is for 

G a non-invariant irreducible E-tensor operator on •, a finite dimensional space, 

then Va E E, tr T(a) = 0. Indeed, the field (~ for instance) is a trivial one- 

dimensional G-vector space, and "trace" E Hom(LOC),~) G since T E Hom(~,L(~)) G, 

then "trace T" = "trace" • T E Hom(E,~) G = 0 by our hypothesis. 

1.4. Unitary Groups U(n) and Permutation Groups S(n)# 

We have to survey briefly some results on irreps of 

we shall use very much in these lectures. The irreps of S(n) 

integer partitions of n 

~i ~" h~k] 
[h I ... hi. 1 ... with 

and 

kl > h2 "'" hk > 0 

k 
Zi=leih i = n 

There is a more picturesque notation of [h I ... 

with n small squares, ~i lines of h I squares, 

and called a Young diagram. 

Example of [hil] 

U(n) and S(n) that 

can be labeled by 

° k 
h k ] which is an ideogram made 

~2 lines of h 2 squares, etc. 

% 

h I = 9, ~i = i, h 2 = 5, ~2 = 3 

h 3 = 3, a 3 = 2, h 4 = i, a 4 = i 

n = 9 + (3 x 5) + (2 x 3) + i = 31 L 

% 

VT-[ 

•% 

• dia~ ". <----  

n= 31 

onal 

The Young diagrams contain a qualitative information, the more horizontal 

(vertical) the diagram the more symmetrical (antisymmetrical) are the vectors of the 

representations. 

t For an exposition of the representations of U(n) and S(n) see Weyl's book, 
Chapter V. A survey for the needs of physicists has been made by C. Itzykson and 
M. Nauenberg, Rev. Mod. Phys., 38, 95 (1966). 
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There are only two one-dimensional irreps of S(n) 

[n] . . . . . .  : 2 2 1 " ~  

n squares 
completely symmetrical 

R 
II 

[i n ] " = ,J n squares completely antisymmetrical. 

Y 
The representations of S(n) are self contragredient. To each irrep of 

can associate a complementary representation 

S(n) we 

A 
C~. 

with ~i .k+l-i A 
= Lj=I ~j' ai = ~k-i+l - ~k-i+2 (1.13) 

Its Young diagram is simply obtained by a symmetry through the diagonal. 

We recall that the tensor product of two irrep contains [n] (resp., 

[in]) only if the two irreps are equivalent (resp. complementary) and then it con- 

tains [n] (resp., [in]) once only. 

We will also use a shorter symbol [ ]% for a linear unitary representa- 

tion of S(n). 

We call factorial a group representation which is direct sum of equivalent 

irreps. 

Let ~C (I) be a Hilbert space and 

3C (n) = ~ X (1) = X  (1) O ... O X (1) 8 ~  (1) (n factors). (1.14) 

By permutation of the factors, S(n) acts linearly on ~(n) through a representa- 

tion that we denote [ ]3c(n) and which can be decomposed canonically into factorial 

representation. We denote w(n) the subspace of 3C (n) on which acts the factor- ~[ ]~ 
ial representation • [ ]~. 

, w(n) also denoted ~ ~(i~ For instance ~(n) , also denoted ~ ~(i) and ~[n]' 
[ i n] 

are the spaces of completely antisymmetrical and symmetrical rank-n tensors on 
~(l). 

= ~(l) 
Let us assume that dim ~(i) k is finite. Then U(k) acts on 

n 
and on ~(n) by @ U(k). The decomposition of this linear representation of U(k) 

on ~(n) into factorial representations yields the same subspaces -w(n) One can --[ ]~ 

therefore denote by the same symbols [ IX the corresponding irreps of U(k). 

To summarize: 

for S(n), [ ]~(n) ~ ~%u%[ ]l (1.15) 

l 

for U(k), [ ]3c(n ) ~ @%sx[ ]X (1.15) 
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where u h = dimension of the irrep [ ]h of U(k), s I = dimension of the irrep 

[ ]h of S(n). 

The above  i s  a t heo rem wh ich  i s  a l e i t - m o t i v  of W e y l ' s  book  quo ted  i n  t h e  

introduction and is implicit in the two other books. When n > k, irreps of U(k) 

are l a b e l e d  o n l y  by t h o s e  p a r t i t i o n s  of n such  t h a t  E~. ~ k ,  i . e . ,  t h e  Young 
1 

diagrams of irreps of U(k) have at most k lines, but an arbitrary number n of 

s q u a r e s ;  n = 1,  ~ c o r r e s p o n d s  to  t h e  k - d i m e n s i o n a l  (= f u n d a m e n t a l )  r e p r e s e n t a t i o n  

of U(k) and n = 0, "." to the trivial (= one-dimensional) representation. For 

example ,  t h e  r e p r e s e n t a t i o n s  of U(2) a r e  l a b e l e d  [ h l , h 2 ]  w i t h  t h e  i n t e g e r s  

J X I ~ h 2 ~ 0. a ~. 

The diagram of the contragredient representation of [Ill] is [%i I] 

' = ~ , h t = h i - % if i,j > i. Of w i t h  Ee.1 < k ,  a~ = k - ~ a i ,  h 1 h l ~ j  = ~p+2- j  i p + l - i  
I 

~ .  
1 

c o u r s e  i t  i s  s h o r t e r  to  say  t h a t  t h e  Young d i ag r am of [ X i , ]  i s  t h e  complement  (up-  
~ °  

s i d e  down) of  t h a t  of  [ X i l ]  i n  t h e  r e c t a n g l e  of  k l i n e s  of h 1 s q u a r e s .  

SU(n) Representations. The restriction of an irrep of U(k) to the sub- 

group SU(k) of U(k) is an irrep of SU(k). Irreps of U(k) whose Young dia- 

grams differ only on the left by a rectangular block of columns of length k yield 

by restriction equivalent irreps of SU(k). Taking into account this remark, one 

unambiguously label irreps of SU(k) by Young diagrams. Moreover, this yields all 

inequivalent irreps of SU(k). 

Example. The equivalence classes of irrep of SU(2) obtained by re- 

striction of the irreps [%l,h2] of U(2) are given by the value of the integer 

h I - h 2. So their Young diagram can be written as a horizontal line of h I - h 2 

squares. For SU(2) irreps it is customary to use the symbol 

i 
D. with j = ~(h I - h 2) (1.16) 
3 

where j is called the spin of the representation. 2j + I is its dimension. The 

Casimir operator of D., as normalized by physicists, is j(j + i)I, which is twice 
3 

that defined by (1.9). (Indeed, physicists take as Cartan-Killing form 

1/2 TrD(a)D(D)). 

We also recall the well known decomposition 

Jl + J2 
D. @ D. = , ~  (1.17) 
31 3 2 @J=l Jl-J 21Dj 

Note that all representations of SU(2) are self eontragredient. 

Representations of the Adjoint Groups SU(n)/Z n. The center of SU(k) is 

Zk, the cyclic group of k elements, so the adjoint group of SU(k) is SU(k)/Z k. 
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The representations of this group are those of SU(k) whose Young diagram has a 

number of squares multiple of k. For example, SU(2)/Z 2 = S0(3). Its representa- 

tions are D. with integral j. Their Young diagrams contain only one line of an 
3 

even number (= 2j) of squares• 

The adjoint representation of SU(n) or its adjoint group is that on the 

2 In-2]; space of its Lie algebra, it has dimension n - i and label [2, it is 

equivalent to its contragredient. 

Remark For Any Group. For any group G, let ~C (I) be the space of a 

linear unitary representation (it may be reducible and dim ~C (I) may be infinite). 

As we saw S(n) and G acts on ~C (n) = ~C (I) Subspaces ~(n) of primary rep- • o~[ ]~  

resentations of S(n) are not in general subspaces of primary representation of G. 

Methods for knowing the nature of the G-representation of the different ~¢(n) 
~[ ]h 

would be interesting for the physicists especially in some case, for %~(n) 
, W[n ] 

(bosons) and ~(n) (fermions). Here is an example of a result, proven by A. Bohr, 
[i n] 

Mat. Fys. Medd. Dan. Vid. Selsk, 26 (No. 14), 16. 

G is S0(3), ~C (I) is the five-dimensional Hilbert-space of the rep- 

~(n) = ~ ~C(1) does resentation D 2. For any n the representation of S0(3) on "~[n] 

not contain D I in its reduction into direct sum of irreps. (Physically, a nucleus 

with spin 0 ground state has no spin 1 state corresponding to collective 

excitations.) 

Of course we also can add that if an irrep of G appears on X (n) only 

1¢(n) ~C(n) once, then it acts either on "'[n] or on 
[i n ] 

1.5. More Algebras and More Tensor Operators• Pseudo Roots of SU(n) 

An algebra on the vector space E is an element of Hom(E @ E, E). The 

algebra is symmetrical, (respectively, antisymmetrical) if it is an element of 

Hom(E V E, E), (resp. , Hom(E A E,E)). Similarly we can define a co-algebra, sym- 

metrical, antisymmetrical co-algebra as an element of Horn(E, E • E), Hom(E,E V E) 

or Hom(E, E A E). 

If E is the space of a linear representation of G, elements of 

Hom(E 8 E,E) G, resp., Hom(E,E 8 E) G are algebras, resp., co-algebras, whose group 

of automorphisms contains G. 

When G is a semi-simple compact Lie group, a necessary condition for 

dim Hom(E @ E, E) G > 0 is that the representation on E has a null weight. For 

example, for the space G of the adjoint representation, dim Hom(G A G,G) G = I 

for all simple compact Lie groups and the corresponding antisymmetrical algebra is 

the Lie algebra itself. 
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In V we shall see two examples of symmetrical algebras uniquely defined 

on a real irrep space E of G = SU(3) x SU(3), with dim Hom(E V E,E) G = i. For 

the adjoint representation of a simple compact Lie algebra dim Hom(G V G,G) G = 0 

or i. It has the latter value for the SU(n), n > 2. Let us give some properties 

of this symmetrical algebra of SU(n), since it has been used in the physics litera- 

ture of elementary particles, after its introduction by Gell-Mann. What follows is 

extracted from a preprint written in collaboration with L. A. Radicati. 
2 

Let G be the n - 1 real vector space of the n × n traceless hermi- 
n 

tian matrices x. The action of u 6 SU(n) on G (vector space of the Lie 
n 

algebra) is x u~+ uxu-i = uxu*. The euclidean scalar product 

1 
(x,y) = ~ trace xy (1.18) 

is invariant (= i/n the Cartan-Killing bilinear form). The SU(n) 

is 

i i 
x A y = - ~(xy - yx) ~ - ~[x,y] 

and the symmetrical algebra law ist 

I 2 
x V y = ~{x,y} - ~(x,y)~ where {x,y} = xy + yx 

Note that for n = 2 it is trivial: x V y = 0. 

In the physics literature (mainly for n = 3) one introduces an ortho- 
2 

normal basis (ei,e j) = 6ij(i, j = l,...,n - i) and uses traditionally the notation 

fijk~ dijk for the structure constants 

eiAe. e V e 3 = Ekfij kek' i j = Ekdijkek 

Let us use F(a), D(a) for the linear mappings of G 

F(a)x = a A x, D(a)x = a V x 

Lie algebra law 

(1.19) 

(1.19') 

(1.2o) 

(the matrices are F(ej)ik = fijk' D(ej)ik = dijk)" 

With the scalar product (1.18), F(a) is antisymmetric and D(a) is 

symmetric. D and F are tensor-operators 6 Hom(G,L(G)) SU(n) so from the theorem 

at the end of 1.3, trace D(a) = 0. As is well known, in the Lie algebra SU(n), 

the centralizer of an element x, i.e., the set {y,y A x = O} is a Lie subalgebra 

of dimension m n - i. When its dimension is n - 1 it is abelian and it is called 

the Caftan subalgebra C of x. (All Cartan subalgebras are transformed into each 
x 

other by the group.) C is spanned by the n - 1 linearly independent vectors 
x 

x, x V x, (x V x) V x = x V (x V x), ((x V x) V x) V x, etc., up to n - 1 factors 

and C is also a subalgebra for the law " V ". The roots of SU(n) are solutions 
x 

of the equation r n - (r,r)r n-2 = 0. We shall normaliz e them by (r,r) = i. In a 

* This is not a Jordan algebra. However, one could have started from the 
dimensional representation realized by the n x n hermitian matrices. 

responding symmetrical algebra is a Jordan algebra. 

2 
n 

The cor- 
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Cartan algebra C, there are n(n - i) normalized roots rk, (if r is a root, -r 

is also one), for every a 6 C, the spectrum of F(a) has n - i zeros for the 

C ~ eigen space C and on the orthogonal space the spectrum is the set 

Spectrum F(a) l = {i(a,rk)} 
C m (1.21) 

Define (for n > 2) 

then 

n- 2 
7--~ qk = rk V r k = (-rk) V (-rk) (1.22) 

(qk,qk) = i 

and they are idempotents of the V-algebra 

(i. 22' ) 

n - 4 
qk V qk - -  qk (1.23) 

#n(n- 2) 

We will call them "pseudo roots" (they are weights of SU(n)) for they satisfy for 

every a 6 C 

= {n - 2, a" 
Spectrum D(a) l ~ ~tqk , ) = (a,r k V rk)} (1.24) 

C 

(all the eigen values have at least multiplicity 2). 

Let us denote by I 6 Hom(G A G,G) SU(n)" , v 6 Hom(G V G,G) SU(n)" " the vector 

space homomorphisms 

%(x @ y) = x A y, ~(x @ y) = x V y 

and consider their right inverse 

o ~' = Identity on G, v o ~' = Identity in G (1.25) 

Note that 

%' and ~' 
A 

mapping T 

and %' can be defined for any semi-simple Lie algebra. As we said 

define co-algebras on G. If T is a G-tensor operator, using the 

of Diagram 2, one can define the G-tensor operators 

A A 
T A T = T o %a and T V T = T o i (1.26) 

and by recursion 

where " 11 |, 11 7. is either A 
i 

nates, in SU(3) octet space 

l' (ei) = Zj,k 

(...(T T) T)...) T (1.26') 
~i 72 ~k 

or " V ". For physicists who need to see coordi- 

i g , 3 8 ek .% - ~ fijkej e k, (e i) = Zjk ~ dijkej 

% The fijk and dij k are the structure constants introduced by Gell-Mann. 
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If we set T(e i) = Ti, then 

1 (T V T) = 3 
(T A T)i = Ej, k - ~ fijkTjTk , i Ejk 5 dijkTjTk 

Note of course that we can define T A T, T V T for any real irreducible E-tensor 

operator when G is a compact group when dim Hom(ETE,E) G = 1 (~ is A or V) 

since there is the irrep of G on E is orthogonal and leaves invariant a eucli- 

dean scalar product. Indeed, % or v are then surjective and are isomorphisms 

between (Ker %)~ and E (reap., (Ker ~)~ and E) so we can define their right 

inverse. 

Let us consider the more particular case when the G-morphism T is F 

itself (see Equation (1.6)), i.e., the representation (up to the factor i) of the 

Lie algebra on 3£. Then F A F = iF. When SU(3) is used for elementary particles, 

F V F is often called the D-coupling operator (see 5.1b). For SU(2), in order to 

follow the tradition started in elementary school, we denote by × the Lie algebra 

law (= vector product) 

[F(a),F(b)] = iF(a × ~) (1.27) 

and by eijk the structure constants 

e i × ej = Ekeijke k (1.28) 

So if A is a vector operator (with A(ei) = A i 

+ ÷ i E s..,[A. (1.29) 
(A × A) i = jkE £.I3~.,A.A,3 K = ~ jk 13K 3'Ak] 

Remark. 

and in particular 

Given two G-tensor operators A and B, we can also define 

AV B =A O B o t, AA B =A @ B o ~ 

A x B. This reduces to Equation (1.26) when A = B. 

1.6. More on SU(2) and its Tensor Operators 

For SU(2) the symmetrical algebra V on the adjoint representation G 

is trivial, dim(G 0 G,G) SU[2)" = dim(G A G,G) SU(2)" = i 

Much more generally, given any three irrep on Ejl ~ Ej2, Ej3, 

dim Hom (Ej 8 )G 1 E32'Ej3 = A(Jl'J2'J3) = 0 or 1 (1.30) 

where A(Jl,J2,J3) = 1 if lJl - J21 ~ J3 ~; Jl + J2 (triangular relation), 0 

otherwise. This property, under an equivalent formulation, is called the Wisner- 

Eekart theorem by physicists, and groups with the property (1.30) have been called 

simply reducible by Wigner. 
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Let us give here two references that we shall quote often in this section. 

A. Quantum Theory of Angular Momentum - a collection of reprints and 

original papers edited by L. C. Biedenharn and H. Van Dam, Academic 

Press, New York (1965). 

B. Spectroscopic and Group Theoretical Methods in Physics, Racah Memorial 

Volume, North Holland, Amsterdam (1968). 

In B p. 131-136, Wigner proves the following theorem for finite groups. 

Theorem 

Let G be a finite group and H a subgroup. The following conditions 

are equivalent 

a) The restriction to H of any irrep of G is multiplicity free when 

decomposed into irrep of H; / 

b) The ring of conjugation classes by H of elements of G is abelian. 

Let us explain a) and b) in more detail. 

a) Given an irrep of G on ~, its restriction as a representation of H 

is generally reducible. To say that it is multiplicity free means 

that in its decomposition into irreps of H no such irrep appears 

more than once. Equivalently, one can say that the commutant of the 

representation of H (i.e., the set of all bounded elements of [~) 

which commute with every operator of the representation of N; this 

set is an algebra) is an abelian algebra. That last condition can be 

used as definition of multiplicity free for any linear representation 

of any group. 

b) Given a 6 G, the conjugation class of a by H is the set 

A = {hah -I, Vh 6 H}. Given two such classes we define as A • B the 

set {ab, a E A, b 6 B}. Condition b) states that for any pair of 

classes, A • B = B • A. It seems easy to extend Wigner's proof to 

compact groups. Examples of pairs of group and subgroup which satisfy 

this theorem: S(n) and S(n- i), U(n) and U(n- l).t 

From the group law one verifies that the direct product SU(2) × SU(2) 

and its diagonal subgroup satisfies b); by Wigner's theorem this implies (1.30). 

would be interesting to extend, if possible, Wigner's proof to type I locally 

compact groups.tt 

It 

t After the lecture, Professor G. Mackey gave a proof for compact groups, using his 
theory of induced representations. 

tt Wigner proved in 1941 (paper reproduced in reference A., see 1.6) for finite 
groups another property equivalent to a) and b). Let ~(g) the number of square 
roots of g in the finite group G, and v(g) the number of elements of G 
which commute with g. In a finite group ~£(g)2 _ ~(g)3 ~ 0. The equality 

g 
occurs if and only if G is simply reducible. 
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SU(2) 

Another property of SU(2) that we have mentioned is that any irrep of 

is equivalent to its contragredient. For any irrep D. of SU(2) this de- 
3 
D. and its dual E~ 
J 3 

fines an isomorphism C: E. ~ E~ between the E. space of 
3 3 3 

with the canonical property 

~ C T (-l)2Jc (1.31) Ej E3; = 

for the transposed C T of C. Physicists normalize C by 

cTc = 1 (1.32) 

We are by now ready to give you a glimpse of the calculus developed in- 

dependently by Wigner and Racah for the necessity of physics in order to exploit 

completely rotational invariance in atomic physics (and later on in nuclear physics 

and many other branches of quantum physics). Many of the numbers observed in atomic 

spectra (sp~cing between neighbors in a family of lines, relative intensity of these 

lines, etc.> turn out to be algebraic functions of the coefficients defined by 
I 

Wigner and ~acah. Since they are so useful, the literature on Wigner and Racah co- ! 
efficients is abundant. They have been found to possess unexpected symmetries, 

there are u~proven conjectures on them. However, the language of this physics folk- 
i 

lore seems to be unknown to the mathematically minded ethnographer. 

I hope there will be much discussion on this subject in this Rencontres. 

The rest of this section should help to start it. 

To write Wigner's "three j" coefficients, physicists choose a base in 

each Hilbert space E.s carrier of the irrep Dj, for every j. It is formed by 
J 

the eigen vectors of a chosen U(1) (Cartan subgroup of SU(2)) ordered in terms of 

decreasing eigen value ~ (going from j to -j by integer steps). It is obvious 

that most of their properties are base independent. 

Consider an element of the one-dimensional vector space 

(E~31 8 E~32 8 E.j3)G = Hom(Ej I @ E.32,Ej3)G (1.33) 

and denote it 

o o 

(jlj 2J3) (1.34 

The isomorphism C and its inverse, defined in (1.31), (1.32), transform 

the tensor (1.20) into its following images 

(313233) ~ (Eli ~ E I. @ E I. )G = Hom(Ej I 8 E. @ E. ,~)G (1.35) 
i J2 33 32 33 

(jlj?jq) E (Ej 8 E. 8 E. )G = Hom(~,Ej ~9 E. ~9 E. )G (1.36) 
...... 1 32 33 i 32 33 

o @ E. @ E. )G = Hom(EjI,Ej 2 @ E. )O (1.37) 
(jlJ2J3) E (Eli 32 33 33 

and so on. 
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o o o 
Equations (1.35), (1.36) show that (jlJ2J3) (resp., (jolJ2J3)) belong to 

a one-dimensional representation of the permutation group of the three factor spaces 

labeled by 31' J2' J3" Computation shows that the representation is 

,,,, (symmetrical) if Jl + J2 + J3 is even 

~ (antisymmetrical) if Jl + J2 + J3 is odd 
(1.38) 

The composition of the two homomorphisms 

o o o 

(JlJ2J 3) (JlJgJq) 
E. 0 E. 0 E. ~. ~ .... o~ > E. 
31 3 2 3 3 31 

is an element of Hom(E.31 O E.32 0 Ej3 , E.31 0 E.32 0 E.33)G 

q1 2 3) 

@ E. 0 E. (1.39) 
3 2 33 

o o o 

that we denote (jlJ2J 3) 

Wigner proved (see reference A and Equation (24.18b) of his book quoted in 

the Introduction) 

f o o o 
D. (g) 0 Dj2(g) 0 Dj (g)d~(g) = (jljvjq)(jljgj~) (1.40) 

SU(2) 31 3 . . . . . . . . .  

where dp(g) is the invariant SU(2) measure of mass [ dp(g) = i. 
J SU(2) 

This also defines for ~ou, up to a sign, which element of the one- 

dimensional vector space (E 1 8 E 2 0 E3)G has been chosen by physicists for 
o o o 

(31 j 2 j 3 )" 

stance 

Of course tensors can have their indices contracted (notation x); for in- 
o o  c X O O  
(abx)(cpq) is the composed homomorphism 

o o c  
( a b o )  0 I 0 I 

E 0 Eb o E 0 E P q~ E a p q c 

Wigner's notation is v@ry handy! 

Note that equation (1.40) yields 

~ E  o E  
P q 

o o o  
(cpq)~ 

I x x x jlJ2J3 
SU(2)XjI(g)xj2(g)xj3(g)dD(g ) = (jlJ2J3)(x x x ) = A(jl,J2,J3) 

(1.41) 

where Xj is the character of D.. 
3 

Approximate expression, asymptotic expression, for large j's exist for 

the components of those tensors in the basis described above (see ~he thorough bib- 

liography of reference A (see 1.6)). Regge (paper reproduced in A (see 1.6)) has 

found a 72 elements group of symmetry ~ Aut(S(3) x S(3)) for the set of components 
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~i~2~3 o o o 

(jlJ2J3) of (jlJ2J3).T 

In 1941 Racah and Wigner (both papers reproduced in A (see 1.6)) intro- 

duced a "six j" symbol (numerical function of six irrep of SU(2)), also known as 

recoupling coefficient. It is canonical. 

Consider the sequence of SU(2)-homomorphisms 

(ofa) If 8 ~aoo) 
Ee coo ~ Ef 8 Ea - ~ Ef ~ E b 8 E c c 

(o~e~ 
a=o)~ E (1.42) Ed @ Ec e 

Since E is the carrier of an irrep, this 
e 

multiple of the identity operator on E . 

symbol 

SU(2)-homomorphism must be a 

e 
Its trace defines (up to a sign that I do not guarantee here) the six j's 

l abc I - -b+c-d+e+f x xx xx 
= (-i) (efxa) (~bc) (fbd) (ace) 

i defJ 
(1.43) 

, labc I " is an orthogonal matrix with in- Wigner has shown that for given a, b, d e, 'def 

dices c, f. He also proved the relation (in his book, Chapter 24) 

def, = ;If Xa(r)Xb(s)Xc(t)Xd(st-l)Xe(tr-l)Xf(rs-l)d~(r)d~(s)d~(t) 

Asymptotically its value is a rapidly oscillating function of some variables, but an 

average over some range of one argument yields, when a, b, c, d, e, f form the 

edges of a tetrahadron, the asymptotic value 

abcI2 + (24~V) -I 

def2 

where V is the volume of the tetrahedron. 

G. Ponzano and T. Regge (in reference B (see 1.6), first paper) have con- 

jectured precise asymptotic formulae for {abcl whether or not the valu~ of the 
def 

arguments can be the length of the edges of a tetrahedron. 

Furthermore, Regge has found (paper reproduced in A (see 1.6)) the largest 

linear group acting on the Z-module generated by the symbols a/2, b/2, c/2, d/2, 
~abc 

e/2, f/2 and having idef I as invariant. It is the group S(3) × S(4) which in- 

cludes the permutation group of the columns. 

T Most of these symmetries appear naturally (see Bargmann's paper in A (see 1.6)); 
for the others see G. Flamand, Ann. Inst. H. Poinc~, ~, 353 (1967). 



62 

Neatest and very symmetrical expressions for the (jlJ2J3) and 

{ JlJ2J.3~ symbols can be found in the paper of V. Bargmann (last paper reproduced 
J4J536~ 

in book A (see 1.6)) who uses Hilbert spaces of analytic functions as spaces of 

SU-2 irreps. 

