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Science, and in particular the spectacular progress of physics have been possi-
ble because there is symmetry and order in nature. All of us here, interested by group
theoretical methods, we have a keen interest on symmetries. Some of us are fascinated
by their spontaneous breaking. And true lovers of symmetries have studied their de-

fects.

I have been asked to report here on a new field of application of group theo-
ry to physics : the classification of topologically stable defects in ordered media.

It is still possible to give a fairly complete list of references (see Table 1).

Of course physicists classifying crystal dislocations by the Burger's circuit
were using homotopy just as Mr Jourdain was speaking prose [77]. As far as I know
D. Rogula was the first to have recognized it explicitly [17]. Toulouse and Kléman [2] had
the merit to introduce a general scheme for all ordered media