2. ATOMIC AND MOLECULAR PHYSICS 

2.1. Group Theory and Atomic Physics 

The application of group theory to atomic physics is essentially of this 
÷ ÷ -~ 

type; only the even part f+(r) = i/2(f(r) + f(-r) (respectively, the symmetric 
÷ ÷ ÷ ÷ ÷ ÷ --> ÷ 

part f+(rl,r2) -- i/2(f(rl,r2) + f(r2,rl)) of f(~) (resp., f(rl,r2)) contributes 

I I "÷ ÷'13+ "3÷" to the integral over the whole space f(~)d3~r (resp., fkrl,r2)a rla r2). This 

is the explanation of two empirically known facts (before 1926), the Laporte 

selection rule for atomic spectra and the partition of the helium spectrum into two 

independent subsets (attributed to ortho and parahelium). Of course, these examples 

are the simplest because they are based on invariance under a two element group 

(Z2). We will have to use invariance under SO(3), S(n) and U(2) for atoms and 

invariance under subgroups of SO(3) for molecules. 

2.2. The Correspondence Principle 

We had a general description of quantum mechanics, but now we have to, know 

how to study a given physical system. There does not seem to exist an axiomatic 

formulation of the question, so here again, physics is still an art! However, when 

the system under consideration, with a finite number of degrees of freedom can be 

described by classical Hamiltonian mechanics, the "correspondence principle" tells 

physicists how to treat it quantum-wise. 

Let h(Pk,qe) be the classical Hemiltonian and 

dPk ~ ~h ~ ~h 

dt ..... -k = - ~qk' = ~P£ 

the Hamiltonian equations. The corresponding observables pz, Q£ in quantum 

mechanics form the abstract algebra with unit 

PkQz - QzPk = [Pk'Q£ ] = - i~6k~ 

[Pk,Pz] = 0 = [Qk,Qz] (2.1) 

where 2~h is Planck's constant. 
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In the cases we shall study, h is a sum h = h t + h It where h t is a 

function of the p's and htt is a function of the q's. Then H = H t + Hte 

where H t and H ~t are the same functions respectively of the P's and the Q's. 

There is yet no synthetic formulation of quantum mechanics as there is for classi- 

cal mechanics by symplectic manifolds (see, however, work in progress by Kostant, 

Souriau). We also know that the relations between the classical and quantum treat- 

ment of the same problem are not simple (see e.g., Van Hove's work in 1951 compar- 

ing the two automorphism groups). 

The Hamiltonian operator is the generator of the group of time transla- 

tions 

[H,Qk] = i~Qk , [H,P~] = i~ . (2.2) 

A representation of the algebra defined by (2.1) and (2.2) was obtained, indepen- 

dently of Heisenberg's work by Schrodinger, using the concept of de Broglie's waves. 

Indeed, the algebra (2.1) is realized by self-adjoint operators of LOC) where 

is the Hilbert space of square integrable functions ~(qi ). Then 

Qk P = qk ~, P£P = ~ ~ P . (2.3) i ~q% 

The ~ are also functions of the time (t) and the SchrDdinger equation is 

H = i~ 9-~ . (2.4) 

This representation raises some analysis problems. On the other hand, 

von Neumann's theorem (J. von Neumann: "Die Eindeutigkeit der Schr~dingerschen 

Operatoren", Math. An~le~, 104, 5]0 (1937)) tells us that all irreducible represen- 

iP k iQ~ 
tations of the algebra defined by Equation (2.1) are equivalent when e , e 

are realized by unitary operators.t 

Quantum mechanics was also discovered by Dirac who gave the neatest for- 

mulation of the "correspondence principle".## In classical Hamiltonian mechanics 

one has also a Lie algebra, that of the Poisson brackets (P.B). Let f, g be two 

functions of the p's and the q's, 

~f ~g ~f ~$ (2.5) P.B.(f,g) = E% 
~q~ ~q~ ~q% ~P~ 

For systems with an infinite number of degree of freedom, as they appear in 
statistical mechanics and field theory, this is far from true. Infinities of 
irreducible representations of (2.2) have been given first by Friedrichs, Van 
Hove, Ggrding and Wightman, Segal and several other physicists and mathematicians. 
An excellent thin book on the subject is by A. Guichardet, Alg~bres d'Observables 
Associ~es aux Relations de Commutation, Armand Colin, Paris, (1969). (See also 
G. Mackey, Duke Math. J., 16, 313 (1949)). 

## Historically, the expression "correspondence principle" had a more restricted 
meaning. 
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The Lie algebra of the corresponding quantum observable is 

[F,G] = i~ quantum observable of P.B.(f,g) (2.5 t) 

you surely know l~]2~dqk , where ~ is a solution of Schr~dinger As 

Equation (2.4), is the density of ~robability to find the system at the coordinate 

{qk }. This of course appeals very much to physicists. As mathematicians you will 

like just as well to work with the abstract algebra. As a short, but fundamental 

illustration of the use of that algebra, let us prove the Heisenberg uncertainty re- 

lations. 

Let A, B be the self adjoint operators corresponding to the observables 

a, b. If x> is a given state of the physical system we study, we have seen that 

<xAx> is the expectation value of "a" for x> and the mean square dispersion of 

probability is given by 

(Aa) x = l<x,(A - <x,Ax>)2x>l I/2 = I<x,12x>l I/2 = II~II (2.6) 

where 

= A - I<xAx> (2.6 t) 

By Schwarz' inequality 

i< 
(Aa)x(Ab) x = l l i~ l l  • l l'~xll ~ l<Ix,~x>l ~ 71 x'[A'B]x>l (2.7) 

If A and B satisfy the same canonical relations as the P's and Q's we do 

obtain 

i 
(Aa)x(Ah)x ~ ~ ~ (2.8) 

2.3 Particle of Mass m in a Spherically Symmetric Potential 

Let V(r) be a spherical symmetric potential, where r denotes I~I. 

The Hamiltonian of the particle is 

1 ~2 
H = ~m + V(r) , (2.9) 

which is invariant under the orthogonal group 0(3). Using the vocabulary of 1.3, 

H, ~2, V(r) are "scalar operators"; ~, R and R x ~ = ~ are (polar and axial) 
÷ ÷ 

vector operators. (So we put an arrow on .them!) If, a, b, etc., are vectors of 

the three-dimensional vector space E 3 of the adjoint representation of 

should write the canonical commutation relations (2.1) 

E~(~) ÷ ÷ 1 ÷ ÷ ÷ ÷ ,Q(D)] = i~ ~ B(a,b) = i~a,bX , (2.10) 

where the Cartan-Killing form ~ has been defined in (i.ii).# 

0 (3), we 

# See also the Appendix on commutation relations at the end of 2. 
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From (2.10) and the definition by the correspondence principle of the 

angular momentum operator (see end of 1.5), ~ = R x ~, we obtain 

÷ ÷ ÷ ÷ 

[L(a),L(b)] = i~(a A b) , (2.11) 

which confirms that the vector-operator representing the angular momentum is the 

representation (up to i) of the 0(3) Lie algebra on the Hilbert space of our prob- 

lem. 
~) ÷÷ 

Some physicists write ~ • ~, ~ • ~ for ~( , e(n). But do not be sur- 

prised if in all physics text books an orthonormal basis of vectors notations Qi' 
÷ ÷ ÷ ÷ ÷ ÷ 

Pj, L k are used for Q(ei), P(ej), L(ek), etc. 

The operators corresponding to the observables which are constants of 

motion generate the algebra {H} ~ , the commutant of H. Hence, the equation that 

one deduces from (2.10) and the definition of 

÷ ÷ 

E E 3, [L(a),H] = 0 or symbolically [L,H] = 0 (2.12) 

means both that the Hamiltonian is invariant under rotations and that the angular 

momentum is a constant of motion. 

The Casimir operator (with the physicists' normalization) of 0(3) is 
~2 3 2 

= Ei=IL i. As is well known, its values for irreducible representations of SU(2) 

are j(j + i)~ 2 where 2j is an integer ~ 0; and 2j + i is the dimension of the 

representation. Only integer values of j appear in the S0(3) irrep, when the 

state vector is an eigenvector of ~2 with eigenvalue j(j + I)~ 2, we say shortly 

that the corresponding angular momentum is jh. 

2.4. The Hydrogen Atom 

Consider two particles of mass ml, m 2 electric charge Ze, -e (Z 

positive integer). The total Hamiltonian for this system of two particles is 

where 

+2 
Pl 

h 
tot. 2m I 

r = with r = - r I. 

Introduce the center of mass 

is a 

+2 
P2 Ze 2 

-- + - -  , (2.13) 
2m 2 r 

÷ ÷ ÷ m2 ) -i r 0 = (mlr I + m2r 2)(m I + 
÷ ÷ ÷ ÷ 

and r as new variables instead of r I and r2; let P0 

conjugate variables. Then 

÷ 

and p the 

+h 

where 

+2 
PO *2 + ~--- Ze2" h 

htot. 2(m I + m2) (2m r ) = cm 

(2.14) 

(2.15) 

m = mlm2(m I + m2 )-I (2.15 I) 
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The motion of the center of mass is described by h while h corresponds to the 
cm 

internal energy of the system. So quantum-wise, we have to study the spectrum of 

~2 Ze 2 
H 2m R ' (2.16) 

for obtaining the energy of the hydrogen atom levels. The first quantum study of 

the hydrogen atom was made by Pauli, Z. Phys. , 36, 336 (1926) before SchrSdinger's 
÷ ÷ 

equation was published. Pauli did study the abstract algebra generated by R, P, H 

and Equations (2.1), (2.2), and (2.15). The angular momentum ~ = ~ x ~ is a con- 

stant of motion. Another constant of motion is the Runge-Lenz vector 

Note that 

I = y(Ll + x ~ - ~ x ~) + ~ % ~ with X = mZe 2 (2.17) 

~(LI ÷ x ~ . . . . . . . .  P × I) (R ~)~ ~(~2) i~ P(P R) (~2)R + i~ 

so we can check that 

(2.18) 

[~,H] = 0, [~,H] = 0 (2.19) 

.123) 
We recall that sij k = sign of the permutation ~ijk or 0 if two in- 

dices are equal. From now on we will use the Einstein summation convention, i.e., 

summation of repeated indices is implied, and we find 

[Li,Lj] = i~gijkLk, [Li,Aj] = i~E...~13K~ (2.20) 

[Ai,A k] = -i~2mHSijkL k 

~ . ; = ; . I = o  

~2 _ 2mH(~2 + ~2) = (Ze2m)21 

(2.21) 

(2.22) 

(2.23) 

Let us just consider the bound states of the hydrogen atom. They correspond to the 

spectrum of H < 0. Let P_ be the projector on the bound states. For any X 
÷ ÷ 

write X- -- XP . From (2.19) when X is ~(~) or A(b), 

P XP = XP = P X = X- 

Furthermore, -2mH- is an inversible positive operator. Let (-2mH-) -I/2 be the 

positive square root of its inverse and define K~ = A-(2mH-)-I/21" Then Equations 

(2.20 i) to (2.23) read 

ILZ i - i - IL: i - i 
[~ ,~ Lj] = ~ ~ijkLk , [~ ,~ Kj] = % Sijk< 

(2.20 S ) 

IK~ " 1 - i - 
[~ ,~ Kj] = ~ gijkLk (2.21') 

L " K = K • = 0 (2.22) 

Zem 2 -i i K-2 ~-2 2 ~--~ + = (---~--) (-2mH) (2.23) 
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We last define 

~(+1 i ~(-1 i ~(-) (2.24) =~ +~ 

so the previous equations read 

c (2) = i iS( ) °0 (2.2s) 

~(+)2 = ~(_)2 = !((Z~ )2(-2mH)-14 - i) 

The spectrum of this operator is j(j + i) = (n 2 - 1)/4 with 

integer. 

(2.26) 

2j + 1 = n, positive 

So the energy spectrum of the bound states of the hydrogen atom is 

(Ze2) 2 m -Z2(e2. 2me 2 -i (Z~)2mc 2) (2.27) 
(n positve integer, ~n = -~- 2n 2 n2 -~c ) 2 2n 2 

where 
2 

e 1 
~c 137.03... (2.28) 

in rationalized units of charge, ~ is the fine structure constant, a dimensionless 

fundamental constant of physics. 

Some Physical Comments. The ratio binding energy/electron rest-mass energy 

is the number 

gn (Z~) 2 

2 mc 2n 2 

The value of every physical observable we can compute will appear as the product of 

a pure number and the quantity of same physical dimensions built with the constants 
2 

e, ~, m, c. Example: length ~/mc = 3.86 x i0 -II cm; energy mc = .51 x 106 eV; 

time h/mc 2 1 .28  x 10 - 2 1  = see. The pure number is a function of ~ only. It is 

the value of the observable in the unit system ~ = m = c = 1 that we will use, and 
2 

is the value of e in this system. For instance 

i ~ngs tr~m)-i <i_> = Z ~ ~ ~ (i 10-8 cm)-i = (~ 

We have studied not only the bound state of the hydrogen atom 
+ - 

p e (rap = 1836 me) (the nucleus can also be a deuteron ~ 2m ), but also that of 
+- + - P 

positronium e e (m I = m 2) , munomium ~ e (m = 207 me), ~-atom, H-atom, ionized 

Helium ion H+e, etc. 

More On The Group Aspect. The states of energy ~ are eigen states of 
n 

~(+)2 and ~(_)2 and they form the space ~ of the irrep (j,j) of S0(4); 
n n 

has dimension 

(2j + 1) 2 = n 2 (2.29) 
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The Lie algebra of the physical rotation (~) is the diagonal of SU(2) 

@ SU(2) = S0(4), so the representation of the rotation group in ~n' space of the 

n - i n - i) of SO(4) reduces to irrep (J'J) = ( 2 ' " 2 

2j 
(j,j)Iso(3) = @E=0DE (2.30) 

i.e. , 

= 0, l,...,n - i (2.30') 

(z~__/) 
2 

m 

~= 

n 
I 

, ~ , , : ~- J , J : : 3 

. . . .  2 

0 -i 0 1 -2 -i 0 1 2 -3 -2 -i 0 1 2 3 -4 

0 i 2 3 ... etc. 

S p d f 

FIGURE 2. i. LOWEST STATES, IN A LINEAR ENERGY SCALE OF THE HYDROGEN ATOM 

There is an infinite number of states with energy between -s 
and 0 because of the dependence in r -I of the potential 
for r ÷ =. ~The eigenvectors of the abelian algebra genera- 

÷L ÷ ÷ 

ted by H, L , L(e 3) form an orthogonal basis for the Hilbert 
space of bound states. A complete set of labels for them is 
the quantum numbers n, ~, m; n = positive integer, ~ and m 
integers 0 ~ g ~ n - i, -g ~ m ~ g, corresponding to the eigen- 

values Z(~)2/2n 2, ~(g + i), m of (mc2)-iH, ~-2~2, ~-l~L(e3 )÷ 

Note that the trivial representation appears once only for each n, and 

from the Frobenius reciprocity theorem we know that 

@2j=0 (j 'j ) = UD0 (2.31) 

the induced representation of S0(4) by the trivial representation of S0(3). In 
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other words, P_~= L 2 (functions on $3) since the sphere S 3 is the homogeneous 

space S0(4)/S0(3). (This was exploited by V. Fok, Z. Physik, 98, 145 (1935), see 

also L. Hulthen, Z. Physik, 86, 21 (1933).) 

From Mackey's theory of induced representations, (2.31) is also the content 

of the representation of R 4 D S0(4) = E 4 (euclidean group in four dimensions) in- 

duced by the trivial representation of R 4 [] SO(3), the stabilizer of any chosen vec- 

tor # 0 of R 4. This is an irreducible representation of E 4. We can also con- 

sider P_~ as the space of an irrep of S0(4,1) (obtained by deformation of the 

irrep of E 4 considered above). However, the physical meaning of the generators 

(representing the elements of Lie algebra) of E 4 or SO(4,1) is not very trans~rent! 

The spectrum of H on P+~, (positive energy) is (+0,~). One cannot 

speak of eigenvectors of H for the positive energy = unbounded states of a proton 

and an electron and one has to study their scattering. However, since HP+ = P+H 

+(2mHP+)-i/2 ÷ is a positive operator one can define ~K + = ~ and i/~ LP+ and 
÷+ 

i/h K , which generate a S0(3,1) Lie algebra as was noted and exploited by V. 

Bargmann, Z. Physik, 99, 576 (1936). Thus, P+~ is a direct integral of (infinite 

dimensional unitary) irreps of SO(3,1), the Lorentz group. It is also the space of 

an irrep of the inhomogeneous S0(3,1) that we call the Poincar~ group (it is an 

irrep of spin zero and fixed mass m > 0). 

What we observe mainly in atoms are their emission or absorption of 

photons of frequency 

= ~l~(~nl - ~n2 ) (2.32) 

So the wave length is 

which is 

n I n 2 

4 
~ ~ 103 times the "size" of the atom. 

All large enough frequencies of (2.32) were already seen in the spectrum 

of atomic hydrogen. In fact, there is a "fine structure" which corresponds to a 

relative splitting in the energy of the states with ~ # 0 of the order of 
2 ~ 1/2 10 -4. 

The theory even predicts the intensity of the spontaneous emission of 

photons. Since its wave length is large compared to the atomic size, the light wave 

is a dipole emission# and the probability for spontaneous emission of a photon from 

# Electromagnetic waves, predicted by Maxwell's equations, were produced by Hertz 
with an oscillating electric dipole. An example of such a dipole would be a 
charge -e rotating around a charge +e with a given frequency ~. That light 
was an electromagnetic wave was a Maxwell hypothesis and Selenyi, by clever ex- 
periments, verified in 1913 that light emitted by atoms was a dipole radiation. 
(Higher multipoles occur for more complicated charge distributions for which the 
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state x> to state y>(E x > E ) is 
Y 

4 Ey)3 ÷ 2 
= - <xeRy> Xxy ~(E x I I (2.33) 

(Note t h a t  <xeRx> i s  t h e  e x p e c t a t i o n  v a l u e  of  t he  e l e c t r i c  d i p o l e  of a s t a t e  and,  

as we shall see, it vanishes.) The intensity of the emitted light by N atoms in 
X 

state x> i s  

4 - E )4e2ZTrP P~P R. (2.34) 
ixy = Nx ~(Ex Y k XK y g 

The W i g n e r - E c k h a r t  theorem ( s e e  b e g i n n i n g  of  1 .6)  p r e d i c t s  t h a t  f o r  a l l  v e c t o r  o p e r ~  

tors, the matrix elements between two given eigenstates x>, y> of ~2, are eolinear. 

Example. For x>, y> eigenstates of H 

-i~ + + 
m <xPy> = <x[H,R]y> = (E x - 

Consider from now on states which are eigenstates of 

Note that 

<xLy> = 0 if ~ # ~ , 
x y 

while for a general vector operator 

<xRy> = 0 if ~x + ~y = 0 or l~x - ~y I>I 

However, we should have taken into account the parity operation 

H(r) = -r 

The corresponding H operator satisfies 

~2 = I, H~ = -~, ~ = -~ 

but, since ~ is an axial vector 

Eigenvectors of ~2 have a well defined parity (the eigenvalue of 

their realization by spherical harmonics, one finds 

HE 2 = (-i)~I 2 

Thus, when x, y have a well defined angular momentum 

<xRy> = -<x,HH~y> = -(-i) Y<xHy> 

SO 

Ey)<xRy> (2.35) 

~2 (eigenvalue ~(E + i)). 

~). 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

Looking at 

(2.40) 

<xRy> = 0 if Z + Z = even (2.41) 
x y 

which is Laporte selection rule we spoke of in 2.1. The set of both equations (2.37) 

+ %1 and (2.41) is equivalent to: no electric dipole transition: <xRy> = 0 <=~ - # i. 

moment Zi~iq i~ = 0; see work of Mie, Poincar~, Rayleigh, etc., on multi- dipole 
pole expansion - it's applied group theory!) The trouble was: classically atoms 
should always radiate and use up their energy fast. Quadrupole radiation in atoms 
can be observed in exceptional cases (rare-earth, atoms in interstellar vacuum). 
In a radiation field, electromagnetic emission of photons can be induced and be- 
come intense: laser! 
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How Does This Theory Compare With Experiments? It is both very good and 

very poor. Within an accuracy of 10 -4 the agreement for the values of the binding 

energy is perfect. The value predicted by the present theory of quantum electro- 

dynamics gives a correction in (Ze)4/n 3 (i.e., a relative correction of (Ze)2/n 

10 -4 ) so that levels with different ~ and same n have a small difference in 

energy, t 

What is very bad is the counting of the number of levels. This can be 
-+ 

seen by putting the hydrogen atom in a constant electromagnetic field (F, electric 
-> 

and B, magnetic). Then one must add to H 

3e e H . ___~. ~+ ~ . ~ (2.42) 
em 2 

-> 

The effect of F (Stark effect) is well reproduced, but not that of B. Indeed, 

levels of the same E should split into 2% + 1 levels separated by eB/2mc. They 

do split, but in an even number of levels! ! This is due to the electron spin which 

we have not yet taken into account (see 2.6). One should also take into account the 

proton spin with effects 

2 
< e ~-31 > m ~(Z~)3mem~ I) 
m m ep 

2.5. The Helium Atom 

It has a nucleus of charge Ze = 2e (mass ~ 4mp) and 2 electrons. After 

separation of the center of mass motion, the Hamiltonian for the internal energy is 

2 
e 

H = H I + H 2 +-- (2.43) 
RI2 

where H i = P~/2m - Ze2/Ri , the hydrogen Hamiltonian and the operator RI2 corres- 

= Ir 2 - _ 711 the relative distance of the two electrons. If ponds to r12 we 

the term in eZ/Rl2 (this is a better than 10% neglect approximation) problem our 

is solved. We will consider only bound states. Let ~(i) be the Hilbert space of 

the bound states of hydrogen atom. Our simplified helium atom has Hilbert space 

~(i) @ ~(i) with Hamiltonian H 0 @ I + I @ H 0 where H 0 is that of hydrogen. So 

the binding energy is - (Z~)2(I/n~ ~ + i/n$)/2 i.e., the sum of the binding energies 

for the two electrons. 

We assume here that the term e2/R12 is a perturbation in the technical 

sense (see Kato's book for mathematical rigor). This term breaks the S0(4) in- 

variance, so the electron levels with different ~ and same n no longer have the 

J" The difference between the two levels n = 2, % = i and 2 predicted by the 
theory of quantum electrodynamics is essentially Z4~52 -3, i.e., ~ 103 megacycles 
and the agreement with experiment is of the order of i0 -I megacycles ~i0 -15 mc2/~, 
Quantum electrodynamies is not yet well defined for the mathematicians! Refined 
predictions for positronium, muonium, etc., are also very precisely verified. 
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same energy. (As we shall see later in 2.6, for a given n, E 

What is left is angular momentum and parity conservation 

÷ 

[L,H] = 0, [H,H] = 0 

and the indistinguishability of the two electrons 

[SI2,H] = 0 

where S12 is the operator permuting the two electrons 

2 = = 
S12 I, SI2(A O B)SI2 B O A E L~(1) O ~(i)) 

The decomposition of the tensor product ~(i) ~ ~(i) 

of symmetrical and antisymmetrical tensor spaces 

3£ (I) O~C (I) =X (I) V ~C (I) e~C (I) A~C (I) 

that we also wrote 

increases with Z.) 

(2.44) 

(2.45) 

(2.451 ) 

into the direct sum 

(2.46) 

~(2) I 
= ~[2] @~[i 2] (2.46) 

give the decomposition into eigenspaces of S12. Let x, y be states of the hydro- 

gen atom. Which of the two states x V y = i/¢~(x @ y+ y O x) or xAy = i/¢~(x @ y 

- Y 0 x) yield the smallest expectation value for the positive operator e2/R12 ? 

It is obviously x A y because the two-electron wave function vanishes when e2/R12 

is very large (while that of x V y has generally a maximum when RI2 = 0). This 

symmetry character yields a new selection rule for the dipole radiation; the matrix 

element of the transition operator is proportional to 

<~I~ I + ~21~s> (2.47) 

÷ -~ l 
Since R I + R 2 is symmetrical, P and ~ must have the same symmetry character 

g2 
= E ( = i) since 

÷ ÷ I ÷ -> J I -~ ÷ 

se <~(R I + R2)~ e> <~,(R I + R2)P > = <~,SI2(R I + R2)S12~ > = (2.47 ~) 

As we announced in 2.1, this shows that the helium levels are to be divided in two 

sets according to their symmetry characters, and eledtric dipole transitions occur 

only within each set. Let me remind you that helium got its name because it was 

observed in the sun before being observed on earth. Its spectrum appears to be com- 

posed of two spectra, one for orthohelium (e = +i), one for parahelium (e = -i). 

This was a complete mystery before quantum mechanics. The explanation was given by 

Heisenberg in 1926, "(Uber die ~pektra von Atomsystem mit zwei Elektronen", Z. Phys~k, 

39, 499 (1926)). It also explained that the orthohelium has more levels; those of 

the type x @ x, as for instance the lowest level (n = I, ~ = 0 for each electron). 

It is observed that corresponding rays (e.g., transitions (i,0) V (n,~) ÷ (i,0) 

V (n e,ge) and (i,0) A (n,~) ÷ (i,0) A (n a,gl) with n I ~ i,£ S ~ 0) of parahelium 

are about three times more intense than those of orthohelium. To explain it, the 

electron spin will have to be taken into account (see also 2.9). 
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2.6. Pauli Principle. The Electron Spin 

We want to pass now to the case of n-electron atoms. The internal energy 

Hamiltonian is 
2 P~ Ze 2 t % 

~n) n e l 
= Ei=IH i + E with H. (2.48) 

R.. l 2m R. 
l~i<j~n 13 l 

Of course H (n) is invariant under the permutation group S(n) of the n elec- 

trons. It is also the case for the electric dipole operator e(EiRi) and for all 

observables. Identical particles cannot be distinguished from each other and every 

prediction of the theory must be invariant under S(n). 

When we consider states of Z (or n) distinsuishable particles, we con- 

sidered (with success for the helium atom) the Hilbert space tensor product of the 

$C for each particle. Consider again ~C (n) = ~ $C [I)" " for n identical particles. 
i % 

S(n) acts on ~C ~n) by the representation s ÷ S(s). Invariance under S(n) of 

all observables requires that they are in the commutant {S(s)}' of the set 

{S(s),s 6 S(n)} of operators. As we saw the rank one projectors wich represent 

physical state are observables of the theory so Vs, S(S)PxS(S) = Px for any vector 

x which represents a state. This requires that the vector x> belonss either to 

~[n] = ~$C(I) (completely symmetrical) or to ~C[in] = ~C (l) (completely anti- 

symmetrical). The othe r spaces $C[ ]~ of the other factorial representations of 

S(n) are excluded as space of physical states. 

We have used both $C[2 ] and ~C[12] for the helium atom. However, the 

use of X[n](n > 2) for atoms does not represent nature. Indeed, the ground state 

of any atom would have all electrons with the same binding energy (of the order of 

(Z~)2/2). Experimentally, only two electrons have this binding energy (X-ray spec- 

trum for Z-large enough). The necessary energy (called ionization energy) for re- 

moving a first, a second, a kth ..., the Zth electrons of any neutral atom in- 

2 2/2 . crease irregularly from a fraction of e to Z(e) Moreover, as we shall see, 

vectors of some other ~(n) do appearX The solution to this puzzle is that ~C [I)" " 

is not the Hilbert space of the bound states of one electron in a constant potential. 

The electron has another degree of freedom~ the spin and the Hilbert space of its 

states has to be changed into a new 

X(1) = /(i) @ K ( I )  

where i (1) is the L2(R3,t) previously called 3C ( I )  and K (1) is a two- 

dimensional Hilbert space. Pauli was the first in 1924 to introduce the spin as an 

intrinsic angular momentum and magnetic moment for the nuclei, but it was Goudsmit 

and Uhlenbeck who introduced in 1925 the spin as an intrinsic angular momentum h/2 

for the electron. This explained the number of energy levels which appear in the 

Zeeman effect, but it did not explain the magnitude of their splitting. Indeed, the 

magnetic moment produced by an electric charge e moving with an angular momentum 
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j (Ampere's law!) is 

~ / 2-~c gJ/ (2.49) 

where e~/2mc is the Bohr magneton. For the orbital momentum, g(l~/~l integral) 

g = i, but for the spin lJ/hl = 1/2, g appeared to be 2. This was a mystery 

solved by Thomas in 1925. It is a relativistic effect. 

It is an experimental fact that we have to use Fermi Statistics for elec- 

trons, i.e., the Hilbert space of electronic states of an n-electron atom is 

• ( n )  = ~(i) . ,,(n) @ [(n) 
[in] C wh£L[ ]h _[ ]~. (2.50) 

where ~(i) is the (new) one electron Hilbert space defined in (2.48). 

c 
Since dim K (I) = 2, the Young diagram of [ ]h has only two lines of 

length h I ~ h 2 a 0. Of course h I + h 2 = n; we will show that h I - h 2 is the 

chemical valence. 

The diagram of [ ]h in l(n) is the one symmetric through the diagonal. - [  ]h 

It has two columns h I ~ h 2 ~ 0. In other words, it has h 2 lines of length 2 

and h I - h 2 lines of length i. That means that it cannot be completely symmetri- 

cal in more than two electrons, i.e., there can be only two electrons at most in 

each orbital state; then two electrons must have "different spin states", or more 

exactly, their spin-state has to be antisymmetrical. This is the Pauli principle, 

discovered by Pauli (Z. Physik, 31, 765 (1925)). 

FIGURE 2.2. YOUNG DIAGRAM OF THE ORBITAL PART OF 

n-ELECTRON STATE: l(n) HERE n = 21. ~[ ]~ 

2.7. Atomic Shell Structure - Periodic Table 

We can now clearly describe the lowest state of an n-electron atom. The 

orbital part is a vector of ~(n) obtained by filling all the lowest energy states, 

putting only two electrons in each electronic orbital state. Of course, in atoms 
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with n > i electrons,# the two specific properties of the I/R potential dis- 

appear. The number of bounded states is finite, and the S0(4) degeneracy no longer 

exists, i.e., states with the same n and different % have different energy. The 

observed order of increasing energy for the states is given in Table 2.1. 

TABLE 2.1. THE ELECTRON STATES ARE LISTED IN 
ORDER OF INCREASING ENERGY 

n i 2 2 3 3 4 3 4 5 4 5 6 5 4 6 7 ... 

% 0 0 i 0 i 0 2 i 0 2 i 0 2 3 i 0 ... 

Spectroscopist is 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 5d 4f 6p 7s ... 
Notation 

2(2% + i) 2 2 6 2 6 2 I0 6 2 i0 6 2 i0 14 6 2 ... 

Total 2 4 i0 12 18 20 30 36 38 48 54 56 66 80 86 88 ... 

Note that for a given n, the energy increases with %. This is of course 

predicted by computation and can be qualitatively understood. Consider a nucleus of 

charge Ze and k electrons. At infinity an electron will feel the coulomb poten- 

tial (Z - k)e/r, but when it gets near, the probability of finding some of the k 

electrons at the distance r ~ n(Z~) -I ~(mc) -I is not negligible, the (k + i) th 

electron feels a potential above the Coulomb potential. It feels less the differ- 

ence if it is in a ~ = 0 state (more concentrated inside the sphere of radius r) 

than in a % = i state, ~ ~ 2 state, etc., where the concentration of probability is 

more and more on the surface of the sphere. Note also from Table 2.1 that "p shells" 

(% = i) are filled by the 10th, 18th, 36th, 54th, 86th electron and this is just the 

atomic number of the "rare gas" elements, very inactive chemically, Neon, Argon, 

Krypton, Xenon, and Radon. We can even give the Mendeleev's periodic table, in 

terms of electron states, if we know the order of increasing binding energy of the 

states (n,%). Using the spectroscopic notation 

%=0 1 23 4 5 6 

s p d f g h i (2.51) 

This order is, from Table 2.1, (n,%): is, 2s, 2p, 3s, 3p, 4s ~ 3d, 4p, 5s ~ 4d, 5p, 

6s, 5d ~ 4f, etc. The sign ~ indicates roughly the same energy so that the two 

shells are filled simultaneously. Indeed, for the element of % = 2 (d-shell) the 

+ (++) sign indicates i (or 2) more electrons in the d-shell, taken from the s 

# Because of the electrostatic repulsion among the electrons. 



76 

shell. We can now construct a periodic Table. 

TABLE 2.2. PERIODIC TABLE (UP TO ELEMENT 56) 

~=0 2 
elec- 
tron s 
state I 2 

n=l ~ .# 

n=2 Li 

Ca n=4 lI~ 20 
n=5 Rb Sr 

37 38 

n=6 Cs Ba 
55 56 

%=if2(2%+i) = 6 %=212(2%+i) = io ~=3~2(2~+I)=14 

P 

1 2 3 4 5 6 

i!i C N O F Ne 6 7 8 9 I0 

Si 

Ge As Se Br Kr 
32 33 34 35 36 

In Sn Sb Te I Xe 
49 50 51 52 53 54 

1 2 3 4 5 6 7 8 9 i0 

q- + 
Sc Ti V Cr Mn Fe Co Ni Cu Zn 
21 22 23 24 25 26 27 28 29 ~30 

~9 Zr %" ~ ~c ~u ~h ~ ~ ~a 40 41 42 43 44 45 46 48 
La~Hf 57[72 

14 rare earths 
58 to 71 

I 
[ 

~--| 

In d-shell, + (or ++) means 1 (or 2) more electrons in n-d (coming from the 
(n + l),s) state). 

The atomic state of an atom is labeled by the filled states, e.g., Oxygen: 

(is)2(2s)2(2p) 4, i.e., 8 electrons. In general, the electrons fill up all states of 

lower energy and fill incompletely the last "shell"; for example, in the case of 

Oxygen, we can add 2 more electrons in the 2p state. The question which arises is 

which state is the atom ground state for an incomplete shell? We can label this 

state by a Young diagram (let us do it for the first elements). 

TABLE 2.3. YOUNG DIAGRAM OF FUNDAMENTAL STATES 

Z = I 2 3 4 5 6 7 

Name H He Li Be B C N 

Y~iag of orbital is F7 
1(z) 

Y-diag of spin sta~e 
(z) [] 

is~ is is[] 2s 2s 2s I 
2s 2s 2p 2p 2pl ~ 

B EF FFP  FFF 



?? 

Now we can generalize what we say for helium. Given k electrons in the same 

energy state (i.e., k ~ 2(2~ + i)), the lowest energy state of this k electron 

configuration is the most antisymmetrical in the coordinates (k = 2, k = 3, ...), 

so it is the most symmetrical for the spin coordinates (k = 2, k = 3, etc.). This 

is illustrated in Table 2.3 for the 2p-electrons for f = i, 2, 3. When k = 4, it 

is not possible to have a completely antisymmetric tensor on a 2~ + 1 = 3 dimen- 

sional Hilbert space, so we can give the successive atomic states of p shells. 

TABLE 2.4. np-SHELL STATES 

nb of electrons k = 1 2 3 4 5 6 
filled shells 

,a... 

spin statefs~ll~ I 

valence i (or 3) 2(or 4) 3 2 i O 

n = 2 B C N O F Ne 

n = 3 AI Si P S CI A 

n = 4 Ga Ge As Se Br Kr 

n = 5 In Sn Sb Te I Xe 

The ionization energy (energy necessary to extract one electron from the p-shell) is 

increasing with k, as we expect, along a given p-shell, except for the four elec- 

tron state, because it is the first one not completely antisymmetric. 

Although the energy of ns-states is lower than that of the np-state, a low 

excited state of atoms with k = i or 2 is k = i; (ns)(np)2; k = 2; (ns)(np) 3, 

that is, an ns-electron goes to an np-state. This increases the valence by two and 

gives more bounded molecules. 

There would be a lot more to say, even from group theory, about the 

Mendeleev Table. For instance did you notice that the ferromagnetic elements (Ni, 

Co, Fe and also Mn in alloys are together in an incomplete 3-d shell, etc.? But we 

shall stop here. 
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2.8. Atomic States in a Given Shell - Spin Orbit Coupling 

The Pauli principle, expression of the Fermi statistics, simplifies the 

study of atoms. Instead of studying an n-electron system, within a good approxi- 

mation we can (for not too highly excited states) consider k electrons outside a 

closed shell which has angular momentum zero, electric charge (n - k)e (with a 

distribution depending on the electron wave function). This closed shell can be 

considered as a spherical potential and the Hilbert space of states for k elec- 

trons in an n - £ shell is 

k 
~(k) = A (~2%+i @ K2) 

to a good approximation, an electron state is a kth 

metric tensor, x A y A z ... (k factors). 

(2.52) 

order decomposable antisym- 

Example. % = i, k = ~dim~ (I) = dim~ @ K 2 = 6; and dim~C (2) = 15 

= (~) for k = 6, dim~ (6) = 1 (complete shell again). Each decomposable tensor 

of ~(k) can be given a name or a label. That is what the spectroscopist does 

using a complete set of observable ~2, ~2, ~2 = (~ + ~)2, Jz' that is the orbital 

angular momentum ~, the spin angular momentum s, the total angular momentum j, 

and its projection on axis J3" 

TABLE 2.5. THE IS(np)2-STATES IN ORDER OF INCREASING ENERGY 

i S 
Spectrocopist 3P 0 3P I 3P2 ID2 0 

notation 

L and space i ~ i ~ I ~ 2 [-~ 0 ~I] 
symmetry 

S and spin I b J-J I t~--I I ~-~ O ~ 0 ~ 
symmetry 

J = total ang. morn. O 1 2 2 0 
2J+l=nb of states I ~- 3 + 5 + 5 + i =15 

<L.S > -2 -I i O 0 

F-l 
Remark on Table 2.5. Note that the space-antisymmetric H states (P- 

states) are below the ~-] states as we already emphasized. For the symmetric 

states, the S-state which feels more the repulsion than the D-states, is above them. 

Why do the P-states appear in order of increasing J? This is the small spin-orbit 

effect that we can explain in th~ following way. 



?9 

The orbital state of angular momentum L~ 

(e~/2mc)~, while the spin state of angular momentum 

g(e~/2mc)~ with g = 2 (see (2.49)). 

moments has for matrix element# 

produces a magnetic moment 

~h produces a magnetic moment 

The interaction between the two magnetic 

For a state lj,%,s> 

e2c_~_)2 ~ • 

2 "mc 
- -  (2.53) 
< R3 > 

the expectation value of ~ • ~ is easy to compute from 

~2 = (~ + ~)2 = 12 + 21 • g + ~2 (2.54) 

And the expectation value for state lj,~,S,jz> (when Jz is the eigenvalue of 

Jz ) is 
-> 

<L ~> = i • ~(j(j + i) - ~(% + i) - s(s + i)) (2.55) 

where 

I% - s I ~ j ~ % + s~, j + s integers m 0 (2.56) 

This explains the value of <L • S> in Table 2.5. 

We have seen that for hydrogen the <n I/R 3 n> ~ (Z~/n) 3, so the expecta- 

tion value of the spin orbit term is 

<L S> (Z~)2 Z~2 ~ <L • S> . -- ~ Z~ 2 ~ 10 -4 

2n 2 h n n n 

This is an order of magnitude. In the sodium atom (alcaline = hydrogen like) spec- 

trum [(is)2(2s)2(2p)6](3s) (fundamental state) and the [ ](3p) state has the 

largest splitting, i.e., nearly 10 -3 , so the very bright 3p - 3s (yellow) ha-line 

is a doublet. 

2.9. Spin and Euclidean or Galilean Invariance 

In Chapter 2, Sections 2.7 and 2.8, we have mainly used spin as a new 

degree of freedom for the electron. This new degree of freedom has two discrete 

values (often called "up" and "down" in the physics manual) so the corresponding 

Hilbert space K2, of complex valued functions defined in a 2-element set, has 

dimension 2. The atom Hamiltonian (2.48) is independent of this spin degree of 

, acting on space ~ K (n) i.e. it is of the form H @ I the @%(L (n) freedom, of [ Ix []~" 
Equation (2.50). The permutations of the n electron spins are represented by 

operators of the form I @ S(s) which commute with H. So eigenstates of H can 

c The simplest illustration is the helium atom (n = 2). have well defined [ ]~. 

. (k) . @ K(k) # This is a short for ~ ~ ~ applied to ~%+i[ ]% [ ]~" 
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C C [12] The set of states with [ ]X = [2] = ~ was called parahelium, with [ ]k = 

= ~ was called orthohelium. Since dim K (2) = 3 and dim K (2) = i, helium states 
m 8 

(which are tensor products x A y or x V y of different (x # y hydrogen states) 

have the statistical weight (for instance in the Boltzman distribution of thermody- 

namic equilibrium) of 3 for parahelium and i for orthohelium; this explains that 

spectral lines of the former are three times more intense than the corresponding 

lines of the latter. Using the considerations of Chapter i, Section 1.4, on the 

relations between the unitary groups and the permutation groups, we could also con- 

sider the action of the group U(2) on the two-dimensional space K~ I)." Its action 
~(n) c 

on .,[ ]~ is through the factorial representation [ ]I' and this action is on 

,(n) ~(n) c) = I @ (~Ds) ; it commutes with the ~(n) C c[ ]~ @ ..[ ]~ of the type I @ (@D[ ]I 

Hamiltonian H @ I. 

These two points of view are formally equivalent for the classification of 

quantum states, but the SU(2) c U(2) has a deeper meaning. It is related to the 

Euclidean or Galilean invariance. Let G be either group, and G its universal 

covering, i.e., there is a surjective homomorphism G % G. (As we have seen in 

Chapter i, Section 1.2, and will see again in Chapter 4, it is an extension of the 

relativity group which acts through a linear representation on the Hilbert space of 

states. See also O'Raifeartaigh.) There is also a surjective homomorphism 

~ SU(2). (In the Euclidean case for instance G = R 3 [] SU(2); D = semi-direct 

product, where SU(2) is the covering of the rotation group.) This gives us the 

+ ÷ transfoms action of G on ~(i); the one particle-state ~(x,t;o) 6 L2(x,t) @ K O 

into 

(U(g)~)(~t,o) = p(~(~)-i • (x,t); ~(~)-i • o) (2.57) 

Often physicists prefer to write equivalently ~(I) as the Hilbert space of square 

integrable function P of 

K . Then (2.56) reads 
o 

-- ÷ (u(g)~)(x,t) -- 

x,t with value in the two-dimensional Hilbert space 

E=I,2DI/2(~0(g))oj~j- (~(~)-i • (x,t)÷ ) (2.58) 
l 

To summarize ,  t h e  s p i n  i s  r e l a t e d  to  ( e s s e n t i a l l y  t h e  r o t a t i o n  p a r t  o f )  

Euclidean (and a portion of the larger Galilean) invariance; and it is an intrinsic 

angular momentum for the electron. We will study it in 4.5. The value g = 2 for 

the corresponding electron intrinsic magnetic moment is, however, a relativistic 

effect (see Figure 2.5). 

Conservation of angular momentum implies only that ~ = ~ + S (orbital 

+ spin angular momentum) be a constant of motion. In atoms ~ and ~ are sepa- 

rately conserved to a good approximation only because H is spin-independent (see 

Equation (2.48). 
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2.10. Molecules 

The interaction which binds N atomic nuclei and n electrons into a 

neutral molecule (or a charged molecular ion) is essentially the electrostatic 

(= coulomb) interaction. Instead of treating directly a N + n body problem, one 

uses the Born-Oppenheimer approximation where the (heavy) nuclei are considered 

fixed. Take for example the Hamiltonian of the hydrogen molecule (subscript A = I, 

II for the two protons, i = i, 2 for the two electrons, rA, i = I ÷ - ~il , etc.) r A 

2 2 
i ,+2 ÷2 1 ,÷2 ÷2 ~ ) e e 

H = -~-~tPl + Pll) + ~-~tPl + p2 ) - e2( E + ~- + (2.59) 
A=I,II rA,i r12 

. i=1,2 

÷ 

where d = Ir I - rii I the distance between the two hydrogen nuclei is considered as 

a parameter in the Born-Oppenheimer approximation (and the kinetic energy of the 

nuclei will be neglected). When d is very large, a state of (2.59) is in ~(2), 

the tensor product of two hydrogen atom-Hilbert spaces. Consider first the space 

dependence L~ 2) ÷ (r,r) and the two-dimensional subspace h = (x 0 y) ~ (y @ x) 

where x, y are hydrogen states. These two states have the same energy s = s + s . 
x y 

However, in this basis, for h, the Hamiltonian operator HIh is not exactly 

diagonal when d is finite because each electron feels also the attraction of the 

other nucleus, so 

cp 
Hih = (~¢) 

(since it is Hermitian), and its eigenvalues are 

states of Hlh are i/2(x A y) and i/2(x V y) 

of 2Ipl. When d ÷ ~, I PI ÷ 0 and so does e2/d - I PI" When d ÷ 0, e2/d 

- I Pl ÷ ~. But there is a domain for d for which e2/d - I Pl < 0, and a value of 

d for which e2/d - IPl is minimum. The ground state is of the type x @ x, and 

from Fermi statistics the two-electron spins form an antisymmetrical state. Hydro- 

gen (or alcaline) form a similar type of liaison (covalent bond) with electrons of 

unfilled shell of atoms. The number of atoms which can be bound to an atomic (spin) 

X l l  I I I I I  
state X [ I [ I is X I - X 2 in order to form a closed "spin" shell, as was 

2 
discovered empirically before 1920, and X1 - X2 is the "valence" of the atom. 

Quantum mechanics has explained qualitatively and quantitatively the covalent bond 

(W. Heitler and F. London, Z. Phys~k, 44, 455 (1927)). It explains, for instance, 

why the molecules H 2 , H2S , H2Se are of the form H -- 0~ with an angle > 90 ° 
H 

(the repulsion of the two H atoms makes the angle increasing from 90 ° for H2Se , 

H2S , H20 (= 108°). It explains why NH 3 is a trihedron and CH 4 a tetrahedron, why 

H~C /H (d and ~ electrons). It explains mesomery (e.g., 
C2H 4 is flat H 7 --C~H 

for benzene), etc. Group theory is so useful for explaining molecular spectral We 

(2.60) 

c ± IPI. Hence, the two eigen- 

and they have an energy difference 
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have to skip this subject for now and simply refer to an elementary but elegant 

textbook, ~an~ Chemistry, by Eyring, Walter, and Kimball, Wiley, New York (1944). 

The symmetry group of a molecule is a subgroup of 0(3), the three- 

dimensional orthogonal group. When its shape is known experimentally, its symmetry 

group G is known. Let us refer to Wigner's paper (GDttingen, (March 1930), 

p. 133) on the characteristic elastic vibration modes of molecule (given by the 

equivalent classes of G), as examples of the application of group theory. Wigner 

studied CH 4 (whose group G is S(4)) as an illustration. The H. A. Jahn, E. 

Teller theorem (~oc. Roy. Soc. Ser. A, 161, 220 (1932)) proves that the electron 

orbital state of "non-straight" molecules cannot transform as an irrep of G of 

dimension > i. (The irrep has dimension 2 for molecules whose atoms are on a 

straight line.) 

We will study here only one very important example. 

2.11. Measurement of Spin and Statistics of Nuclei 
by the Study of Diatomic-Molecule Spectra 

The Hamiltonian H of a diatomic molecule can be divided into 

H = Helectronic + Hvibratio n + Hrotation + H ~ 

where, to a good approximation, H ~ can be neglected. Helectronic gives the elec- 

tronic states of the molecule; each such state yields a distance d (between the 

two nuclei) which minimizes the energy. The invariance group is 0(2) or if the 

two nuclei are identical, 0(2) × Z 2. Binding energy for such states are typically 

a fraction of 2 (few electron volts). H vibration is essentially the harmonic 

oscillator Hamiltonian for small oscillations around the equilibrium position fixed 

by the distance d. The equidistant spacing of the vibration level is small compared 
2 

to a , and the H rotation yields for each d also rotation energies proportional 

to %(~ + i), ~ integer m 0, and small compared to the vibrational energies (rota- 

tional bands; in spectrum). If the two nuclei of the molecule are identical, which 

is the symmetry of the molecular state for the permutation group S(2) of these two 

nuclei? The symmetry depends only on the spin state of the nuclei, (each of spin j) 

its SU(2) irrep is 

Ds, 0 ~ s ~ 2j; [-I--] s = 2j, 2j - 2, 2j - 4 .... 

S 2j - i, 2j 3, ... 

and the rotational state of the system, [7-] for ~ even, H for ~ odd. 

Since H is independent of the nuclear spin (to a very good approximatio~ 

the symmetry character of the nuclear spin state is a constant of motion (with often 

a lifetime of weeks) and is, as for Nelium, called ortho or para. Because of 

"statistics", the symmetry character of the rotational state is also a constant of 

motion. So the rotational spectrum of the molecule divides into two independent 
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sets of transitions - those between even %, and those between odd ~. The transi- 

tions occur in both states as quadrupolar ~ + 2 + ~, with a (radio-wave) photon 

energy ~ (~ + 2)(~ + ~- ~(~ + i) = 4~ + 6. The number of ~ nuclear spin 

is (2j + l)(2j + 2)/2 = (j + l)(2j + i). The number of ~ nuclear states spin 

states is (2j + i)(2j)/2 = j(2j + i). So if for the molecule the relative inten- 

sity of spectral (rotational) lines is (2j integer ~ 0), j/j +i for % even/% odd, 
h r 

the nuclear spin is j, the statistics of the nuclei is IH x ~I/I~-~ x HI 

Fermi; if it is j/j + i for ~ odd/% the nuclear spin is j the 
~L_a ) I ;.Jj 

= even, 

Ia =  xper - 
mentally, only Fermi statistics is found for half odd integral j (as for the elec- 

tron) and Bose statistics for integral j. We will summarize this important experi- 

mental fact by 
statistics = (-i) 2j (2.61) 

For instance when only even ~ rotational states exist, we conclude that j = 0, 

and the statistics has to be Bose. 

Historically, the first nuclear spin measured (F. Rasetti, Z. Physik, 6__!1, 

598 (19309 was (in 1929) that of N14 (nitrogen molecule N-N). Rasetti found j = 1 

and Bose statistics. But it was then believed that the universe was made of protons 
+ 

p , electrons e , and photons y, (the only particles then known, and that the 

nucleus N14 of charge 7e, contained 14 protons and 7 electrons, thus, half integral 

spin and Fermi statistics were expected. This measurement started a crisis in physics. 

Appendix. On Commutation Relations 

Professor Bargmann pointed out to me that I have spoken of the invariance 

group of the commutation relations only in the context of rotational invariance (see 

Equation (2.10)). Surely it is worth mentioning the general case: consider the 

relations 
[Pi,Qj ] = ih6ij~ (2.61) 

(i,j = 1 to n). Let a = (al...an) , b = (bl...b n) E Rn; we can use the tensor 

operator notations P(a) = EiaiPi, Q(b) = EjbjQj. Equation (2.61) defines a 2n + 1 

dimensional Lie algebra which is a central non-abelian extension ~ of R 2n by 

R 1 (center of ~). This extension is defined by the antisymmetrical bilinear form 

R 2n R n on = ~ R n I o(a @ b, a e • b e ) = a • b t - b • a (2.62) 

where a • b = E.a.b.. The symplectic group Sp(n) which leaves this form invari- 
i i i  

ant is a group of automorphism of ~. 

The corresponding simply connected group G has, up to an equivalence, a 

unique unitary irrep (von Neumann's theorem. Its Schr~dinger realization as opera- 

tors on the space L 2 of functions of n variables: x = (x I .... x n) is Ua= e iP(a) 

with (Uaf)(x) = f(x + a); V b = e iQ(b) with (Vbf)(x) = ei~b'Xf(x). Here x, 

a E En, b E E'n dual of En. In the case of Equation (2.10) n = 3. Furthermore, 

the rotation group SO(3) leaves invariant the symmetrical linear form @ on E 3 

and we used the corresponding identification of E 3 and its dual. 
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3. NUCLEAR PHYSICS: STRONG AND WEAK INTERACTIONS 

3.1. The Set of Known Nuclei 

The nuclei are made of protons p and neutrons n. These two particles 

have similar masses m = 1836.10 m = 938.25 MeV, m = 939.55 MeV. The pro~ton has 
p e n 

electric charge + e. Both have spin 1/2. We define a nucleus by its number Z of 

protons and N of neutrons, and denote it by (Z,N); it contains A = Z + N nucleon~ 

Nuclei have bound excited states, which are unstable. The ground state itself may be 

unstable and the nucleus may transform spontaneously into another uucleus by one of 

the following types of decay. 
+ -- 

a) B--decay n ÷ p + e + ~(v = antineutrino); (Z,N) ÷ (Z + I,N - i) + e + 

B+-decay (Z,N) ÷ (Z - I,N + I) + e + + ~ which competes with e--capture 

(Z,N) + e ÷ (Z - I,N + i) + ~ (which requires less energy). 

The mean life T can vary from 10 -3 sec to 1020 years. 

b) ~-decay*: (Z,N) ÷ (Z - 2,N - 2) + (2,2) for A > 140 nuclei, T from 

seconds to 1020 years. 

And two much rarer types: 

c) neutron emission: (Z,N) + (Z,N - i) + n rare, r < few seconds, 

d) spontaneous fission into two smaller nuclei (Z,N) ÷ (ZI,NI) + (Z2,N2). 

. 1020 Let us call nuclei stable if they have a half life of decay r > years. 

274 stable nuclei are known. 

Z even N even 165 

A even 
Z odd N odd 4 (Z = N = 1,3,5,7) 

The much greater abundance of Z even, N 

Z even N odd 55 
A odd 

Z odd N even 50 

even nuclei is strikingly illus- 

trated in Figure 3.1 which gives the number of stable nuclei for given Z (isotopes) 

and for a given N (isotones). 

It is worthwhile to note from Figure 3.1 that nuclei for Z = 20, Z = 50, 

(N = 82) have definitely more isotopes (or isotones) than their even-neighbors. 

This is also true, but less strikingly, for N = 20, N = 50 (and also N = 28). The 

heaviest stable nucleus is Pb208, Z = 82, N = 126. Another striking feature in the 

distribution of stable nuclei in function of Z and N is that with two exceptions 

N - Z m 0 and N - Z is a slowly increasing function of A = N + Z: 

N - Z = -i for the proton (Z = i) and He3(Z = 2) 

N - Z = 0 for 13 nuclei; 

N - Z = 1 for 16 nuclei; 

N - Z increases with A on the average (N - Z) N 6.10 -3 A 5/3. 
# 

# What was first called an m-particle has been identified with a Helium nucleus: 
(2,2). 
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FIGURE 3.1. NUMBER v N AND ~Z OF STABLE NUCLEI (Z,N) AS FUNCTIONS OF Z AND N 

Note that there are no stable nuclei for Z = 43, 61, > 83, for 
N = 19, 21, 35, 39, 45, 61, 89, 115, 123, > 126 and none for 
A = N + Z = 5, 8, 147, m 208. The heaviest stable nucleus is 

126 
82 Pb208 with Z = 82, N = 126. The most striking feature of 

Figure 3.1 is that v Z and v N are mainly i, sometimes 2 or 0 

for odd Z or odd N. Their value is more irregular for even 
Z or even N, there are relative maxima for Z = 20 = N, 
Z = 50 = N, N = 82 and also N = 28. 
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Nuclear forces are the most intense in nature, however, they do not bind more than 

208 nucleons together#. The reason is that they have short range and also that nu- 

cleons obey Fermi statistics which, for condensed states, yield effects similar to 

repulsion. 

More than one thousand different unstable nuclei are known. Those with a 

lifetime T > .i (age of univers~ and their decay products are found in nature, some 

are still produced in nature (C14). All other are man made; more than half of those 

have Z-even, N-even. There exists a semi-empirical formula (Weizs~cker's) giving 

the binding energy of the lowest state of (stable or unstable) nuclei in function of 

Z, N and A = Z + N 

B(Z,N) = Zm + Nm - m(Z,N) = U A - U Z(Z - I)A -I/3 
p n ~ c 

U A 2/3 U (Z - N) 2 - - - -  + U (-l)Z + (-I)N A -3/4 (3.1) 
s t A p 2 

the values of the constants U are in MeV 

U = 14.0 MeV, U = .61 MeV, U = 14.0 MeV, U t = 84.2 MeV, U = 34 MeV 
c s p 

U corresponds to maximal average binding energy by nucleon. The term U corre- 
c 

sponds to the Coulomb repulsion among Z protons equally distributed in a sphere of 

radius proportional to A I/3" . The term U corresponds to a surface effect which 
s 

suggests a short range for nuclear forces; U t favors a minimum for IZ - N I while 

U corresponds to pairing effects in like nucleons. As we saw, nuclei with even Z 
P 

and N are more stable and more numerous than those with odd Z and/or odd N. A 

rule without exception is that all known Z even, N even nuclei have zero spin 

(= angular momentum at rest). 

The distribution of nuclear spin for odd A nuclei is discussed in 

Section 3.4. 

3.2. Isospin 

As soon as the neutron was discovered (1932), Heisenberg created a formal 

language for the study of nuclei. Neutrons and protons are considered as the same 

particles, the nucleons, which have five degrees of freedom: 3 continuous in space 

(~)~ a two valued one, o, for the spin and a new one that Heisenberg simply called 

the fifth degree of freedom, T, and which distinguishes neutrons and protons 

# The existence of neutron stars with a radius of i0 km to i00 km and containing 

N 1057 neutrons has been postulated. These stars seem to be observed now as 
"pulsars". They are indeed gigantic nuclei, but the binding energy is due both 
to nuclear and gravitational forces. 
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(Z. Phys.j 77, 1 (1932)); since, like the spin, it is two-valued, it is now called 

isospin.# 

This Heisenberg convention has revealed itself more than useful. Indeed 

it was quickly established that nuclear forces did not distinguish between protons 

and neutrons: their differences (different electric charge and magnetic moment, 

small mass difference) are attributed mainly to electromagnetic effects and it is a 

reasonable approximation to neglect them. 

If we denote the Hilbert space of our nucleon states by 

~(i) ÷ 
= L2(x,t ) @ Ko @ KT (3.2) 

that of a number A of nucleons is 

~(A) (i) @ ((L 2 ~ K ) (A) 0 ~(A) c) (3.3) 
=~[i A] = e[l A] % [1] "T[%] 

where P[1A] 
~(i) 

is the projector on . A convenient approximation for the study 
[1 A] 

of a nucleus of A nucleons is to replace the sum of 2-particle interactions,it by 

an average potential (= sum of 1-particle Hamiltonians) plus a residual 2-particle 

potential, which is still attractive. Then the analogy with the study of atomsttt 

allows us to draw qualitative conclusion. Using the same type of argument as in 

Section 2.6 for atoms, but here with the opposite sign, we know that for the ground 

state [%] in Equation (3.3) should be as syrmnetrical as possible, so [%]c is as 

antisymmetrical as it can be with the restriction that it has only two lines. This 

implies that the two lines are as nearly equal as possible 

%i ~ 0; [%]c = [%1,%210 ~ %1 - %2 = I minimal; %1 + %2 = A 

If the nucleus has Z protons and N neutrons (Z + N = A) 

pletely symmetrical in sup{Z,N} particles, so 

%1 ~ sup{Z,N} 

(3.4) 

its states are com- 

(3.5) 

IZ - NI ~ %1 - %2 ' (3.6) 

and 

tt 

Called isotopic spin since 1936, the name isobaric spin would have been more 
proper. Anyway it has been shortened into isospin by the natural evolution of 
language. 

In fact physicists are more sophisticated: when a sum of 2-particle interaction 
does not yield a good enough approximation, one adds also the sum of all k- 
particle (2 < k ~ A) interactions, mainly for k = A (collective effects). 

#t% There is still a difference. Atoms of n electrons consist of n + i particles 
and as we have seen, the elimination of the center of mass motion is easy: one 
singles out the nucleus, and the electrons are all treated on the same footing. 
This elimination is still clumsily carried out in nuclear physics. 
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So (3.4) can be translated into: the most stable nuclei have as small ]Z - N] as 

possible. As we have seen, this is well verified for light nuclei, where the elec- 

tromagnetic repulsion of protons in negligible; when this repulsion is taken into 

account 0 < N - Z has to be a slowly increasing function of A = N + Z. 

In the same approximation in which n, p are considered identical, iso- 

bars (nuclei with the same number A = Z + N of nucleons) should be identical. 

Consider Figure 3.2; it gives the energy spectrum of the known states for A = 15, 

/ 2  

>= 

unobserved 

FIGURE 3.2. SPECTRUM OF STATES OF ISOBARS 15 

States of C 15 have isospin m 3/2. Another conventional notation for nuclei is to 
use the chemical symbol of the corresponding atom (this gives implicitly the number 
Z) and write the number of nucleons A = Z + N in superscript. 

C 15 NI5 015 FI5 

Z=6 7 8 9 

N=9 8 7 6 

.P 
3 is the spin (j, 1/2 integer > 0) and the parity (+-) of the state. 
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and the known value of spin and parity of these states. The similarity of the 

spectra (at least for the low lying part) for 1/21Z - N I = 1/2 (i.e. N 15 and 015 

nuclei) is striking. The essential difference is a shift upward in energy of 

N 3 MeV for 015 which has one more proton than N 15. The pairs of corresponding 

states are called "doublets" of isospin 1/2 states. 

Let us explain in detail this point of view, which exploits the relations 

between the permutation groups S(n) and the unitary groups U(k) that we have 

recalled in 1.4 and used in 2.9. 

Nuclear interaction does not distinguish between protons and neutrons. 

For a nucleus this implies a property of invariance under the permutations (E S(A)) 

of its nucleons. We could also have translated this property as follows: 

All nuclear physics observables 0 acting on ~C (I) (space of the one 

particle states for the nucleon) in Equation (3.3) are of the form (3.7), where 

~(i) 
= L2(x,t ) @ K 0 K (3.2) 

T 

0 = N @ I (3.7) 

U(2) = I @ U(2) ( 3 . 8 )  

i.e., they correspond to a trivial action on K , the factor in this tensor product 

which corresponds to Heisenberg's fifth degree of freedom "proton - neutron". 

The action of the group U(2) on ~(i), as defined by (3.8) , commutes 

with every observable: U(2) c {0} S , the commutant of the algebra of "one particle 

observables". The action of this U(2) can be extended to every $C (A) , (A ~ 0), 

Nilbert space of the A particle states. Therefore, in nuclear physics, when the 

non-nuclear interactions are neglected, this U(2) is a subgroup of the invariance 

group. $C (A) has the same decomposition into spaces of factorial representation for 

S(A) and U(2) and we use the same symbols (Young diagrams) for the corresponding 

representations. 

Since Coulomb repulsion of the protons can be neglected only in light 

nuclei, it was not~expected that isospin conservation could be an interesting con- 

cept for heavier nuclei. However, the progress of nuclear physics in the last five 

years has shown that for nuclei with A up to i00, isospin is indeed a useful con- 

cept. For a non-technical review of this question, see W. R. Coker and C. F. Moore, 

"Isobaric Analog Resonances", Physics Today, 22, no. 4, 53 (1969). 

3.3. U(4) Invariance 

In 1936 Wigner, in his paper "On the consequence of the Symmetry of the 

nuclear Hamiltonian on the Spectroscopy of Nuclei", Phys. Rev., 51-106 (1937)t 

# Reproduced in Dyson's anthology: Symmetry Groups in Nuclear and Particle Physics, 
Benjamin, New York (1966). 



9o 

studied the approximation where not only isospin dependence of nuclear forces is 

neglected but also the spin dependence. Then Equation (3.7) and (3.8) can be re- 

placed by 

34 (I) = [2(x) 8 K 8 KT (3.2) 

0 = N 8 I @ I (3.9) 

U(4) 

Hilbert space of 

U(4) = I @ U(4) (3.10) 

In this approximation, nuclear theory is also invariant under the group 

acting on the four dimensional space K = K @ K and Equation (3.3), for the 
T 

A nucleon states can be replaced by 

~(A) = $C(I) = p ~% ® K (3.11) 
[i A] [i A] (L21%] [%]c ) 

where the [%] are representations of U(4). 

For the most stable states, the property (used in 3.2) of the "residual" 

two-nucleon force to be attractive implies now that [%] is as symmetrical as 

possible, so [%]c is as antisymmetrical as possible, i.e., its Young diagram has 

its four lines of length %1 a %2 a %3 z %4 a 0 (with %1 + %2 + %3 + %4 = A) as 

nearly equal as possible. For A/4 = integer this implies %1 = %2 = %3 = %4 = A/4. 

This U(4) irrep has dim. i. The restriction of this representation of U(4) 

(acting on Ko @ KT) to the subgroup SU(2) × SU(2), yields a spin 0 and isospin 0 

for the ground state. As we have seen, the former result is observed for all such 

nuclei, the latter only for light nuclei (Z < 17) where Coulomb repulsion of 

protons is not too large. For nuclei with A = 4n + 2, the [%]c representation of 

lowest lying states is %1 - i = %2 - i = %3 = %4 = n; it has dimension (~) = 6. 

Its restriction to the subgroup SU(2) × SU(2) decomposes into the direct sum of 

two three-dimensional representations: one of spin i, isospin 0, the other of spin 

0, isospin 1. In Figure 3.3 (for which n = i) this gives correctly the spin of the 

lowest state of Li 6 (spin i) and He 6 and Be 6 (spin = 0). These last two 

levels form an isospin triplet with the third level (spin 0 +) of Li 6. The other 

levels Whose spin are marked in Figure 3.3 belong to another equivalent representa- 

tion of U(4) with an angular orbital momentum (i.e., angular momentum of the space 

degree of freedom) % = 2. So the total angular momentum has the possible value 

j = Z = 2 for the spin 0, isospin i states and Z - s ~ j ~ Z + s i.e., = j 

= 3, 2, i for the spin i, isospin 0 states i.e., those of Li 6 with no correspon- 

dents in He 6 and Be 6. 

States belonging to a U(4) irrep are called supermultiplets in physics 

literature. The study of Galilean invariance of the theory of supermultiplets is 

very similar to that made in 2.9 for atomic physics. 
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2 + 1 + , 2 + 

2+ 2 +~'" 

0 + 0 + 0 + 

3 + 

i + 

He 6 Li 6 Be 6 

Z=2 N=4 Z=3 N= 3 Z=4 N= 2 

jP is the spin (j integer a 0) and the parity p(!) of the state. 

FIGURE 3.3. SPECTRUM OF LEVELS OF THE NUCLEI WITH 6 NUCLEONS 

5 MeV 

7[ 

of the Galilean group G, ~ ÷ G and One has to consider the covering 

also the homomorphism 

÷ SU(2) x 1 c U(2) x U(2) c U(4) 

The invariance group of the theory is the direct product G x U(4) and G is the 

subgroup G~ G × U(4) with i(g) = (~(g),~(g)). 

The approximation of spin and isospin independence for nuclear forces 

leading to U(4) invariance is crude and could not be expected to be very useful 

for nuclei with a number A of nucleons not very small. However, as for the better 

approximation of isospin conservation, U(4) invariance has been usefully applied to 

nuclei with A up to i00 as shown by the statistical study of the energy of their 

ground state: P. Franzini and L. A. Radicati, "On the validity of the supermulti- 

plet model", Phys. LGt%., 6, 322 (1963). (Reproduced in Dyson's anthology, quoted 

in 3.3 and 4.) 
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3.4. Shell Model 

We have seen that nuclei with Z or N = 8, 20, 50, 82, and N = 126 

seem more stable. Many properties of nuclei (e.g. binding energy per nucleon, mag- 

netic and quadripole moment) single out these numbers. A survey of nuclear tables 

shows that for A = odd nuclei, the parity and spin of the ground state vary in a 

regular pattern which suggests very much the filling of shells (as in atomic 

physics). Ground state, spin j and parity ± depend only on the value of the odd 

number Z or N so the order of the levels, with increasing energy, is the same 

for protons and neutrons. The order obtained can be deduced from the three- 

dimensional harmonic oscillator spectrum E = n~ + Eo (where ~ is a constant) 
n 

with some modifications. 

Consider the set of nine operators Tij = PiPj + QiQj where the P'l and 

Qj (i = 1,2,3) satisfy the canonical commutation relation 

[Pi,Qj] = ih~ij 

Its use for the computation of the commutators [Tij,Ti,j,] shows that the Tij 

form a representation up to ih of the Lie algebra U(3). The center 

H = TrTij = TII + T22 + T33 

is the harmonic oscillator Hamiltonian (in convenient units). From [H,Tij] = 0 we 

deduce that there is a U(3) invariance for the three-dimensional harmonic oscilla- 

tor similar to the S0(4) invariance of the hydrogen atom, 2.4, and we can find the 

spectrum of H by a similar method: 

The ground state n = 0 has energy Eo. The number of states of energy 

E is i/2(n + l)(n + 2). Their orbital angular momentum ~ satisfies (-i) £ 
n 

= (-i) n, 0 ~ Z ~ n. This corresponds to the first column of Figure 3.4. The second 

column gives the spectrum of the Hamiltonian 

~-lH' = ~H - ,~2 _ a~''~ • ~ (3.12) 

with m, J tt s jt , m positive constants, w > ~ and . Using Equation (2.55) for 

s = 1/2 and when ~ > 0, j = ~ + c 1/2, ~ = ±i one obtains the energy spectrum 

1 
> 0 En, j ~ - E 1 = n~ - t(~(~ + i) - ~ it(~ + 7) , s = sign(j - ~) (3.13) 

' 0 '7' 0 

= 0 = nw (3.13 t) 

This Hamiltonian H t is the one-nucleon Hamiltonian in the average potential pro- 

duced by the whole nucleus. As in 2.7 we can now "fill the successive shells" for 

protons and neutrons. Such shell-model for nuclei was proposed in 1949 (see 

M. Goeppert Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure, 

Wiley, New York (1955)). It is very successful in explaining the properties of the 
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n Z Enj ~ - Eo jP 

Z or N 

6 0 
2 

4 ~ 11/2 + 

i "~- g/2 + 
6 s 

126 1/2- 

~ - -  5/2.13/2 + 5 1 ~.<__ _ 3/2- 
3 I ~ ,  g/2 

/ - -  F/2- / 
5 I 82 

3/2+ 11/2- 
4 0 /~ 1/2 + 

2--'---'----~ -I F/2 + 

~'~ 5/2 + / 
4 .I 

50 

~ g/2 + 
_ 112- 3 i - -  ----~-- 5/2 

" ~ f - -  3/2- 3 </ 

~. 28 . F/2- 

20 

2 0 - -  3/2+ 

2 I ~ - -  1/2+ 

~'~. 512 + 

i i I" 
_ _ s  

1/2 

3/2 

0 0 2 

II 
w' = ~ = 0 J = 0 

1/2 + 

jP is the spin (j half integer > O) and the parity (±) of the state. 

FIGURE 3.4. ENERGY SPECTRUM OF THE ONE NUCLEON HAMILTONIAN OF EQUATION (3.12) 
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low lying levels of nuclei, and their decays. A more detailed book on nuclear shell 

structure is that of A. de Shalit and I. Talmi. 

Note that a Z (or N) particle state is to a lesser degree a decompos- 

able antisymmetrical tensor than it is for atoms (see 2.8). There is much more con- 

figuration mixing, i.e., the nuclear states are tensors which are linear combination 

of different decomposable tensors with the same quantum numbers. 

Shell-model computations require a classification of states inside the 

"same shell". That was done between 1942 and 1949 by Racah (Phys. Rev., 76, 1352 

(1949)) who introduced the seniority quantum number. (See also work of Flowers and 

many references in Dyson's anthology quoted in 3.3 and 4.3.) 

Part of the problem is to label unambiguously irreps D. of SU(2) 
] 

appearing in the decomposition into a direct sum of irreps of the tensor power of a 
n 

given irrep 0 D. (where J is usually integral for atoms, half integral for 
J 

nuclei). The method is to find a chain of subgroups 

Ho = U(2~+ i) D H I = ... D~ D SU(2) or SO(3) (3.14) 

(where SU(2), (2J odd) or SO(3), (2J even) is the subgroup of U(2J + I) formed 

by the matrices of Dj) with the following property: 

The successive restrictions of the representation of U(2J + i) 

n 
® [] = ®% sh[h] (see (l.15t)) 

(where ~h is over all Young diagrams of n squares and s h is the dimension of 

the corresponding irrep of S(n)) to the different Hi, (0 ~ 1 ~ k) must finally yield 

direct sums of SU (2) irreps with multiplicity one. Table 3.1 illustrates a simple 

example J = 2, n = 3, the U(5) irrep [I~ and ~ restricted to SU(2) yields 

This is not the case for ~. One intermediate group is only multiplicity one. 

necessary H I = S0(5). 

3 
TABLE 3.1. DECOMPOSITION OF @ D 2 (3 PARTICLES IN D-SHELL) 

[] 
representation of U(5) (F~) 3 = ~ • 2 ~ + H 

dimension 53 = 35 + (2 × 40) + I0 

Irrep of U(5)~ Restriction to S0(5) Restriction to S0(3) 

= one irrep ~I~ = D 6 

= A @ B A = D 5 

B = D 2 

~ = D 3 D I 

D 4 @ D 3 @ D 2 @ D O 

D 4 @ D 3 @ D 2 @ D I 

= one irrep 
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Neglecting the s h multiplicity, every inequivalent irrep of SO(3)/or 

SU(2) has a different genealogy of irreps of H.. Racah says that they have dif- 
i 

ferent seniority quantum number. For distinguishing the different seniorities Racah 

had to introduce the exceptional Lie group G 2 among the H.l (in the case J = 3, 

n = 7)! When J is half integer, one generally takes H I = Sp(2J + i). Of course, 

nuclear physicists nowadays use more refined models of nuclei (e.g., Nuclear 

Structure I, ff, fff, by A. Bohr and B. Mottelson, Benjamin). To go into more 

details is outside the scope of these lectures. We refer again to a non-technical 

paper by D. R. Inglis: "Nuclear Models", Physics Today, 22 no. 6, 29 (1969) for a 

recent survey. 

3.5. The Hadrons 

Although SU(2) invariance, through isospin considerations, is more 

familiar to physicists than S(n) invariance for the study of the property of 

nuclear interaction not to distinguish between neutrons and protons, is it more 

fundamental? If one had to deal only with nucleons, the answer is no; both mathe- 

matical methods are physically equivalent. However, there are many more particles 

with strong interaction; they cannot be permuted with the nucleons but they can be 

attributed an isospin. Let us give as example the ~-meson. In 1935, Yukawa pre- 

dicted the existence of mesons which are to the nuclear interaction what photons are 

to the electromagnetic interaction. He predicted their electric charge ±, their 

mass, their lifetime, their decay mode, Soon the particles were discovered but it 

was a case of mistaken identity with the ~-lepton! The Yukawa particle was dis- 

covered in 1947 and is called ~±. In 1937, physicists (e.g., Kemmer) showed that 

3 states of charge were necessary for the meson, +, O, -. Indeed, in order that 

nuclear interaction preserve isospin, they have to be invariant under the corre- 

sponding SU(2). In Yukawa's theory the meson field is coupled with the nucleonic 

current. This current transforms under SU(2) as a tensor operator of the space of 

the representation (DI/2)2 = D 1 @ D 0. Then the simplest SU(2) invariant Yukawa 

coupling which can include electrically charged meson, is of the form 

j ( x )  • +(x)dx (3.15) 

where j(x) and ~(x) are vector operators for the isospin SU(2) and the 

interaction is the scalar product of these vectors. The T°-meson so predicted in 

1937 was found in 1950. 

Already in 1947 two other strongly interacting particles had been found. 

The generic name "hadron" was given to particles with strong interaction. The rate 

of discovery of new hadrons has passed from 15 in the fifties to 250 in the sixties. 

We give their mass spectrum and their spin and parity when known, in Table 3.2; 
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TABLE 3.2. SPECTROSCOPY OF HADRONS 
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different columns of this table correspond to different values of the quantum num- 

bers preserved by the nuclear interaction also called strong interaction. 

There is a charge b which is for the strong interaction what the electric 

charge is for the electromagnetic interaction. The "charged" particles have b = ±i; 

they are called baryons. The "neutral" particles b = 0 are called mesons. It 

happens that all baryons have half integral spin and all mesons have integral spin. 

This will be explained in 4.2 (Equation 4.8). There has been no difficulty in attri- 

buting an isospin to every baryon. Particles inside the same isospin multiplet have 

the same spin and parity, their masses are equal within 1% (exceptionally 3% for the 

q-mesons) and they have different electric charges. Isospin conservation allows us 

to predict some missing members of a multiplet which are then looked for and have 

always been found. Instead of using the value of their electric charge q the 

2t + i states of the same isospin multiplet can be labeled by the value t 3 of the 

isospin SU(2) generator in the direction "3". These two labels are equivalent but 

different; the difference q - t 3 depends on the multiplet; since both q and t 3 

are conserved by strong interaction, their difference 

y = 2(q - t3) (3.16) 

is a new strong interaction quantum number which can be attributed to each isospin 

multiplet*; it has integral values, and it is called the hypercharge. To include it, 

one had enlarged the SU(2) invariance group to a U(2) groupt#, in 5.1, we 

will see how U(2) was enlarged further. 

In Table 3.2 we have left out the antibaryons, each one is to the corre- 

sponding baryon what antiproton is to proton (see Dirae quotation in introduction). 

Antibaryons are obtained from baryons by the involution called C which changes the 

sign of the charges b, q, y and leaves invariant the mass and the spin (for more 

detail on C and its relation with parity, see 4.6). To each isospin multiplet 

with values t, y, b correspond the C-conjugated multiplet t, -y, -b. A new quan- 

tum number is then necessary for the self-conjugated multiplets (b = 0, y = 0). 

I introduced it in 1953#t# and called it "isoparity". It is denoted G in Table 3.2. 

Taking into account all quantum numbers introduced for hadrons, the invar- 

iance group should be written (U I × U2 ) D Z2(C ) where U 1 corresponds to the 

baryonic charge, Z2(C) is the two element group generated by C and D means the 

semi-direct product. The action of C is equivalent to the complex conjugation of 

the matrices of U(1) and U(2). Irreps of this group when b = 0 = y, and by 

* Relation (3.16) was guessed by M. Gell-Mann, Phys. Rev., 92, 833 (1953); see 
also T. Nakano and K. Nishijima, Prog. Theo. Phys., i0, 587 (1953). 

#* And not to U I x SU(2) because of the relation (-i) y = (-i) 2t implied by 

(3.16). See L. Michel reference LM I of 4.9. 

#*t L. Michel, N. Cim., i0, 319 (1953). 
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(3.16), t is integral, are faithful representations of S0(3) D Z2(C) which is 

isomorphic to the direct product S0(3) x Z2(C ). 

Finally, let us emphasize that all particles in Table 3.2 with the excep- 

tion of the proton (and the antiproton) are unstable. Neither their lifetime nor 

their decay modes are indicated. Most of them are even unstable by the strong 

interaction with a lifetime of 10 -23 to 10 -22 sec. They are often called resonances 

instead of particles because they do not completely fit this latter concept. (See 

4.4.) The particles stable for strong interaction are the lowest states of the 

columns in Table 3.2 and the first excited states of the column y = 0, b = i (E) 

and b = 0 (n). However, to be stable, or unstable does not seem so fundamental! 

Indeed if the mass difference between the lowest states of two neighboring columns 

of baryons in Table 3.2 (Ay = i) were >m k the highest of these lowest states 

would be unstable for strong interaction. The E is stable only because m E - m A 

< m ; if for instance m A - m N < m were satisfied, the A would also be stable. 

The stability of ~ is due to the fact that both ~ and ~ have spin 0, parity - 

(invariance under P, see 4.7a) and that q-isoparity = + while ~-isoparity = -. 

3.6. The Other Particles and the Other Interactions 

There are only nine known "elementary" particles which are not hadrons, 

i.e., have no strong interaction. 

The photon, y, with mass zero, spin i (see 4.4). 
+ + - 

The 8 leptons ~ , ~-; e , e (electrons) and their associated zero mass 

neutrinos ~ +~ _~ +~ ; they all have spin 1/2. Only the ~ are unstable. 
~ e e 

± + 
÷e-+~ +~ ± + 

e 

because m = 207 m . 
e 

All particles have electromagnetic interaction even when they have no 

electric charge (e.g. q = 0; baryons have magnetic moments) but it seems that 

Amp~re's hypothesist that the whole electromagnetic interaction is through the 

electromagnetic current j~(x) is well verified; the interaction Hamiltonian is 

Hem = e ~ A~(x)j~(x)d3~ (3.17) 

where A~(x) is the photon field (electromagnetic potential vector). In units for 
2 

which h = c = i, the universal constant e is given by e = ~ = 1/137.039 (see 

2.4). Electromagnetic interaction is about i00 times weaker than strong interaction. 

This is also the order of magnitude of mass difference in an isospin multiplet. 

t Called nowadays "minimal coupling" in the jargon. 
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There is another universal interaction, shared by all particles (except 

the photon), characterized by a universal constant G, introduced by Fermi#, whose 

value is 

G = 1.01 x 10 -5 x m 2 (3.18) 
/~ P 

Since it is much weaker than the electromagnetic interaction, this inter- 

action is simply called the "weak" interaction. Fermi postulated as early Ns 1934 

that this interaction has some analogy with the electromagnetic interaction. For 

instance there are four electrically charged (!) "weak" hadronic currents, respec- 

tively vectors and axial vectors for the Lorentz group, v (+~(x),, a (±)(x) which 
-- 

interacts with the leptons through a leptonic current ~+)(x),~_ and the interaction 

Hamiltonian being 

H = G ~ j" ~(E)(x)h (~)(x)d3~ (3.19) 
w /~ ~=±i 

with 

h (c)(x) = v (s)(x) - a (E)(x), (s = ±i) (3.20) 

Equation (3.19) has indeed some similarity with (3.17). The fact that h is a 

linear combination of a vector and an axial vector will explain the parity violation 

of the weak interaction (see 4.7.b). 

R. P. Feynman and M. Gell-Mann (Phys. Rev., 109, 193 (1958)) have found a 

very deep relation among the three interactions. From the unitary representation of 

U(2) on ~, the Hilbert space of hadrons, one obtains the representation F of the 

U(2)-Lie algebra on ~. The operators corresponding to the observables y and t 3 

are the self-adjoint operators 

Y = F(y) and T 3 = F(t 3) (3.21) 

Since q = t 3 + 1/2 y (Equation 3.16) for all hadronic states, this relation has 

also to be true for the self adjoint operators representing these observables, so 

i 
F(q) = Q = ~ j°(x)d3~ = T 3 + ~ y (3.22) 

Note that ~ jP(x) = 0 ~ Q is time independent ~=~ [H,Q] = 0. However, Q here 

is the total electric charge of the hadronic part of the world, it is not conserved 

since weak interaction can tr~sfer it to the leptonic part of the world. It is 

conserved only in the approximation which neglects weak interaction. 

The beauty of the discovery by Feynmann and Gell-Mann is that, when elec- 

tromagnetic and weak interactions are neglected, the vector part of the weak 

hadronic currents vt(~)(x)p (Equation 3.20) and the electric current j (x) of the 

t E. Fermi, "Versuch einer Theorie der B-strahlen", Z. Physik, 88, 61 (1934). 
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hadrons are images of the same tensor operator for the U(2) 

strong interaction for, respectively, the vectors t± and q 

of the complexified U(2)-Lie algebras 

group of invariance of 

of the vector space 

t± A y = 0 = y A t 3, t± A t 3 = ±t± (3.23) 

This implies that 

T+ = F(t+) = f v'0(_+)(x)d3~ (3.24) 

The isospin group, which was introduced in 3.2 in such a formal and abstract fashio~ 

becomes a physical reality since it is generated by the space integral of the weakly 

interacting hadronic currents! The addition of the electric charge generates the 

full U (2) group. When electromagnetic and weak interactions are not neglected, 

3~v~(x) as well as 3 j~(x) do not vanish and the representation of U(2) on 

becomes: i) time-dependent for the physicists (just as [P,Q] = ihl is true at 

any time with time-dependent P, Q); 2) undefined for the mathematicians (as 

Coleman and other physicists have shown). Have you noticed the v t instead of v 

in Equation (3.24)? I have shortened a long story. The Feynman-Gell-Mann hypoth- 

esis really needs the enlargement of the U(2) group to SU(3) as we will explain 

in 5.1 and 5.3. 

To stay inside U(2), one has to decompose h of Equation (3.19) 

h (e)(x) = h~(c)(x) cos e + hlt(e)(x) sin e (3.25) 

where hi(e) has hypercharge y = 0 and hSe(s) has y = s and e is the 

Cabibbo angle #. The same decomposition appears separately for the v (E)(x) and 

the a (s)(x) part of h (Equation (3.20)). The angle 0 has a value 15 ° so the 

IAyi = 1 weak transitions are slower than those with iAyl = 0 by a factor tg20. 

They have also a different "selection rule" for isospin. As we just said, 
s 

v is a vector-operator for the SU(2) isospin group. This is also true for a s 

and h ~ . Hence 

weak transitions IA i = 0 satisfy I Ti = 0 or 1 

while weak transitions iAYI = 1 satisfy [ATI : 1/2 

i.e., het v It a el , , are SU(2)-spin0r operators. 

We have also to mention two other charges conserved by all known inter- 

actions (as the baryonic and electric charges). They are the two leptonic charges 

which seem separately conserved: that of the e-type with value ~ = ±i for e s, 

and zero for ~, ~ ; that of the ~-type: with value ~ = ±i for ~ , ~ and 
e 

zero for e, ~ . 
e 

# N. Cabibbo, Phys. Rev. Lett., iO, 531 (1963). 



4. RELATIVISTIC INVAPXANCE. THE DISCRETE SYMMETRIES C. P. T. 

4.1. The Poincar& Group and its Automorphisms; Zeeman Theorem 

Physicists call Poincar& group the inhomogeneous Lorentz group#. We will 

denote its connected component by PO" It is the semi-direct product T [] L of the 

connected Lorentz group L 0 by the translation group T. It has a trivial center. 

It is a i0 parameter real Lie group. Its universal covering ~0 is the semi-direct 

product T[]SL(2,C), whose center is a two element group generated by m = "the 

rotation by 2~". The group law of P0 is given explicitly in Equation (4.10). 

We call P the space reflection P(r,t) = (-r,t) and T the time re- 

flection T(r,t) = (-r,t), D the group of dilations {a > 0,~(r,t) = (ar,~t)}. We 

call Z2(P), Z2(T), Z2(P) × Z2(T) the group generated by respectively P, T, P and 

T. We denote by P, P+, F +, F the groups generated by P0 and respectively 

Z2(P ) × Z2(T) , Z2(P) , Z2(P) and D, Z2(P) × Z2(T) and D. We call P the full 

Poincar& group. 

It can be provent# that all automorphisms of these groups are oontinuous 

and, if Aut G is the automorphism group of G, 

Aut PO = Aut P+ = Aut P = Aut F + = Aut F = F (4.1) 

Given any group G, we denote by In.Aut G the group of inner automorphisms and by 

Out G the quotient Out G = Aut G/In.Aut G. Note that here PO = In.Aut PO and 

that F is the semi-direct product 

F = PO [] (Z 2 × Z 2 × D) = P0 [] Out P0 (4.2) 

Binary Relation on Space Time E 

Given x ~ y two distinct points of E, we define the notations: 

x T y = (y is inside the light cone of x) 

s L y = (y is on the light cone of x) 

Lorentz transformations were introduced by Vogt in 1882 and applied by Lorentz 
to electromagnetism. H. Poincar& (C. R. Acad. Sci., Paris, 140, 1504 (1905)) 
required that they form a group with the rotation group and, from it deduced 
physical consequences. In Rend. Circ. Mat. Palermo, 21, 129 (1906) he included 
the translations and studied ~hysical implications of invariance under the group 
we call here Poincar& group. 

~# L. Michel, "Relations entre sym&tries internes et invariance relativiste", 
lectures published in Application of Mathematics to Problems in Theoretical 
Physics, Carg~se 1965, Lur~at editor, Gordon and Breach (1967) referred to as 
LM III. We will also refer to my lectures in Istanbul (1962) and Brandeis (1965) 
as LM I and LM II. They are both published by Gordon and Breach (Book of the 
lectures, for each school). 
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x S y = (y is outside the light cone of x) 

x < y = (y is inside the future light cone of x) 

x < • y = (y is on the future light cone of x). 

Given a permutation f of the points of E, it is said to preserve the 

binary relations x R y if x R y ~ f(x) R f(y). E. C. Zeeman (J. Math. Phys., ~, 

490 (1964)) proved the following theorem: 

Theorem i. 

The necessary and sufficient condition that f and f-l, permutations of 

E, preserve the relation x < y or the relation x < • y, is f E F +. 

Zeeman also established the corollary (proof published in LM II, p. 297): 

Corollary i. 

The necessary and sufficient condition that f, permutation of E, pre- 

serves the three relations x T y, x L y, x S y is f E F. 

4.2. Relativistic Invariance and Internal Symmetries# 

A physical theory is relativistic if its automorphism group G contains 

P0" We are also interested in other symetry groups, subgroups of G, and called 

internal symmetry groups. Note that if we consider "passive" invariance, the dila- 

tions D c G. 

If P0 is a subgroup of G, one can consider C = CG(P0) , the centralizer 
-i 

of P0 in G = {g E G, p C P0' gPg = p}' N = NG(P0) , the normalizer of P0 in 
-i 

G = {g E G, p E P0, gpg E PO}. 

That Aut ~ = F is the semi-direct product (2) and that P has no center 

imply that 

N = Po = (NJ o) , 

and there is a canonical homomorphism 

f 
N/P 0 * Out P0 = Z2(P) × Z2(T) × D 

(4.3) 

(4.4) 

And for instance Z2(P ) c Im f means that parity is preserved in the theory. We 

also see that D N Im f will give information on the mass spectrum. Indeed, a 

theory of mass zero particle has D in its automorphism group. If ~ c Im f and 

if there is a particle of mass # 0 then there are particles with the same proper- 

ties and any m > 0 for the mass value. 

# We also refer the reader to the paper with the same title: L. Michel, Phys. Rev., 
137B, 405 (1965). 



~03 

O'Raifeartaigh (Phys. Rev. Lett., 14, 519 (1965)) has proven the following 

theorem when G is a connected Lie group: 

Theorem 2. 

If the restriction of an irrep (= unitary irreducible representation) of 

G to PO has an isolated point in the mass spectrum, it is the whole mass spectrun~ 

There have been too many papers written by physicists proving "theorems" 

much weaker than the following trivial lemma (LM III, p. 450). 

Lamina. 

Let P0 be a subgroup of G. If there exists p E PO' p ~ T c PO' such 

that Vg E G, gpg-i ~ PO" then P0 is an invariant subgroup of G. Indeed consider 

the homomorphism f, G i permutations of (G/PO) giving the action Vx, g E G, 

gP0 ~ xgP0 of G on its homogenous space G/P 0. Then p E Ker f so PO N Kerf 

is an invariant subgroup of PO containing p; it is PO and PO c Ker f; that 

implies Vq E P0' Yg E G, qg = gPo" 

In my opinion, the preceding considerations are physically very poor, 

indeed P0 acts on space time so if G ~ PO is an automorphism group of the theory, 

Zeeman's theorem implies that in order to preserve causality, G can act on space 

time only through a quotient subgroup either of F or P if we forget dilations. 

This led us to consider G as an extension of P. 

We are interested in quantum mechanics. So we must use the existence of 

the *-algebra A of observables. 

We refer the reader to the remarkable paper of Haag and Kastler, "An 

Algebraic Approach to Quantum Field Theory", J. Hath. Phys., ~, 848 (1964); there 

are physical arguments for A to be a C*-algebra. t Let A be its representation 

(obtained by a Gelfand-Segal construction) by operators on ~, the Hilbert space of 

states, A t its commutant, Att the enveloping W*-algebra, Z = A ~ A Act its center. 

The spectral resolution of Z yields superselection rules t#. For instance, if the 

spectrum is discrete,~= @h~h and the only vectors of ~ which represent states 

are those belonging to one of the ~h" The ~% are called superselection sectors. 

Assume that P0 is a subgroup of Aut A, which is implementable (i.e., 

its elements can be realized by operators of L00). 

This proposition was made by I. E. Segal, more than ten years earlier. 

*~ Concept introduced by G. C. Wick, A. S. Wightman, E. P. Wigner, Phys. Ray., 88, 
i01 (1952). See the preprint~of Doplicher, Haag and Roberts for the most recent 
study of this question. 
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Let 

U(p) E LO0. 

(UAU-I)* = (UA*U-I). If 

operators of A', U(p)V 

tion p. So the set: 

E = {U(p)V, p E PO' V 6 U(A')} , 

forms a group of unitary operators which is a "central extension" of 

i.e., 

U(p) be a realization of the automorphism p 6 PO by an operator 

It has to be unitary in order to be an automorphism: VA E A; 

V is any element of the group U(A') of the unitary 

is just as good for representing the Poincar4 transforma- 

and 

E/U(A') = PO' quotient group 

satisfying (4.6) and (4.6') is either the direct product 

form (see also LM II): 

(4.5) 

PO by U(A') 

(4.6) 

W 6 U(As), FU 6 E, V ~+ UVU -I is an inner automorphism of U(A') • (4.6') 

One can prove (see Moore's lectures), that any Polish topological group E 

U(A') × PO or are of the 

Eo~ = (U(A' )  x P'o)/Z2(c~,~o ) 

where the two element group is generated by the element 

group of square roots ~ e) of the unit, in the group 

of U(A'). t Which is the extension E chosen by nature?t% 

extension defined by (4.7) with 

iz(B+EiLi) 2 
~=e ,a = I 

(4.7) 

(~,m) with a 6 2U(Z), the 

U(Z) which is the center 

The answer is the 

(4.8) 

* Equation (4.7) implies some topology as explained in Moore's lectures. In "Sur 
les extensions eentrales du groupe de Lorentz inhomog~ne connexe", Nucl. Phys., 
57, 356 (1964), I have studied the same problem for abstract groups: any abelian 
group A is the direct sum A = D • K where D is the maximal divisible sub- 
group and K is a reduced subgroup (no infinitely divisible elements ~ i). One 

has the relations: H2(Po,A) = H2(SL(2,~),A), H2(PN,A) = H2(Lo,A) = 2 K + H2(Lo,D), 

H2(SL(2,~),D) Aut ~ = 0 and of course H2(Lo,D)AUtVC = 2 D. Indeed Aut ~ the 

group of automorphisms of the complex field act on SL(2,C) and on L 0 (exactly 

Aut LolL 0 = Aut ~). So it acts on H2(SL(2,~),A) (through a trivial action on 

A) since the group of inner automorphisms of L_ acts trivially. Following the 
U 

usual convention, also used in Chapter i, H2(SL(2,~),A) Aut ~ is the subgroup of 

fixed elements. 8o if H2(SL(2,~),A) # O, the automorphisms of ~ do not pass 
the non-trivial extensions and the corresponding extensions are very pathological. 
I found this a sufficient argument for considering in physics only the extensions 

of Equation (4.7). 

%t This was the question that Lur~at and myself asked and answered in N. C~m., 21, 
57 (1965) and Comptes Rendus of the Conference of Aix-en-Provence, p. 183, 
C.E.A. Saclay editor, (1962). 
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where B is the baryonic charge operator and L. the (different) leptonic charges 
i 

(see 3.6). Indeed this choice of extension implies the observed relation between 

spin and charges: 

(-i) 2j = (-i) b+Ei~i , (4.9) 

where j is the angular momentum of any state and b, %. are its baryonic and 
i 

different leptonic charges. Note that Equation (4.9) shows that the integer or half 

integer nature of spin form a superselection rule. 

4.3. Irrep of g0 

All irreps (= unitary linear irreducible representations) of PO are 

known. In 1937, Wignert showed, by extending Frobenius' methods for finite groups 

to g0' that irrep of gO are characterized by an orbit of T 0 on T I the dual of 

T and an irrep of the corresponding little group (= stabilizer). The non-degenerate 

TO invariant symmetric bilinear form on T (= Minkowski pseudo-Euclidean scalar 

products) yields an &somorphism of T 0 space between T and T S . 

To be explicit, we denote by _a, b, ... and A, B, ... respectively the 

TO O÷ i elements of T and SL(2,$) = . Let (a ,a) = (aO,a ,a2,a 3) the coordinates of 

_a in a basis of T. Consider the isomorphism between T = R 4 and the additive 

group of 2 x 2 hermitian matrices 

(Z 0 + a a - i a  2 

_a +--+a = i + ia 2 aO a 3 / 

As we saw, the group gO is the semi-direct product T~SL(2,C) with the SL(2,C) 

action on T 

A E SL(2,C) , a +--+ ~ A ~-+ A~aA * +--+ Aa 

The Minkowski pseudo-Euclidean scalar product is 

(_a,b) = aOb 0 - alb I - a2b 2 - a3b 3 

and the Minkowski "length" of a is 

2 
a = (a,a) = determinant 

We denote by (~,A) the elements of gO with a ~-~ (~,i) the canonical injection 

t E. P. Wigner, Ann. of Math., 40, 149 (1939) reproduced in F. J. Dysou, Sy~etr~j 
Groups in Nuclear and Particle Physics, Benjamin, New York (1966). Wigner,s paper 
was the first one giving a complete family of irreps of a non-aompact non-semi- 
simple Lie group. 
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T ÷ ~0 and A %+ (0,A) an injectiont of % = SL(2,C) %÷ P0" The ~0 group law 

is 

(~,A)(b,B) = (a + Ab, AB) (4.10) 

We will use the same notation for elements of T and T S . 

It is useful to introduce the notion of stratum. When a group G acts on 

a set M, all the points with conjugate stabilizers form a stratum: in other words, 

a stratum is the union of all orbits of the same type (i.e., isomorphic as G- 

homogeneous spaces). The action of %, decomposes T or T" in four strata. See 

Figure 4.1. 

It 

x 

The point 0 

is stratum IV. 

FIGURE 4.1. STRATA ON T BY THE ACTION OF 5 0 

# This injection is unique up to a conjugation in P0" Indeed Wigner, in his paper 

of 1939, showed that for the abstract groups (with the action of T 0 on T just 

defined), HI(T0,T) = 0. 
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Table 4.1 lists these strata, the corresponding little groups (defined up to a 

in ~,) and the corresponding irreps of ~. conjugation 
%/ U 

TABLE 4.1. STRATUM OF T t DUE TO THE ACTION OF ~0; IRREPS OF P0 

Stratum Little Group Irrep of g0 

2 2 
I ~ = m SU(2) 

P 
II p-- = 0 E(2) 

# 0 (2-dimensional 
Euclidean group) 

III 2 < 0 S~(2~P0 = S~(2,1) 

N = double 
covering 

IV p = 0 SL(2,~) = g0 

0 
I m > 0 (i.e., p > 0), 2j integer ~ 0 
a 0 

I b m < 0 (i.e., p < 0), 2j integer ~ 0 

II sign of p0, 2h integer a 

IIb sign of p0; H positive number, ~ = 1 
0 

II sign of p ; Z positive number, m = -i 
C 

III m 2 < 0, ascendant and descendant 
a 

discrete series, ±j 

III b m 2 < 0, principal series io,p E R 
i 

lllc m2 < 0, supplementary series, 0 ~ o ~ 

IV Irreps of SL(2,~) (see Stein lectures) 
are irreps of ~0 with T trivially 
represented. 

is the non-trivial element of the center of ~0; in I, ~ is represented by 

(-i) 2j and in II by (-I) 2h. Wigner constructed the irreps of type I and II. 

Those of S~(2,R) needed for type III were given by Bargmann, Ann. of Math.,4_~8 568 

(1947) and those of SL(2,~) (type IV for g0 ) were first given by I. M. Gelfand, 

M. A. Naimark, Acad. Sci. USSR J. Phys., iO, 93 (1946) and Isv. Akad. Nauk SSSR Ser. 

Mat., ii, 91 (1947). 

Wigner's method is a particular case of Mackey's theory of induced repre- 

sentations. Since the (measurable) axis t10t and 0x are a set of representatives 

of the orbits, a theorem by Mackeyt insures that this method yields all irreps of 

P0" As we will see, the only irreps of g0 which correspond to known particles are 

those of mass m ~ 0 (I a and II a in Table 4.1). Wigner, in his paper, has given 

the following realization: 

To 2 2 pO An invariant measure on the orbit ~: p = m ~ 0, > O, is 

d3~/p 0 = d~. Consider the functions f defined on ~ with value in a 2j + i 

# G. W. Mackey has described his theory in a book for physicists: Induced Represen- 
tations of Groups and Quantum Mechanics, Benjamin, New York (1968). The needed 
theorem is Theorem B, p. 43. 
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dimensional Hilbert K., such that 
] 

llfl12 = J'f2 <f(P)'f(P)> ~ < =o 

P 

, (4.11) 

where <f(~),f(~)> = E f (~)f (~) is the hermitian scalar product in Kj. Then 

(U(~,A)f) (~) = E6ei--a'PQ~B(~,A)fB(A-I~) , (4.12) 

where the unitary (2j + i) x (2j + I) matrices Q satisfy 

Q(p,A)Q(A-I~,B) = Q(~,AB) (4.13) 

When j = 0 or when m = O, dim K 0 = i, and the Q are complex numbers of unit 

module. In all cases, when A, B E [p, the little group of p, Equation (4.13) show 

that the Q form an irrep of [ . 
P 

4.4. Particle States and Irrep of PO 

What is a particle? This word is used very much by physicists. This word 

is attributed to the electron, the photon, and the 270 hadrons of Table 3.2 in 3.5, 

and also to nuclei (an "e-particle" for instance means a Helium nucleus) and even to 

atoms or ions. The meaning of this word is in full evolution; it was clear up to 

ten years ago. Let us try to define this word. 

"A particle is a physical system which can be isolated and cannot be de- 

composed into subsystems without destroying it." 

This concept is very clear for stable particles: electrons and positrons 
+ ± 

e-, protons and antiprotons p , photons ¥, neutrinos and antineutrinos ~, ~ and 

also stable nuclei (deuteron, m-particle, 6C12 ) and the fundamental states of atoms 

or molecules formed with these nuclei. 

Invariants which can be attributed to these particles are the P0 invari- 

ants; mass and spin, and the Hilbert space of the states of a particle is the carrier 

of the irrep of ~0 of mass m, spin j (or for m = 0, of helicity %).% For 

example, proton or antiproton (mp,i/2), electron or positron (me,i/2) , neutrinos 

(0,-1/2), antineutrinos (0,1/2). 

To good approximation this concept of particle can be extended to unstable 

particles whose lifetime is long enough to study them isolated (T > 10 -21 sec). 

Strictly speaking, because of Heisenberg's uncertainty relations between energy and 

time, the Hilbert space of states carries the rep~(m,j~m where P is a curve 

t The ~O invariant % is called helicity by elementary particle physicists but was 

called circular polarization by its discoverer, Fresnel, in the 1820's. It just 
happens that the photon is the only known particle whose space of states is the 
carrier of a reducible representation (m = O, % = i) • (m = O, % = -i) of PO" 
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with a mean spread of Am. For weak decays, gm/m < 10 -14 and for electromagnetic 

decays, Am/m < 10 -5 . 

It is not clear that this concept of particle can be usefully extended to 

the strongly unstable resonances (most of the "hadrons" of Table 3.2 in 3.5). In- 

deed their lifetime • might be as short as 10 -23 sec (and Am/m reach 0.15 for 

the p-meson) so they do not exist isolated since the range of strong interaction is 

10 -13 cm (of the same order as 3 x i0 I0 x 10 -23 = ~c). However, we shall here call 

them particles. 

We have used also the word particle as a collective name for different 

particles with the same spin and not very different masses and similar properties, 

so they can be considered approximately as identical. This was the case of "the 

nucleon" with the isospin degree of freedom corresponding to the two states p and 
+ 0 - 

n; the T-meson with the three states ~ , ~ , ~ . 

There is another degeneracy for most particles. It has been found (or it 

is expected) that they come in pairs with the same representation (m,j) of %' 

but all charges are opposite within the pair. Such pairs are called charge-conjugate 

pairs, the two values of the corresponding degree of freedom are labeled "particle" 

and "antiparticle". Particles with all charges zero are called self-charge- 

conjugated, indeed there is no degeneracy under charge conjugation C for them 
0 0 0 0 0 0 

(examples: T,~ ,q ,p ,~ ,~ ,x , etc.). 

Elements of the enveloping algebra E(P 0) of the Lie algebra of P0 are 

observables which we will call the kinematical observables of the particle. 

The P0 Lie algebra is (with M v = -Mvv) 

[iPU,ip ~ ] = O, [iPh,iM ~v] = iP~g h~ - iPWg I~ 

The p%, M~V 

relativistic angular momentum. 

Nat. Acad. Sci., (1967)) considered in 

which satisfies 

Note that 

(4.14) 

[iMVV,iM p°] = iM~Pg v° + iMV°g ~p _ iM~°g vp _ iMVPg v° (4.14 t) 

are the self-adjoint operators on ~ representing energy momentum and 

[WX,P ~] = 0, [Wh,W ~] = i¢%~PP W , (4.16) 
v 0 

[WI,M ~v] = iW~g Xv _ iWVg %~ (4.161 ) 

P • W = PhWh = 0 (4.17) 

E(Po): 

1 1 M~VP p = (*M Wh = - ~ s~h~p P~Mvp = - 2 sharp " P)I (4.15) 

Pauli (unpublished) and Bargmann and Wigner (Proc. 
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The center of E(P 0) is generated by P$ = PhWx and W 2 = WXWh. For irrep of ~0 

these operators are the following multiples of the unit: 

m > 0, p2 = m 2 i, W 2 = -m2j(j + i) 

m = 0 lla p2 = 0, W$ = 0 W = %P, % helicity 

m = 0 lib or llc p2 = 0, W 2 = -E < 0 

4.5. Particle Polarization 

In most experiments, the energy and momenta of the particles are measured 

(i.e.: monokinetic beam, target at rest, bubble chamber track curved in a magnetic 

field). The additional observables to be measured in order to have a complete 

knowledge of the particle state are called "the polarization". Since W commutes 

with P, it is the polarization operator. However, the W components do not com- 

mute with each other. Equations (4.14), (4.14'), (4.15), (4.16), (4.16') show that 

P0' PI' P2' P3' W3' W2 (4.18) 

generate a maximal abelian subalgebra of E(~0). It is easy to interpret t the 

observables of a particle (m,j) when one remarks that ~(m,j), the one-particle 

space of states, is a direct integral 

iO d3~ 
3C(m,j) = Kj(~) 0 ' (4.19) 

p 

of 2j + 1 dimensional Hilbert spaces K.. Given 
3 

tetrad of vectors in the Minkowski space (i.e., in 

~, introduce an orthonormal 

T') 

_n (0) = £m-l,~(i)(i = 1,2,3,~,B = 0,i,2,3) (4.20) 

Minkowski scalar product 

n(~),n (B) = g , (4.20') 

right hand orientation 

e%~Pn(~)n(B)n(V)n (~) = _saBx ~ 
A ~ ~ p 

(4.20'') 

Introduce then the self-adjoint operators on 

S i = _ i n (i) . W(£) 
m -- 

Kj(~) 

(4.21) 

% See for instance L. Michel, N. Cim. Suppl., 14, 99 (1959) for more details and the 
treatment of the case m = 0. 
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where W(£) is the integrand of 

f d~ = ~(£) 0 (4.21') 
p 

Of course, Equation (4.17) implies 

The S (i) 

S O = _ ! n (0) . W(£) = 0 (4.21'') 
m -- 

satisfies the commutation relations 

[s(i),s (j)] = ieijkS(k) , (4.22) 

so they generate a SU(2) Lie algebra, that of the little group of ~. For 

= (m,0) (particle at rest), S (i) = M0i(~). This shows the relation between angu- 

lar momentum and polarization. 

For a particle of energy momentum ~, the polarization density matrix 

R(~) is a rrR(~) = i, hermitian R*(~) = R(~) ~ 0, (2j + i) × (2j + i) matrix 

which is transformed by L 6 SU(2) (defined by Equation (4.22)) as 

Lp = p, R(p) ~-> Q(p,L)R(p)Q*(p,L) , (4.23) 

Let 

R(/!) = (2j + i) -I i + 

2j 
Z R(~)(e) 

~=i 
, (4.24) 

be the decomposition of R(£) into a sum of irreducible SU(2)-tensor operators. 

The R(%)(£) are called the multipoles of the polarization matrix. Note that R(£) 

and the R(£)(£) can be given a completely covariant form. 

Where 

(-i)£ Wa~ ~2. .W ~ 1 ,R(Z)(£) = s 
R(1)(~) = - ~ s mR al~2"''eZ 

s is a completely syrmnetrical %th order tensor satisfying 
al...~£ 

(4.25) 

(partial trace) a = 0, a = SaBy... ~sBy.. " = ~ • s = 0 (4.26) 

This is obtained# from the equivalent form of relation (4.21) 

W(~) = mZ.S(i)n (i) (4.27) 
i 

From now on, we shall consider only the dipole polarization (which is the 

only one existing for a spin 1/2 particle). Its evolution is given in a macroscopic 

# For more details see C. Henry and E. De Rafael, Ann. Inst. H. Poincar~, 2A, 87 
(1965). 
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F i = Ei,F ij (N slowly variable in space time) electromagnetic field F (with 

= EijkBk and *F the polar tensor of F) by the equation* 

= ~ M • s, with M = F + P ( ~  F + g'*F)P , (4.28) 
- -  m - -  

= ~/m, the quadri-velocity, which satisfies the where and P = I - u g u = P ¢ 
Lorentz equation: 

N~ F • u (4.281 ) 
- -  m - -  

The means the proper time derivative; M and F are skew symmetric tensors so 

(4.28) and (4.29) correspond to infinitesimal Lorentz transformations which of 

course preserve the Minkowski products: 

2 = i, u • s = 0, 0 ~ 6 = (_ 2)1/2 ~ 1 , (4.29) 

where ~ is called the degree of (dipole = vector) polarization. The magnetic 

moment of the particle is ~ = (g/2)e/m(h = c = i) and ~ = g e/m is its electric 

dipole moment. (For neutral particles, write directly ~ and ~.) Note that 

g = 2 is a remarkable value of g which simplifies Equation (4.28). This, as 

first noted by Thomas in 1926, is characteristic of the Poincar~ group and does not 

happen for Galilean invariance (as we commented in 2.6 and 2.9). 

Consider a reaction between particles A + B ÷ C + D + ... where all 

energy momenta are exactly known. Then the transition probability between pure 

polarization states is % = I<C;D .... [S(PA,PB,Pc,PD...)IA,B>I 2 where the isometry 

S(PA,PA,PC,PD...) E Horn 0C A g 4' ~C ® ~ g "" ") (4.30) 

More precisely, S is the restriction of a unitary operator, defined on X the 

Hilbert space of physics and called S-matrix in the physics literature. In the 

general case of given polarization density matrices 

X(pA,PB;Pc,PD,p...) = TrRc,D...(pc,PD. ..)SRA,B(pA,pB)S* , (4.30') 

where RA,B(PA,PB) (reap., RC,D(Pc,PD.. .) are hermitian operators** on KjA(PA) 

@ KjB(PB) (reap., Kjc(PC) g KjD(PD) @ ...) which reduce to ~(2JA + I)-I(2JB + I) -I 

(etc.) when no polarization is observed. If one observes the polarization of only 

one of the particles, Equations (4.24), (4.25) and (4.30')show that %(pA,PB;Pc,~...) 

* V. Bargmann, L. Michel, V. Telegdi, Phys. Rev. Lett., 2, 435 (1959). 

*T Practically, for all experiments, there is no correlation between the states of 

initial particles so RA,B(PA,PB) = RA(PA ) g ~(pB ). 



113 

depends linearly on the different polarization tensors of this particle 

(Sa,Sa~,Sasy,...) .+ 

4.6. Invariance Under p x Z2(C); PCT Theorem 

If a physical theory is invariant under a group, say P0' one can trans- 

form the theory by an automorphism ~ E Aut P0' (replace everywhere g E P0 by e(~). 

If ~ is an inner automorphism, by definition of P0 invariance, the transformed 

theory is equivalent. If ~ is not an inner automorphism, the transformed theory 

might not be physically equivalent. If it is, then one can enlarge the invariance 

group, in order to include this automorphism. It is obvious that dilations are not 

an active invariance of physical theories (except when only zero masses occur). 

What can be said about P, T (and their product PT)? We will assume invariance 

under P and T and also under C, the charge conjugation, and in the next section, 

see if these invariances are respected in nature. 

It seems a reasonable assumption that P does not act on A ° , the com- 

mutant of A, the representation on ~ of the algebra of observables (see Equation 

(4.5)). We do know the action of T on A t , because T has to be represented by 

an antiunitary operator (see 1.2), i.e., by U(T) = V(T)K where V(T) is a unitary 

operator and K is a complex conjugation (whose choice cannot be canonical). K (as 

well as U(T)) induces an anti-linear automorphism on the algebra L00 i.e., 

KXAK = ~KAK, KABK = KAK KBK, K(A + B)K = KAK + KBK , (4.31) 

since K 2 = ~. Note that if U = (U-I) * is unitary, so is KUK. We assume that T 

leaves U(A) and U(Z) globally invariant, but acts as an anti-linear automorphism. 

Finally, we can introduce U(C), the charge conjugation operator on ~. By defini- 

tion C acts trivally on P0 and anti-commute with all charges. More generally, 

physical properties of C tell us how it must act on A t which corresponds essen- 

tially to internal symmetry. Let 

D = Z2(P) × Z2(T) × Z2(C) , (4.32) 

Pc = P x Z2(C) = P0 o D (4.33) 

In LM I, I gave the proof kindly tailor made by J. P. Serre for us physicists, 

(Theorem i, p. 183). 

H2(Pc,U(Z)) = H2(D,U(Z)) • 2U(Z) D , (4.34) 

(see a similar theorem in Moore's lecture), where 2U(Z) D is the group of the 

t If the polarization of more than a final particle is observed one has also to 
introduce polarization correlations. 



square roots of the unit of U(Z) invariant under every element of D. We check 

(iT (B+ ~iLi) ) (-i~ (B+ EiL i) ) 
that e = e is such an element so relation (4.9) is pre- 

served. 

What is the extension in (4.34) chosen by nature? Probably none, as we 

will see in the next section because P, C, PC (and probably T) are not automor- 

phisms of the physical laws of nature. However, we can consider for D in (4.34), 

a subgroup of that of (4.32). 

Let us first consider parity. Irreps of P+ = P0 [] Z2(P) are easily 

deduced from those of P0" For m > O, and m = 0, ~ = 0, there are two irreps of 

P+, (m,j,±) or (0,0,±) with opposite parity (eigenvalue of U(P)) whose restric- 

tion to P0 is irreducible. For mass zero, ~ ~ 0 irrep of P+ are denoted by 

(0,I~ I) because their restriction to P0 reduces to 

= (o,lxl)Po (o,1~1) • (O,-Ik I ) (4.35) 

Note that, as projective representations of P0' (m,s,+) and (m,s,-) are equiva- 
2 

lent. More generally, since g ÷ g is a surjective homomorphism of U(Z), 

H2(Z2(P),U(Z)) = 0. So to speak of the parity of a state is not a canonical state- 

ment; only relative parity can be defined for states in the same superselection 

sector. By convention, the parity of the vacuum is taken +i, as well as that of the 

proton, the neutron, the electron, the A 0. 

Wigner in his Istanbul lectures in 1962 (same reference as LM I) has 

studied the projective irreps of P (and even P ). This study can be easily 
C 

transferred to the study of the extension of P by U(Z) (and then by U(As), from 

general results of group extension by a non-abel±an kernel, as explained in LM I). 

This is not the case for P because U(C), as unitary operator, does not act on 
C 

the phase of the projective representation, but C as charge conjugation acts non- 

trivally on Z. We just give here the following results: U(T) 2, U(CPT) 2, U(PT) 2 
2 

are canonical (since U(Z) is divisible and U(Z) ~ g ÷ g is surjective) and are 

E 2U(Z). For non-zero mass states, a choice different from 

U(T) 2 = U(PT) 2 = U(CPT) 2 = (-i) 2j , (4.36) 

will require that irrep of Pc restricted to P~Z2(C) are not irreducible. This 

would correspond to a new degree of freedom for particles which is not observed in 

nature.# 

In usual quantum field theories, relations (4.36) are always satisfied. 

This is related also to the two following theorems: 

* See Wigner discussion in his Istanbul notes and for a recent review see H. 

Goldberg, N. C~m.j 60, 509 (1969). 
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Theorem 3. 

The good connection between spin and statisticst is a consequence of the 

Wightman axioms:it covariance under P0 of finite component quantum fields, 

existence of vacuum, positivity of energy and "locality". 

Theorem 4. 

These axioms also imply invariance under CPT.ttt 

4.7. How to Observe Violation 

4.7.a. Action of P~ T~ C on Observables 

Let us summarize in Table 4.2 the action of the automorphisms P, T, PT 

of P0' on invariants of this group. C acts trivally on them, but exchanges parti- 

cles and antiparticles. The self conjugated particles are eigenstates of C. For 

instance, consider quantum electrodynamics; C is an automorphism of this theory. 

The electromagnetic interaction Hamiltonian is: 

Hem ='~ j~(x)A (x)d3~ (4.37) 

By definition of C, 

utc)j~(x)U(C) -I = -j~(x) , 

i.e., the electromagnetic current changes sign. So H 
em 

also 

U(C)A (x)U(C) -I = -A (x) 

is invariant under 

(4.38) 

C if 

(4.39) 

i.e., integral (resp. half integral) spin fields describe particles which satis- 
fy Bose = Completely symmetrical (resp. Fermi = antisymmetrical) statistics. 
This was proven by Pauli; his last publication in the subject is "Exclusion 
principle, Lorentz group and Reflection of space time and charge", p. 30 i__n_n 
Niels Bohr and the Development of Physics, Pauli editor, Pergamon, New York 
(1955). There he also proves the CPT theorem, first proven by LHders and 
Schwinger. 

tt See R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, 
Benjamin, New York (1964); R. Jost, General Theory of Quantized Fields, 
American Mathematical Society, Providence (1965). 

ttt From weaker axioms (Haag-Araki theory of local observables), H. Epstein, J. Math. 
Phys., 8, 750 (1967) , has proven the CPT invariance of the S matrix. For 
infinite component fields, neither the connection between spin and statistics, 
nor the CPT invariance are implied by P0 invariance. For a counter example, 

see e.g., I. Todorov, 8th Nobel Symposium, Wiley (1968). 
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By definition, U(C)0> = 0> where 0> is the vacuum. So 

U(C)A (x)0> = -A (x)0> , (4.40) 

i.e., a photon has charged conjugation -i. We have added in Table 4.2 the trans- 

formation of the electromagnetic field 

F (x) = (~AA(X)) ~ = ~ A(x) - ~ A (x) (4.41) 

For T, time reversal, the space part j of the e.m. current jP(x) 

changes sign (as a velocity) while the time component (whose space integral is the 

electric charge) does not. Hence the time reversal property of A , of H (in- 
.° p em 

variant), of F 0i = E i (electric field) and F IJ = Sijk Bk (magnetic field). 

Consider Equation (4.28). The quadrivector mF • u = (-B "P,÷ -P0 ~_p ÷×~) 

transforms under t as d/dt mu. Hence, except for the term in gt (electric di- 

pole) Equation (4.28) is invariant under P, T, PT. The term in gt is incompatible 

with both P and T. 

TABLE 4.2. COVARIANCE UNDER P,T,C, OF THE INVARIANTS OF P0 
AND THE ELECTROMAGNETIC FIELD 

Physical Observable P T PT C CPT 

pj,~ ~ + + + + + 

~'~ + - + 

(pi,ej ,~,e~), (~,pj,~,~_~) - + + + 

(~,pj ,~,~_~), (~,~_j ,~,~_~) + - _ + 

helicity % + - + - 

(electric field) - + - - + 

(magnetic field) + - - - + 

(a,b,c,d) means determinant of the four components of four vectors. 

4.7.b. Parity Violation 

The consequence of invariance under P is called parity conservation. 
I 

C o n s i d e r  two s t a t e s  S 1, S 1 o f  a p h y s i c a l  s y s t e m  c o r r e s p o n d i n g  t o  each  o t h e r  
t 

through an "active" plane symmetry ~, and $2, S 2 two other states of the same 
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I I I 
system also symmetric to each other through E. Let 112 = trRiR 2 and 112 = tr~R 2 

be  t h e  r e s p e c t i v e  p r o b a b i l i t i e s  o f  t r a n s i t i o n s  1 ÷ 2 .  

= I 

Parity conservation ~ 112 112 (4.42) 

EI12 

I 
If an experiment yields 112 ~ 112, it proves parity violation. Since 

I I = I 
= t 1 2 ,  2 t 1 2  = t 1 2 ,  i t  means t h a t  t 1 2  a + b ,  t 1 2  = a - b ,  w h e r e  

1 , 1 , 
a = ~(XI2 + 112) is a scalar, b = ~(XI2 - I12 ) is a pseudoscalar. (4.43) 

So in a two particle decay of a polarized particle £+ £i +~2' (or more 

generally in a decay where only two energy momenta are observed) P conservation 

the angular distribution of decay products depends only on the even polarization 

multipoles s B , s Bya , .... % 

In 1957, the following experiment was performed. Co 60 nuclei at rest 

(~ = m,O) were polarized in a magnetic field B; this gives them a dipole polar±- 
+ 

zation only: ~ = (0,1B). So P is a symmetry of Co 60 state P(m,O) = (m,~), 

P(0,XB) = (0,1B). Those nuclei decay spontaneously (B- radioactivity) emitting 

electrons of energy momentum K(q0,$) with an angular dependence proportional to 

• ~ = -IB • q = -IBq cos 8. This decay proved parity violation. 

Similarly, in the spontaneous decay of zero spin ~ mesons ( = m ): 

± + 
+p-+~¥ , 

into a spin 1/2 p-lepton and a massless ~± (- for neutrinos, + for ant±neutrinos). 

The p-lepton has a polarization s (which can depend only on the observed quanti- 
2 P 

tatives ~ = ~ +~, pv = 0; remember sp pp = 0; see LM II). 

S = $ m 

--~ m 2 mp m f --m2 ' (4.44) 
- ~ ~ - 

+ 

depends on the sign of the (electric charge of) ~-. 

P v i o l a t i o n  (by  o b s e r v a t i o n  o f  a p s e u d o s c a l a r  p~ - sp  

where This proves C and 

also in the decay). 

By the same type of argumentation we verify that those experiments are 

compatible with CP invariance. Note that in T-decay, the p-polarization s (given 
2 --~ 

by (4.44t)) satisfies s = -i (complete polarization). Then P0 invariance 

(through angular momentum conservation) requires that the accompanying ~$ is 

emitted in a pure helicity state % = $i. All observation on neutrinos helicity 

suggest that ~_ has helicity + for both ~ and ~ . 
+ p e 

% See Equation (4.25) and, at the end of 4.5, the property for X to be linear in 
s, s~, s~ .... 
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This shows that the set of neutrino states in not invariant under P 

C, and it implies that all reactions with neutrinos violate P and C. But 

neutrino-less (in fact, non-leptonic) decays of hyperons also violate parity. 

Example: A 0 ÷ p+ + ~-, the angular distribution depends on &A " ~ = -~A " 

(since ~A " ~A = 0). 

or 

4.7.c. Time Reversal Invariance 

It would be better to call it "velocity reversal" since 

Let S I and S 2 be two states of a physical system and 

corresponding states obtained by a T active transformation (p0 

0 s o ' ÷ + s ~+ s ~+ -s, % ~+ %, etc.). Then 

T 
T ~ XI2 = X21 

Note the reversal of time ordering for the two transitions. 

comparing the cross section of the two inverse reactions + 

(~/pO ~) ÷ 
T = - -v. 

T T 
S 1 ,  S 2 t h e  

0 ÷ ÷ a,+ p , p a~÷ - p ,  

(4.45) 

A precise experiment 

and + 

÷ ÷ ÷ t  ÷ t  ÷ l  + t  + $  ÷ 1  + ÷ + 
X ( p ~ , p p  ÷ p ~ , p p , S p )  = X ( - p w , - p p , - S  p - p  , - p p )  (4.47) 

There is an approximate condition of T invariance, in perturbation theory which is 

based on the following expansion of the "S-matrix". 

0 (H 2 ) S = I +iH + , (4.48) 

where H has to be a self-adjoint operator (write SS* = S*S = i, in first order in 

H). In this form, we have for orthogonal states (i.e., RiR j = 0) 

TrR.SR.S* N TrR.HR.H = TrR.HR.H , (4.49) 
3 x 3 x x 3 

i.e., in this approximation 

%.. = %.. (4.50) 
x3 31 

T 
Then in this approximation, (4.45) reads ~12 = %12" Even in this approximation 

there is no positive evidence of violation of time reversal in physics, with perhaps 

the exception of K0-decay (next section). 

is in progress. (The rates are equal for pure states; since polarization is not 

observed one has to divide the rate by the dimension of the polarization space K. 
3 

for the particles ÷ (2 1/2 + 1) 2 = $, ÷ 2 × 3 = 6.) 

Consider an elastic process (same initial and final particles) such as 
- + - p +  t 

+ p ÷ ~ + and compare the final polarization s of the proton with the --p 

initial polarization of the proton target in another experiment. We must have 

y + d + ++ p+ + n , (4.46) 
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Note that in Equation (4.28), using Table 4.2, the term in g' (electric 

dipole) is not compatible with time reversal invariance (or with P invariance). 

So the existence of an electric dipole for an elementary particle would prove viola- 

e is known to be ~i0 -9 and tion of both P and T. Experimentally gneutron 

I 10-12. 
gelectron 

Note that PT invariance has a simple formulation. For example 

I I 

h(Pl + P2 ÷ Pl + PC2) : h(Pl + P2 -~ Pl + P2 ) ' 

for spinless particles or for pure states (then change ~ ÷ -~, Sal..._ak 

÷ (-l)ks l...~k)). This is known in physical literature as the "principle of 

detailed balancing". 

4.8. CP Violation 

CP violation was first observed by I. H. Christenson, C. W. Cronin, 

V. L. Fitch and R. Turley, Phys. Rev. Lett., 13, 138 (1964) in K0-decay. Many 

experiments have confirmed it. 

K 0 (= anti-K 0, Y -I) can be described by the The state of a or = 

Hilbert space ~ ( 1 )  = L2(R3, t  ) @ K2 where K 2 i s  the  v e c t o r  space  of  f u n c t i o n s  

defined on the two element set (Y = i, Y = -1). Then C is of the form I @ C 

while P is of the form P ® I so PC = P @ C. We assume that p2 = i, C 2 = i, 

PC = CP so (PC) 2 = i (as we have seen in 4.6, for spin 0, another assumption will 

increase the degree of freedom of K's). So we can write 

JC ( I )  :JC~ 1) ~JC (I)_ , (4.51) 

~ ( i )  ~ ( i )  
_ = ~ ±  ~+ (4.511 ) 

Now it is easy to deduce the action of CP on states of two 0. These 

are two identical self-conjugated particles hence any state of 270 is eigenstate 

with value +i for C. The tensor product of the representation (m,0) of P+, by 

itself yields 

with symmetry 

2 I ®(m,0) = ~ (m,~)dm , (5.52) 
~=0 

2m 

I-I-] for even ~, ~ for odd ~ (4.52 I) 

0nly the ~I] = symmetric states are allowed by Bose statistics. And (by an argument 

essentially similar to that yielding Equation (2.40), P acts in the space of 

Equation (4.51) by multiplication by (-i) ~ in each direct summand. So states of 

2~ 0 are eigenstates of C, P, CP with eigenvalue +i. 
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For states of ~+ + ~ , one has to consider these two particles as identi- 

cal in order to apply Bose statistics, but in the two different possible states of 
+ - 

charge (+ and -). So states of ~ ~ of total spin ~, are eigenstates of C, P, 

CP with eigenvalue (-i) ~, (-i) ~, i. When CP was believed to be preserved, it 

was predicted that states of --~!) in Equation (4.51) would decay into 2~ while 

states of ~C (I) would decay into 3~ states which are eigenstates of CP with 

eigenvalue -i (as e.g. all 3~ 0 states). This was exactly observed and the states 

of the two spaces --~!i) and ~(i) were also called "short" and "long" because the 
"I" 

2~-decay is faster. 

In 1964, the above quoted experiment proved that the long lived meson also 

decays into 2~ (with a rate N 106 slower than the short lived). 

We do know that the universe around our galaxy is not CP invariant, but 

the influence of this asymmetry (which could depend on the relative velocity of the 

K-meson with respect to the galaxy, or the earth) seems to be ruled out by more 

precise experiments. 

Must we conclude that there is a small violation ((10-6) 1/2 = 10 -3 in 

amplitude) of CP in the transition K ÷ 2~? Another possibility could be that CP 

is conserved in this transition but that the two observed meson with exponential 

decay: short-lived K S and long-lived ~ are non-orthogonal states with respec- 

tively a large c S and a small c L component in ~il). Then the branching ratio 

K S ÷ 2~0 ~ ÷ 2~ 2 

b S = and b~ ÷ + - , 

(K s ÷ 2~ + + ~-) ~ + 

should be equal, since they would be the branching ratio of all the states in ~i) 

The value of b S is N 1/2 (as predicted by the selection rule A~ = 1/2, see 3.6). 

The first measured values of b~ were around i0 to 12, but a value zero appears in 

another experiment. The present experimental evidence is still an incompatible set 

but "optimists" say it is compatible with b L N b S ~ 1/2. 

So it is possible that CP violation is due to a still undetected inter- 

action, to which no particle transition or spontaneous decay can be attributed, and 

which has to be superweak. 

÷ ~± k S CP violation has also been observed in ~ + + ~ (where 

~£ = ~ or e) decay; there is a relative difference of 3.10 -3 in the two C or CP 

conjugated rates. But CP violation has not yet been observed anywhere else. 

Of course physicists have proposed many theories (about thirty not yet 

ruled out by the meager experimental data) to explain CP violation. There is no 

possibility to give more details here. 

To conclude, let us just remark that there is no evidence against CPT 

violation and there is one fact which suggests that CPT is a "much better" 

invariance than CP: a small upper limit of the K 0 - K -~ mass difference is well 
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10-14ink . known. It is m - m < Such a perfect equality cannot be due to 
K 0 K--0 

chance and suggests an invariance in nature which contains C. However, we have 

seen that C, CT, CP are ruled out, so CPT is the likely candidate in agreement 

with the CPT theorem 4.6. 

Remark on Galilean Invariance 

We dealt in Section 4 with relativistic P~incar4 invariance only. Although 

we sometimes spoke in Chapters 2 and 3 of Galilean invariance, such invariance was 

not thoroughly used in atomic and nuclear physics. E. In~nH and E. P. Wigner 

characterized the irreps of 3, the covering of the Galilee group, in 1952 (N. Cim., 

9, 705). 

Their results did not fit with physics. V. Bargmann (Ann. of Math., 59, 

i (1954)) shewed that for central extensions of the G Lie algebra 8, H2(g, R) = R. 

For each irrep of G, this yields a family of projective irreps depending on one 

parameter m which corresponds to the mass of the particle. 

See also 0'Raifeartaigh's lectures where it is shown that projective 

irreps of an invariance group also appear in classical mechanics. 

5. THE INTERNAL SYMMETRIES OF HADRONS 

5.1. SU(3) Symmetry 

5.l.a. The Octets 

Table 3.2 of "elementary particles" in 3.5 is reminiscent of similar tables 

of atomic and nuclear spectra. 

So, before a dozen of baryons and as many mesons were known, physicists 

were searching for a larger symmetry than that of U 2 (isospin and hypercharge) 

which we have described in 3.5. There is no point and no time to tell here about the 

ill-fated choices except to mention that of Sakata, with a U(3) group whose funda- 

mental representation was spanned by p, n, A, the first three known baryons. (S. 

Sakata, Prog. Theor. Phys., 16, 686 (1956).) 

Just as Heisenberg proposed to consider neutron and proton as two states of 

the same spin 1/2 particle, the nucleon, by neglecting their very small mass dif- 

ference (or more precisely attributing it to an electromagnetic self-mass effect), 
+ 0 the eight known spin ½ baryons p, n, A , Z-, Z 0, Z +, Z-, ~0 could be considered 

as eight states of the "same" particle although the mass difference is of the order 

of 15 percent instead of 0.15 percent. 
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By 1961, seven pseudoscalar mesons (0-) were known, with the same group- 

ing in isospin and hypercharge y = i, t = 1/2, K+KO; y = -i, t = 1/2, K-K0; y = O, 
+0 - 

t = i, ~ ~ ~ but the spread in mass was much larger. 

M. Gell-Mann and Y. Ne'emann independently proposed to use SU(3) as a 
1 + 

classifying group; the eight ~ baryons and, predicting a y = 0, t = 0 pseudo- 

scalar meson which was discovered a few month's later and called 0, the eight 0- 

mesons form two octets = eight dimension space E 8 of the adjoint representation of 

SU(3) ([I] in Young diagram notation). For instance the Hilbert space of states of 
U i + ~] i + 

one baryon is the tensor product L(m, ~ ) @ K(h_; ) where L(m, ~ ) is the space 
l+ 

of the irrep (m, ~ ) of P, the Poincar~ group and K( ) the octet space E 8. 

SU(3) is an exact symmetry when the baryon mass differences are neglected. We can 

say that strong interactions will be decomposed into two parts: a strong SU-3 in- 

variant part and a semi-strong part invariant under the subgroup U2(T,Y) only. 

This fits the reduction* 

F of su(3)Iu(2)° (01) (1½) (yt)  51) 

dim 8 = 2 + i + 3 + 2 

But, would it be possible to consider the SU(3) breaking semi-strong interaction as 

a perturbation of the very strong interaction? Surely, if you are an optimist. 

After all 15 percent (effect in baryon mass) is small compared to i. 

Let us now study the mass splitting within the SU(3) multiplet. 

5.l.b. The Mass Operator 

posed into 

The simple hypothesis for the mass operator M is that it can be decom- 

M = M 0 + M~(y) , (5.2) 

where M 0 is a "scalar" tensor operator and Mr(y) is the image of y (of the Lie 

algebra of SU(3)) by an octet = E8-tensor operator. Let E be the space of an 

irreducible representation of SU(3). Because SU(3) is of rank two, or equivalent- 

ly has two zero roots (which are zero weights for ~ )## 

dim Hom(E @ E8,E)SU(3) ~ 2 (5.3) 

U) -I 
r-1 

For u E U(2), the black column means (det while U means (det u). 

t+ If %1 m %2 m 0 are the number of squares in the first and second line of the 
Young diagram of an irrep of SU(3), one also uses the notation (%1 - %2,%2 ) 
for the irrep of SU(3). The contragredient of (p,q) is (q,p), so (p,p) is 

self-contragredient, as in ~ = (i,i), while J J l] = (3,0) of dimension I0, 

has for contragredient ~ denoted i-~ by the physicists. 
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More precisely, it is 2, except for the trivial irrep, for which it is zero, and it 

is 1 for the irreps whose Young diagram has only 1 line (i.e., (%1,0)), or two 

equal lines X1 = %2' (i.e., (0,%2)): for example, ~ and its contragredient 
- 

which are also denoted i0 and i0 because they are of dimension i0. 

This is also true for ~] = (i,0) and ~ = (0,i) denoted 3 and 7; and 

= (2,0), ~ = (0,2) denoted 6 and 

Another way to interpret (5.3) is to say that on the Hilbert space K of 

an irrep of SU(3) there are at most two linearly independent octet-tensor operatorg 

Thus, in the approximation where U(2) is an exact symmetry (i.e., neglect of elec- 

tromagnetic and weak interactions) the particle masses in a multiplet depend on three 

parameters (one, the expectation value of M0, and two at most for Ml(Y)). From 1.5, 

we know that we can take for each E, as linearly independent octet-tensor operators 

F and D = F V F, where x ~--+ F(x) is the representation (up to the factor i) of 

the SU(3) Lie algebra on ~, the Hilbert space of hadronic states; it satisfies 

F A F = iF. Explicitly, for any p , p E K the space of an irrep of SU(3) in 
~i ~2 

and for any octet-tensor operator T 

<p ,T(x)p > = p + SD(x))p > (5.4) 
~i ~2 <~i '(~F(x) ~2 

In the physics literature e/~ is called the F/D ratio. If the octet part MI(y) 

(see Equation (5.2)) of the mass operator has no matrix elements between two 

subspaces of ~ carriers of inequivalent SU(3) irreps,# this implies that 

M = M 0 + MIF(Y) + M2D(Y) , (5.5) 

where M0, MI, M 2 are SU(3) scalar operators. The operators F(y) and D(y) 

commute and their common eigenspaces are U(2) multiplets, so they are functions of 

Y and T(T + i), the generators of the center of the enveloping algebra of U (2). 
Y 

By definition F(y) is proportional to Y, the hypercharge operator, and by compu- 

tation one finds 

1 y2 1 D(y) = ~2 _ ~ - ~ K , (5.6) 

where K is the (quadratic) Casimir operator of SU(3). So with a convenient change 

in the definition of the scalar operators, on a SU(3) multiplet the mass of a 

state of hypercharge y, isospin t 

s i 12 
m = m 0 + m I + m2(t(t + i) - ~ y (5.7) 

Applied to the octet of Baryons N, A, E, Z this yields a relation between their 

four masses 

i i 
(m N + m~) = ~ (3m A + m E ) , (5.8) 

(Gell-Mann, Okubo mass relation) which is well verified within few MeV (for mass 

> 10 3 MeV!). 

t There are exceptions to this rule: see 5.l.d, the vector mesons. To convey the 
main idea, we simplify here too much. 
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For mesons (zero baryonic charge) because of the charge conjugation between 
I 

particles and antiparticles, M 1 must be zero. The Gell-Mann Okubo mass relation for 

pseudo-scalar-mesons 

i ) (5.9) m K = ~ (m + 3m 

is verified only within 50 MeV, about i/i0 of the K and ~ mass. Optimistic 

physicists have found good reasons why this relation should be better verified by 
2 

m (instead of m). 

5.1.c. The First Baryon Decuplet 

' When SU(3) was proposed as symmetry group in 1961 only the first N and 
3 + 3 + 

E excited states, A(j p = ~ ,t = 3/2), Z*(j p = ~ ,t = 1)I" were_~ known. Gell-Mann 

putting them in a i0 representation, predicted a E*, (jP = ~',t = i/2,y = -i, 

3 + excited state of E) and finally a particle ~(jP = ~ ,t = 0,y = -2. As we have 

seen in the I0 (i.e. , ~-~ ) irrep, the mass must depend linearly on two para- 

meters (one for M 0 and only one for M1(y)), so in this decuplet the Gell-Mann and 

Okubo r.elation predicts for the mass m of the states of hypercharge y, 
Y 

m = - - Y mE, (mE, mA)y (5. i0) 

A few months later (in 1962) the predicted E* was found with a mass of 1530 MeV (to 

be compared to the predicted value (1385 + (1385 - 1236) = 1534 MeV!). It was later 

established that its spin is 3/2 and it has the same relative parity as E. But 

the g-, which should be stable against strong and electromagnetic decay, since it 

would be the lowest hadronic state with b = i, y = -2, was frantically looked for 

and not found ... immediately. Many physicists had given up hope and given explana- 

tion why the ~ did not exist, before it was found in 1964 after two and a half 

years of feverish impatience. The ~ mass is 1672 MeV, (to be compared to the pre- 

dicted 1677 MeV). Its spin has not yet been measured since less than a score of 

particles have been observed up to now. If it had not been looked for where it was 

predicted, when would the ~ have been observed by chance? 

5.l.d. Other SU(3) Multiplets 

The known experimental data at a given date give a deformed view of the 

SU(3)-multiplets. In the baryon case for instance, no excited states of the ~ are 
5 + 

known yet, although ~ and other decuplets probably exist. Some octets have been 

tentatively identified, although too few excited Z states are yet known and their 

quantum numbers are not measured. 

# Is often called also Y*, We denote by jP the spin j and parity p. 
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The mesons seem to prefer to occur in nonets. Indeed a q = 0, y = 0, 

t = 0, 0- meson is known in addition to the octet of 0-. A nonet of I-: p, ~, ~, 

K*, K*, is very well known. The mass formula could not apply to the known "octet" 

and the @ was predicted. The ~ and @ are orthogonal states of "mixed con- 

figuration" q = y = t = 0, m = i> cos ~ + 8> sin ~, ~ = 8> cos a - i> sin a, where 

i> is a SU(3) singlet and 8> is the octet vector q = y = t ~ 0. A nonet of 2 + 

is also well established and an octet of 1 + is likely. There is some possibility 

a 27-plet ( ~ )  of baryons (not indicated in the Table 2.3, for the experi- of 

mental data are still preliminary). It is to be noted that only irreps of the ad- 

joint group SU(3)/Z 3 do appear. 

5.l.e. Cross-Sections and Decays of Resonsances 

SU(3) invariance implies ratios of resonances decay rates (measured by 

the natural width and the different branching ratios) into lighter hadrons. This 

yields remarkably good predictions and explains strange facts such as the small 

branching ratio for the decay of ~ into 2w. 

For two octet-particle reactions A + B ÷ C + D, one can deduce that the 

scattering amplitude belongs to the representation 

8 @ 8 27 8 1 8 i0 i0 
(5.11) 

symmetric antisymmetric 

which yields seven arbitrary parameters. There are less in 8 ~ 8 + 8 @ i0. The way 

to correct for the mass difference is not obvious and the predictions are not 

spectacular. 

An anthology of original papers in SU(3) has been published by Gell-Mann 

and Ne'emann, The Eightfold Way, Benjamin, New York (1964). There is also a book on 

this subject by M. Gourdin, Unitary Symmetry, North-Holland, Amsterdam (1967). 

5.2. Geometry on the SU(3)-Octet# 

SU(3). 

product 

We give here some geometrical properties of the adjoint representation of 

We have defined in (1.18), (1.19), and (i.19 I) the SU(3) invariant scalar 

(x,y), the Lie algebra product x A y, and the symmetric algebra product 

t Full proofs and more results are given in a preprint of L. Michel and L. Radicati, 
with this title. It also contains some generalizations to SU(n). 
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x V y for any pair of elements x, y 6 En2_l, the real vector space of the adjoint 

irrep of SU(n). We restrict ourselves here to n = 3 and call E 8 the octet 

space. Its elements can be realized as 3 × 3 traceless hermitian matrices. They 

satisfy the equation 

3 
x - (x,x)x -~ det x = 0 , (5.13) 

whose coefficients obey the relation 

4(x,x) 3 ~ 27(det x) (5.14) 

We find that 

so (5.14) can also be written 

2 
det x = ~ (x,x V x) , (5.15) 

(x,x) 3 a 3(x,x V x) 2 (5.16) 

Orbits of SU(3) on E 8 are in a bijective correspondence with the pairs 

of real numbers (x,x), (x,x V x) satisfying (5.16). When (x,x) 3 > 3(x,x V x) 2, 

x is called a regular element of E 8 and its isotropy group Gx is U(1) × U(1). 

Its Lie algebra is a Cartan subalgebra and it is generated by x, and x V x. When 

(x,x) 3 = 3(x,x V x) 2, x is called an exceptional element and its isotropy group is 

U(2). We will also call such x a q-vector or a pseudo-root. We will use from now 

on only normalized vectors : (x,x) = i. Those vectors r satisfying (r V r,r) = 0 

are the root-vectors. Every pseudo-root vector is of the form 

q = ±/3r V r , (5.17) 

and also satisfies 

/~ q V q = ~q (5.18) 

We call it positive or negative (normalized) q-vector. 
fx dx 

linear mappings a %- > x A a, a % > x V a. Then 

We denote by fx' d the 
x 

[fa'fb ] = fa A b, [fa'db] = da A b , (5.18) 

so for Va, b of a Cartan subalgebra Cx, the f(a) can be diagonalized simul- 

E8. m is left stable by f taneously on a basis z k of the complexified Since C x a 

f~, d'' C ~. and f = f'' • d = @ d on C @ Then 
a a a a a x x 

da, we decompose 

wh ere r k 

rive unit pseudo roots of C . 
x 

The two eigenvalues of 

f'' = 0 ~ = i k = i, ,6 (5.20) a ' faZk (rk'a)zk . . . .  

i 
daZk = (rkV rk'a)zk = ~3 (qk'a)zk' k = 1 .... ,6 (5.20 e) 

are the six unit roots of C and qk = /~ rk V r k are the three posi- x 

d" are + i//3. 
a 
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FIGURE 5. i. 
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The SU(3)-Weyl group 8(3) permutes the three 

of a Cartan subalgebra. 

qi" 

Lemma 

Every two-plane of E 8 contains at least a root. Indeed, the continuous 

odd function (x,x V x) of x on the unit circle (x,x) = i of the two-plane has 

at least a zero. There are linear manifolds of root vectors. 

For example: given a pseudo-root q, and using the same notation for a 

Lie subalgebra of SU(3) and its vector space (subspace of E8) 

E 8 = Uq(1) @ SUq(2) @ U2(q) ~ , 

where the three- and four-dimensional SU (2) and U2(q) ~ spaces contain only root- 
q 

vectors. An octet of particles form an orthonormal basis of the complexified ES, 

for all a E C(y,q) the Cartan algebra generated by the which diagonalizes the fa 

hypercharge and the electric charge directions since Y, Q are generators of U (2) 
Y 

c SU(3). The Gell-Mann-Nishijima relation 

1 
Q = T 3 + ~ Y , (5.21) 

among generators of U(2) c SU(3) is translated in the octet geometry; y, -q are 

unit positive pseudo-roots, Q = - 2/~ F(q), Y = 2//~ F(y),* t 3 is a root, T 3 

= F(t3). We give in Figure 5.2 the corresponding roots of the two lowest octets of 

particles and also the weight of the lowest decuplet of baryons. 

The factors 2/~ are found from the condition that the spectra of Q and Y are 
the set of integers. Equation (5.21) implies that q and y are normalized 
pseudo-roots of opposite sign. The choice of sign here +y, -q is conventional 
and corresponds to Figure 5.2. 
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FIGURE 5.2. ROOTS OF OCTETS OF PARTICLES AND WEIGHT OF THE DECUPLET 

E0 = t3 = ~0A0 = Y = ~0' corresponds to the two zero roots. 

5.3. Electromagnetic and Weak Interactions in SU(3) 

5.3.a. Electromagnetic Interaction 

As shown by Equation (5.21), the electric charge operator Q is a genera- 

tor of U(2) c SU(3), so it is also a generator of SU(3) and as we have seen 

2 
Q = ~F(-q) , (5.26) 

where, as we have seen, q is a pseudo-root. The SU (2) is called the U-spin group 
q 

in the literature, and we can speak of U-spin multiplets, which have the same elec- 

p+, ~- - _0 E0 A0; trie charge u = 1/2, E + and also ~ , E , u = i; ~, z , 1/2 + ~/2 u = 0, 

~/2 E0 _ 1/2 A 0. The electric charge is the integral of the time component of the 

electromagnetic current 

Q = e[j0(x)dx , (5.27) 

and 3/8~ j~(x) = 0 = Q is a constant (more generally P invariant) operator. Of 

course j0(x) could have any SU(3) covariance, with the condition that the integrml 

of the non-octet part vanish. The simplest hypothesis is to assume that the electro- 

magnetic current j~(x) is the image in the direction -q of an octet-tensor 

operator, 

2 j~ 
e ~ (x;-q) (5.28) 

(compare with Equation (5.26)). This allows us to draw many conclusions. The mag- 

netic moment of the particle of a multiplet is given by the expectation value of an 

octet-tensor operator in the direction -q. It thus depends on two constants only 

for an octet (one for a decuplet) and the particles of the same u-spin multiplet have 

the same magnetic moment. For example one predicts ~E+ = ~p+ which is well-v~ified. 

Measurements of ~ and ~ _ are in progress, as well as the rate of E 0 ÷ A 0 
A 0' ~+ E 

+ ~ which is related (as a "magnetic dipole" transition) to the values of ~ in 

this octet. The ratio of rates of electromagnetic decay can be predicted. For 

example: 
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rate n 0 ~ 2y (t3 'q) 2 
x ratio of phase-space = 3 × ratio of phase-space , (5.29) 

0 
rate n ÷ 2y (y,q)2 

+ 
(using (5.26) and (Y,t3) = 0). The observed ratio ~ ÷ ~+ + ~-, w ÷ ~ + ~ is a 

good confirmation of the mixing angle. Finally ratios of photo production cross- 

sections can also be predicted successfully. 

The mass differences inside a U (2) multiplet are thought to be of elec- 
Y 

tromagnetic origin. They are quadratic in jia(x;-q) but to a good approximation it 

seems that only the scalar and octet part are important, so to a good approximation 

the mass operator (5.5) can be written, when one adds electromagnetic effects, 

2 2 
M = M 0 + M I ~ F(y) + M2D(Y) + M 3 ~ F(-q) + M4D(-q) 

and inside an SU(3)-multiplet the values of the masses are given by 

m = m 0' + mlY' + m~(t(t + i) _ ~i y2) + m3qI" + m4(u(ul + i) - 71 q2) (5.30) 

which is well verified for baryons. 

5.3.b. Weak Interaction 

Cabibbo generalized to 

vector part of the weak current 

2) by the assumption that v±(x) 

operator (that we shall denote 

plicitly 

SU(3) the Gell-Mann Feynmann hypothesis_on the 
+ 

via(x) coupled to the lep tonic  current  ,~,+ia(x) (see 

and j~(x) are images by the same octet-tensor 

v (x)) of three different directions: -q,c+. Ex- 

2 
em current = ~ ev (x;-q) , 

(5.31) 
G 

weak current = ~via(x;c_+) , 

(where G is the Fermi constant). The second Cabibbo assumption is that the axial- 
+ 

vector parts of the weak current a-(x) are images of another octet-tensor operator, 

in the same direction c_+. The total weak current 

+ + _+ 
h~(x;c_+) = via(x;c_+) - aia(x;c_+) , (5.32) 

is thus also image by an octet-tensor operator. See Cabibbo's original paper (Phys. 

Rev. Lett., iO, 531 (1963)) in The Eightfold Way anthology (p.207) for the predic- 

tions. 

The ± subscript corresponds to the electric charge of the current, i.e., 

[Q,h~(x)] = -+h~(x) , (5.33) 

and using the fact that Q is an SU(3) gener.ator, Q = 2/~F(-q), we can write 

this equation in the form (1.9) 
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_ 2__ [F(q),h (x,c±)] 2 /3 = - ~ h (x,q A c ±) = ih (x,e±) , (5.34) 

from (5.34) we get 

/f qA c± = ¥~-- c± 

which means that e± are eigenvectors of F(q). Writing e± 

tions (5.31, 5.34 S) imply that e I and e 2 are unit vectors 

root-vectors, as we have seen in (5.21). Equation (5.34 t) is equivalent to q A c 1 

= c2, q A c 2 = -e I which in turn implies 

~c I V c I = ~c 2 V c 2 = /~c 3 V c 3 = c , (5.35) 

where 

(5.34 S ) 

= i//2(c I i ic2) Equa- 

E Uq(2), so they are 

c 3 = c I A c 2 (5.3J) 

This means that c, Cl, c2, c 3 span Uc(2) ; note also that c, e 3 E Uq(2). The 

pseudo root e is called the "weak hypercharge" or "Cabibbo hypercharge". It is a 

conserved quantity for weak interactions. It commutes with q, c A q = 0 = (c,q) 

= - 1/2. However, it does not commute with y; indeed, there are weak transitions 

violating hypercharge conservation. This lack of commutation is expressed by the 

# - 1/2 value of 

3 (y,e) = i - ~ sin2e , (5.36) 

where e is the Cabibbo angle. As we have seen in 3.6, its experimental value is 
± + 

15 degrees and it is rather well verified that v and a- define the same direc- 

tion c of weak hypereharge, t The value of this angle is empirically given by 

tg0 = m/m k 

Cabibbo's theory not only explained the relative slower ratett (by tg2e) of the weak 

transition violating the hypercharge y, but also explained that the super allowed 

AT = 0 nuclear B-decay were slower than the ~ + s + ~ + ~ decay by a ratio cos2B. 

The "computation" of this angle 6 is one of the challenging present prob- 

lems of physics. It is worth while to point out a purely algebraical relation, giving 

q as function of y and c. 

Given two non-commuting (normalized positive) pseudo-roots y and e, 

there is always a unique pseudo-root which commutes with both of them 

1 
Xq = ~y V e + ~(y + c) , (5.37) 

t To be more precise, the angle of c v and c with y is the same but c v and 
c a could be at a small angle between each o~her and this has been exploited as a 
possible explanation of CP violation. 

ttTo be accurate, it is not the rate but the probability transition = rate/phase 
space volume, since the phase space volumes, which should be equal in an exact 
SU(3)-symmetry, are in fact unequal. 
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(5.37 S ) =-(i- (y,e)) 

The most commonly proposed form of non-leptonie weak interaction is 

HN.L = G E [h~(x,c )h (x,c )d3~ (5.38) 
• /~=±i J ~ ~ -~ , 

with the drawback that ~.L. is the image of a reducible tensor operator with some 

component in the "27" irrep of SU(3). The ~T = 1/2 rule when I&YI = 1 for those 

weak transitions suggests that this 27 component is negligible compared to the octet 

component. The proposal of Radieati t 

= (h~(x) V h (x))(c)d3x (5.39) 

makes ~.L. the component along the weak hypercharge c of an irreducible octet- 

tensor operator. It is compatible with the known experimental data. 

5.4. Critical Orbits of a G-Invariant Function on a Manifold Mtt 

Given a group G acting on a set M, the set of all points of M which 

have conjugated little groups is called a stratum. So a stratum is the union of all 

orbits of the same type. Inclusion gives a partial ordering of all subgroups, modulo 

a conjugation, of a group. It corresponds to an (inverse) ordering on the strata. 

The set of fixed points form the minimal stratum (maximal isotropy group = G). If in 

the action of G on M there are no fixed points, there might be several minimal 

strata. 

For example, in 5.2 we have seen that in the action of SU(3) on the unit 

sphere S. of the octet space, there is the open dense general stratum l(x V x,x) I 
J 

< i//~, containing a one parameter family of six-dimensional orbits (little group 

U(1) x U(1) and a minimal stratum made of two four-dimensional orbit (x V x,x) 

= ± i//~. In this paragraph we want to consider 

a) the smooth ttt action of a compact Lie group G on a smooth manifold M. 

This action is given by the smooth mapping (= manifold morphism) 

G x M ÷ M with ~(gl,~(g2,m)) = ~(glg2,m) , 

f 
b) a real smooth function M ÷ R which is G invariant, that is, the 

function is constant on every G orbit of M 

t L. Radicati in Old and New Problems in Elementary Particle Physics, Academic 
Press, New York (1968). 

tt This part is entirely a common work with Radicati, partly published in Coral 
Gables Conferences 1968, partly circulated in a preprint. 

t#t We use the word smooth for infinitely differentiable. 
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g E G, m E M, f(~(g,m)) = f(m) 

The differential at m I 6 M 1 of a smooth mapping 

; = d~ml it is a linear mapping (with m 2 P(ml) ) . 

d~m 1 

TmI(M I) > Tm2(M 2) 

M I ÷ M 2 is denoted 

(5.40) 

where Tm.(Mi) is the tangent plane of M. at m°. So df E T S (m) the dual 
i l i p p 

vector space of T (m). We call critical point, the p E M such that df = 0. 
P P 

The stabilizer (= little group = isotropy group) G in m E M is a 
m 

closed and therefore compact subgroup of the compact group G. As is well known,* 

one can choose local coordinates in a neighborhood V of p such that the action 
P 

of G is linear. Let E (M) be the vector space corresponding to this linear rep- 
P P 

c E (M). Since G is compact and M real, this linear resentation of Gp; so Vp P P 
action can be made orthogonal so E (M) is a euclidean space. We can then identify 

P 
dfp with a vector of Ep(M) that we shall call (grad f)p. The G-orbit of p,G(p), 

is the image of g ~(P)~ ~(g,p); it is a submanifo!d of M; its tangent plane in p, 

denoted T (G(p)), is the image of d~ [p) where e is the unit of G. The isotropy 
p e 

group G transforms G(p) into itself. Similarly Tp(G(p)) is an invariant sub- 
P 

• c Ep(M) is also in- space of Ep(M) The orthogonal subspace Np(G(p)) = Tp(G(p)) ~ 

variant and it is called the "slice" at p. Note that (grad f)p E N . Indeed, by 
P 

definition, for x E Tp(M), ((grad f)p,X) = lim[(f(p + ~x) - f(p))]~-l. The bracket 
~+0 

is 0 when p + ex E G(p), the orbit of p, so it stays zero at the limit, when 

x E T (G(p)). 
P 

Note also that (grad f)p is invar iant  by Gp. Let gEGp; (g • (grad f)p,X) 

= ((grad f)p,g-i • x) = lim -l(f(p + ~g-i • x) - f(x)), and since g-i • P = P, 
~+0 

f(p + ~g-i • x) = f(g-i .(p + ~x)) = f(p + ~x), so Vx E Ep(M), (g - (grad f)p,X) 

= ((grad f)p;X). If the slice Np(G(p)) has no vectors invariant by Gp, then 

(grad f)p = O. We can summarize this by the: 

Theorem 1 

Let G be a compact Lie group acting smoothly on the smooth real manifold 

M. If for p E M, the canonical linear representation of G on the slice N does 
P P 

not contain the trivial representation of Gp, then G(p) is a critical orbit for 

* Consider a Riemann metric on M; it is transformed by the action of G_. By 
averaging with a G -invariant measure, one obtains a G -invariant Riem~nn metric 
and G transform~ into each other the geodesics fromPthe fixed point p. In the 
neighborhood Vp of p, take geodesic coordinates• 
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any real valued G-invariant smooth function on M (where here again we denote by 

the same symbol, e.g., SU(2), the vector space of the Lie subalgebra, and also the 

group!). 

Example i. We have studied the action of SU(3) on S~ c E 8. Let q be 

a unit q-vector, Gq = U2(q) , rq(M) = {q}~ C E8, rq(G(q)) = U2(q) , Nq(G(q)) = SU2(q) 

and U2(q) acts linearly on it, without fixed vectors. 

hood V 
P 

vector. 

Example 2. ~ is an isolated fixed point in M. So there is a neighbor- 

of p with no other fixed points and N = E (M) has no invariant G = G 
P P P 

This proves that p is a critical point for every G invariant function 

on M. 

We shall now assume moreover, that M is compact. Then there is one 

stratum (called generic stratum) which is open dense in M; the minimal strata are 

closed and compact. Let C be a connected component of a minimal stratum; let 

p E C, F c E be the linear subspace of G fixed points. Because G is maximal, 
P P P P 

the points of V N F have G as stabilizer so they belong to C. Given a G- 
P P P 

invariant real valued smooth function f, let n = (grad f)p. As we have seen 

n E F so for small enough l eI, p + sn E C. We can write 
P 

(n,n) = lim -l(f(p + sn) - f(p)) (5.41) 
e+0 

so if f is constant on C, every p E C is a critical point of f. If f is not 

constant on C it has at least an orbit of maxima and an orbit of a minima. Let p 

a point of such an orbit, and n = (grad f)p. Then, in Equation (5.41), 

0 if f is minimum 
f(p + sn) - f(p) ~ 6 ~ if f is maximum at p 

which means that (n,n) either has the sign of ±E (+ at minimum, - at maximum) 

which is impossible, or must be zero. 

Theorem 2.t 

Let G be a compact Lie group, acting smoothly on the real compact mani- 

fold M, and let f be a real valued G-invariant, smooth function on M. Then f 

has at least a critical point for each connected component C of each minimal 

stratum. 

To prove this theorem, that Radicati and I conjectured, we received great help from 
A. Borel, C. Moore, and R. Thorn. 



434 

We will now be interested in a particular function on a sphere: let G 

be a compact Lie group, E the real vector space carrier of a linear representation 

g ~-+ R(g), irreducible over the reals. So R (up to an equivalence) is an ortho- 

gonal representation and it is self-contragredient. We denote by (~,~) the in- 

variant Euclidean scalar product in E. Let us assume that (with V the symmetrical 

tensor product) dim(Hom E V E,E) G = I. As we have seen in 1.5, there is a unique 

(up to a constant factor) symmetrical algebra 

x @ y --+xTY where P E Hom(E V E,E) G (5.42) 

with xTY = yT x. 

Since the representation is self-contragredient and the tensor product is 

associative 

(xTY,Z) = (x,YTZ) = {x,y,z} (5.43) 

Hence, the invariant {x,y,z} is a completely symmetrical G-invariant trilinear form 

on E. Let f({x,y,z}) be a function on the unit sphere S = {x E E,(x,x) = i}. 

Using % as a Lagrange multiplier, critical points of f are given by the 

equation 

l 
grad(f({x,x,x}) + %(1 + (x,x)) = 3f XTX - 2%x = 0 , (5.44) 

where ft is the derivative of the one variable function f; e.g., if f = {x,x,x}, 

fs = i. In other words, critical points of f are given by solutions of 

XTX = %x , 

i.e., the idempotents (or nilpotents for % = O) of the symmetrical algebra. 

5.5. SU(3) × SU(3) Symmetry 

Physicists have considered symmetries higher than SU(3) for the hadronic 

world. Of course they are coarser, but still useful as we shall see. The SU(3) 

× SU(3) symmetry becomes an exact symmetry of the hadronic world when the masses of 

0- mesons are neglected. Note that it is not much more drastic to say that those 

masses are equal to zero than to say that they are equal as is already implied by 

SU(3). As a matter of fact, a much milder approximation than SU(3) is to neglect 

only the T-meson mass (only 140 MeV, and this is smaller than the 0--meson mass 

differences). This corresponds to a SU(2) × SU(2) x U(1) subgroup of SU(3) x SU(3). 

We give in Figure 5.3, a scheme of the lattice of symmetry groups which have been 

considered for hadronic physics, but in this section we limit ourselves to SU(3) 

x SU(3) and its subgroup. (See also O'Raifeartaigh lectures for the higher sym- 

metries.) At the level of the middle line of Figure 5.3, a new feature appears; a 

mixing of internal symmetry and relativity invariance. It is very mild for SU(3) 

x SU(3) since it concerns only the parity operator. The total symmetry group to 

consider is the semi-direct product by Z2(P) 
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(P0 x SU 3 x SU3) [] Z2(p ) , (5.49) 

which acts naturally on P0 and exchanges the two SU 3 factorst int SU 3 x SU3. To 

distinguish such SU(3) factors, let us denote them as SU~ +) x SU~-); they are 

called in the physics literature the ± chirality group. The group (5.49) is a good 

frame for understanding the relation of P (parity operator) with the different 

interactions. This will become clear in the following. The diagonal subgroup 

SU(3) d C SU +) x SU is the SU(3) group of invariance of 5.1, 5.2, and 5.3. 

SU(6,6) 

SU(6) x SU(6) 

/ , , ,  
SU(6)~ ~ x  SU(3) 

SU(3) SU(2) x SU(2) x U(1) 

" - , 7  
U(2) 

143 

70 

35 16 

8 7 

FIGURE 5.3. SYMMETRY GROUPS AND THEIR DIMENSIONS 

Lattice of symmetry groups used in hadronic 
physics. + means injection as subgroup. 

We will denote a vector of the 16-dimensional vector space El6 of the 

SU(3) x SU(3) Lie algebra by a direct sum of two vectors 

a = a+ @ a_ , (5.50) 

a_+ belongs to the SU~ +)- octet. 

The invariant Euclidean scalar product (given by the Cartan-Killing form) 

is, in terms of the octet scalar product 

~ 1 + l(a_,b_ ) (a,b) = (a+ @ a_,b+ @ b_) = ~(a+,b+) (5.51) 

The Lie algebra law is (we use ~ for it) 

A ~ = (a+ A b+) @ (a_ A b_) , 

SU3 × SU3 
and since dim I-Iom(E16 V E16,E16) 
cal symmetrical algebra 

a V ~ = (a+ V b+) @ (a_ V b_) (5.52) 

= I, there is a unique canonical symmetri- 
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The covariance property of the electromagnetic and weak interactions are 

most naturally extended to SU(3) x SU(3) by the following hypothesis: the electric 

" "tS)(x) the axial vector part a£C)(x) " of the ' p current j~(x), the vector part vp h(~)(x) = v~)(x) - a~)(x) are images of 
(charged ~ = ±i) weak hadronic current P 

the sam~ El6 tensor operator, which we will denote h (x;~); the vector currents 

correspond to SU(3) d and the axial vector current to the anti-diagonal. The weak 

current has pure "-" chirality. Explicitly: electromagnetic current 

2 
ehp(x;-(q @ q)) , (5.53) 

(charged) weak currents 

~(h (x;0 @ + @ (5.53') 
C 1 ) 

ih (x;0 c2)) 

and the Radicati form of the (non leptonic) weak hadronic interaction is 

~lh (x) = G2 V h~(x))(c)d3~ ~-I(h (x) ~ h~(x)(0 @ c)dBx (5.54) 

The generators of SU(3) x SU(3) are the space integral of the current, i.e., 

F(~) I ~ 3÷ = h0(x;a)d x a 

is the representation (up to i) of the SU(3) x SU(3) 

space of physics 

[F(~),F(~)] = iF(~ A ~) , (5.56) 

and for the particular case of the El6-tensor operator (hp(x)~) 

[F(~),hp(x,~)] = ih (x,~ A ~) (5.57) 

as we saw in Equation (1.9). 

In the approximation where SU(3) x SU(3) is an exact symmetry ~ph (x,a) 

= 0 and the F(~) are well defined. Since SU(3) x SU(3) is a broken symmetry, 

the usual difficulty to define the self-adjoint operator F(~) arises. (See 

O'Raifertaigh's lectures, this Volume.) 

The equation f 

for unit vectors 6 S15 c El6 

= ±c S 0 or ±0 • c, where 

, (5.55) 

Lie algebra on the Hilbert 

a V a = ~a , (5.58) 

has two sets of solutions. One is the set of i//~ 

c is a (normalized positive) pseudo-root and 

h = +#2/3. This set is made up of two minimal strata, each consisting of two pieces 

of one orbit each. So each of the four orbits is a critical orbit for every smooth 

SU(3) x SU(3) invariant function in S15 the unit sphere of El6. The stabilizers 

are, up to a conjugation, SU~+)xt U(_)(2) and U(+)(2) x SU~)(~ for the two strata. 
J C C 

t See L. Michel and L. Radicati, preprint, Breaking of the SU(3) x SU(3) Symmetry in 
Hadronic Physics. 
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The other type of solution is the set of vectors, 

±(ql @ q2 ) ' 

which form two orbits of a four separated orbit stratum (iql ~ +q2 for the two 

other orbits) whose stabilizer is (Uql(2) x UqI(2))~Z2. The pseudo-roots i(q @ q) 

of the diagonal su(d)(3) are on the orbits of solutions while those of the anti- 

diagonal (±q • Sq) are not. This has a bearing on parity. 

It seems to us remarkable that the electromagnetic charge direction 

-(q @ q) and the weak hypercharge direction (0 @ c) give two solutions, one of 

each type, of Equation (5.58). 

SU(3) x SU(3) is not only broken by electromagnetic and weak interaction, 

but also by semi-strong U2-invariant interaction. There are two different interest- 

ing intermediate approximations of symmetry of strong interactions between U 2 and 

SU(3) x SU(3); those of the fourth line of Figure 5.3, SU(3) already studied, and 

SU(2) × SU(2) × UI, which implies the Adler-Weissberger sum rule, and more recently 

emphasized by Gell-Mann, Oakes and Renner. In both cases H is, to a good 
strong 

approximation, the sum 

Hstrong = H 0 + HI(~) , (5.59) 

of H 0 invariant under SU(3) × SU(3) and of Hl(m) which is the image of m by a 

SU(3) × SU(3) tensor operator for the (irreducible over reals) (3,5) @ (~,3) rep- 

resentation. The two corresponding directions ~ for these two approximations are 

again idempotent or nilpotents of the canonical symmetric algebra. I refer to my 

preprint with Radicati for details. This 18-dimensional irreducible real representa- 

tion of SU(3) x SU(3) on ~18 (which is the one which naturally arises in a quark 

model) is such that dim Hom(El8 V EI8,EI8 )SU(3) × SU(3) = i so there is a unique 

canonical symmetrical (real) algebra on El8 

automorphisms. We denote this algebra law by 

The equation 

which has SU(3) x SU(3) as group of 

~i ~ ~2" 

~ ~ = %m , (5.60) 

has only two types of solutions (for vectors on the invariant unit sphere S17 c El8 ) 

belonging to two minimal strata, the one for I%1 = 2/3 corresponds to sud(3) as 

stabilizer. The other, for ~ = 0 corresponds to SU~+)(2)x SUy(2)x U~(1). 

Theorem i shows that this latter case (% = 0) corresponds to a critical 

orbit for all SU(3) x SU(3) invariant functions on S17 (unit vectors of the 

33 + 33 irrep); this orbit is also a minimal stratum of dimension 9. The stratum 

corresponding to SU(3) d is also minimal; it is a nine-dimensional connected sub- 

manifold (of S17) made up of eight-dimensional orbits. So from Theorem 2, each 

invariant function has at least two critical orbits in this stratum. For all func- 

tions of (x,x ~ x) these two orbits are x ~ x = ± 2/3 x. 
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Note Added After the Seattle Rencontres.# I do not understand why I have not 

used in Seattle, as emphasized by Equation (5.49), (SU(3) x SU(3))DZ2 instead of 

SU(3) x SU(3). Then, the two orbits on S17 , x ~ x = ± 2/3 x are critical for all 

functions. Radicati and I also wonder why we have not considered before the groups 

(SU(3) x SU(3))D(Z 2 x Z2) where the discrete group ~Z 2 x Z 2 = {I,P,C,PC} is genera- 

ted by the parity and the charge conjugation operators. Among the strata of S15 

for this group, there are four which contain only one orbit. These orbits are the 

critical ones of S15. Typical points (2 unit vectors up to a sign) of these orbits 

ar e 

±q = ±(q • q) 

% 
±c. = 0 • ±c.(i = 1,2) 

1 1 

±c = 0 • ±c 

+~ = -+(r • er), e = +i 

(root vectors) 

the direction of electromagnetic interaction, (5.53) 

the Cabibbo direction of weak coupling, (5.53') 

the "weak hypercharge" direction proposed by 
Radicati, (5.54) 

a direction which some authors (for instance 
M. L. Good, L. Michel, and E. de Rafael, Phys. 
Rev., 151, 1199 (1966), have used in their 
proposed theory of the CP violating interaction. 

Radicati and I have also included Theorem i into a more complete: 

Theorem i' 

Let G be a compact Lie group acting smoothly on the real manifold M, 

p 6 M. The three following propositions are equivalent. 

a) the orbit of p is critical (for every G-invariant real valued smooth 

function f on M, dfp = 0), 

b) the orbit of p is isolated in its stratum, i.e., ~ a neighborhood 

Vp of p such tha~ ~ 6 V and x ~ G ) = G x is not conjugate to Gp, 
P P 

c) the canonical linear representation of G on the slice N does not 
P P 

contain the trivial representation. 

Theorem i is simply c = a. 

5.6. SU(6)~ Quarks~ Current Algebra~ Boot-Strap~ Etc. 

The title of this section is a statistical sample of key words found these 

last years in papers on fundamental particle physics. ## This last section is not a 

After the Seattle Recontre, L. Radicati and I collected the above results to 
present them in a lecture on September 19, 1969 in Rome (see preprint, Geometrical 
Properties of the Fundamental Interaations). The following improvements were then 
obvious to us. 

tt For the last year, the passwords are Veneziano and duality. It is a sociological 
fact that there are fads in fundamental particle physics. 
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conclusion but an open-end to the description of a very rapidly changing situation; 

the view that physics gives us of the hadron world. 

SU(6) Symmetry. SU(6) Symmetry was introduced independently # by GHrsey 

and Radicati (Phys. Rev. Lett., 13, 299 (1964)) and by B. Sakita (Phys. Rev., 136 B, 

1756 (1964), for mesons only). It was noticeable that mass-differences between 

SU(3) multiplets were not larger than those inside multiplets. 

Both groups of authors, inspired by the SU(4) = supermultiplet Wigner 

theory for nuclei (3.3) extended it to fundamental particles by enlarging the SU(2) 

isospin to SU(3). So in the non-relativistic version, the space of the one particle 

hadron states is the tensor product 

~C (I) = L2(R3,t) @ K @ K% ; 

here K and K h are respectively, two- and three-dimensional Hilbert spaces and 

the action of G, the central extension of the Galilee group, and of SU(6) on 

~(i) are respectively, (with G ~ SU(2) also (2.9) and Equations (2.57) and (2.5~f f 

~(i) = L2(R3,t) ~ Ko @ Kh 

g E G ÷ ~ (g )  @ ~(g )  8 1 ( 5 . 6 1 )  

u E SU(6) ÷ I @ u 

The lowest two multiplets of SU(6) are given in Figure 5.4. For the 

baryon, it belongs to the irrep ~ of dimension 56; for the meson, to the ~, 

I.I 

the 35-dimensional adjoint irrep of SU(6). The X 0 (not discovered in 1964!) is a 

singlet. We give here the decomposition of these irrep into SU 2 × SU 3 irrep 

rrm 
m 

SU2 = [] × [3-'@ ,,,, x × SU 3 
2 × 8 + 4 × i0 = 5 6  

SU 2 × SU 3 
(1 × 8) + (3 × 8) + (3 × Z) = 35 

The mass formula for each SU(6) multiplet becomes 

i i 
m = m 0 + mlY + m2(t(t + i) - ~ y2) + m3 j(j + i) + m4q + m5(u(u + i) - ~ q2) 

# In fact, Gell-Mann in, Physics, !, 63 (1964), page 74 (reproduced in, The Eight- 
fold Way, anthology, p. 203), was the first to introduce SU(6) in the physics 
of elementary particles but, for once, he did not work out its physical appli- 
cations. 

t? For more details, see L. Michel, "The Problem of Group Extensions of the Poincar& 
Group and SU(6) Symmetry', p. 331; 2nd Coral Gables Conferences, Syn~etry 
Principles at High Energy, Freeman and Co., San Francisco (1965). 
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FIGURE 5.4. THE (8 x 2) + (i0 x 4) = 56-PLET OF BARYONS AND THE (8 x I) + (9 x 3) 
= 35-PLET OF MESONS IN THE SU-6 CLASSIFICATION OF HADRONS. 

Neglecting the electromagnetic mass difference (m 4 = m 5 = O) the four-parameter 

formula predicts well the masses of the eight lowest U(2 )_ multiplets of baryons. 

The magnetic moment of baryons depends on only one parameter ~ so we have the 
P 

relation 

2 
~n = - ~ ~p ' (5.62) 

which is within 3 percent of reality (this is too good!). 

How should one apply SU(6> invariance to particle reactions? Some 

physics and empirical rules (e.g., so called SU(6)w ) have to be injected, and the 

symmetry is still useful. 

However, the drawback is the difficulty in reconciling SU(6) with rela- 

tivistic invariance. * 

Quarks. It is a natural tendency in science to try to explain the uni- 

verse by the smallest number of different types of building blocks, such as the four 

elements of the Greeks, which at the end of the XIXth century had reached nearly 

ninety chemical elements. From 1910 to 1929 (measurement of the spin and statistics 

This will be dealt with by O'Raifeartaigh, when he studies the two upper lines of 
the diagram of Figure 5.3. 
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+ 
of the N 14 nucleus, see 2.10) only three particles p , e-, y, were known and 

needed to build the universe again. But one had to add ~ in 1931, n and e + in 

1932, etc., so now we have the Table 3.2 of 3.5 = spectroscopy of hadrons. 

Is it possible to return to "simplicity"? The hoped for building blocks 

have been called quarks by Gell-Mann: the 3 spin 1/2 quarks for the multiplet 3 

(= fundamental irrep D) of SU(3) and 6 (= irrep 

3 antiquarks belonging to the contragredient irrep 

= ~ of SU(3) or 6 =~ of 

~) of SU(6). There are also 

su(6) 

Mesons of Table 3.2 are formed of one quark and one antiquark ~. Lowest 

bound states of q + q yield all expected meson states. Baryons of the same table 

are made of 3 quarks, which are, for the lowest state, in the SU(6) state K~D, 

so they must have a space symmetry ~ to obey Fermi statistics; this from our ex- 

perience acquired in Chapter 2 and 3 does not seem compatible with attractive forces. 

And how to explain the saturation by 3 ; why should 2-quark or 4- or 5-quark states 

not also be stable? # 

Forgetting these difficulties one can search for quarks. (They should be 

very heavy, stable, have fractionallquantum numbers b = 1/3, q = 2/3 or - 1/3) 

and compute with them (good prediction of the "quarks model", e.g., by Dalitz, 

Lipkin.) They have not been found experimentally, and quarks can simply be looked 

at as the physicists' name for an orthonormal basis of the fundamental ~ irrep of 

SU(6), used in their computations! 

Current Alsebra. Let a ~+ D(~) be the SU(3) x SU(3) 

joint irrep El6. Any E-tensor oFerator function on space time 

satisfy Equation (1.9) at any fixed time 

[F(~),f(y,m)] = if(y,D(a)~) , 

Lie algebra ad- 
÷ 

f(y,m) will 

(5.63) 

where m E E. Equation (5.57) is a particular case for f(x,~) = h (x,b). 

Replace F(~) by its expression (5.55). After commuting the symbols 

and , Equation (5.63) reads (use (i = 6(~- y)d x)), 

I d3~[h 0(~,~) ,f (~,m)] = 

÷ 
for any tensor operator function of x. 

for the integrands 

0 ÷ tU ÷ ÷ ÷ 
[h (x,a) ,f (y,m)] i6(x = - y) f (x,D(a)m) 

3÷ ÷ + + (%)~) 
i d x~(x - y)f(y,D 

It is very suggestive to write the equality 

(5.64) 

# There are several ways out of these difficulties, but the most efficient seems to 
me that of O. W. Greenberg and collaborators who have introduced three types of 
3(q and q). They obtain a remarkable hadronic spectrum. 
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Equation (5.56) is written in this local form 

0÷~ ~ ÷ ~  ÷ ÷ ' ~  
[h (x,a),h (y,b)] = i6(~- A y)h~(x,a 6) (5.65) 

This is called current algebra in the literature. For the time component ~ = 0, 

one speaks of the current algebra of charges. For a space-component one has to in- 

troduce in the second member a distribution (usually called Schwinger terms, see 

O'Raifeartaigh lectures). 

Very few physical results require the local form of current algebra and 

cannot be deduced from the form (5.63). However, physicists prefer to consider 

current algebra as an hypothesis. They like the analogy with quantum mechanics 

which is expressed by the algebra (= Lie algebra of the Heisenberg group) of p's 

and q's at a given time. Let us note also that in this frame B. W. Lee (Phys. 

Rev. Lett., 17, 145 (1965)) has given a meaning to SU(6) symmetry. There is an 

anthology on "current algebra" physics (see below). 

Boot-Strap. When there are so many particles, one hesitates to distingu~h 

which ones are elementary. Boot-strap is a physical concept # which deals with 

particles on a more democratic basis. Boot-strap is expressed by non-linear (simply 

quadratic) equations, invariant under the hadronic symmetry group G (no larger 

group than SU(3) has been used). Such equations yield solutions which break the 

symmetry of G. Indeed, from the abstract point of view of group invariance, these 

equations are of the form 

aVa= ~a 

and we have already shown how this yields the directions in nature which break the 

SU(3) × SU(3) symmetry. 

For the readers who wish to read the physics literature, we recall the 

existence of the anthologies (with commentaries) of original papers, that we have 

already mentioned. 

• ~wi~ Theory of Angular Momentum, Biedenharn, L. C., and van Dam, H., 

Academic Press, New York (1965). 

• Symmetry Group in Nuclear and Particle Physics, Dyson, F. J., Benjamin, 

New York (1966) (which also contains three lectures by Dyson). 

• The Eightfold Way, Gell-Mann, M., and Ne'aman, Y., Benjamin, New York 

(1964). 

• Current Algebras, Adler ~, S. L., and Dashen, R. F., Benjamin, New York 

(1968). 

# Although its father, G. F. Chew has written recently a paper entitled "Boot-strap, 
a scientific concept?", and given an ambiguous answer! 
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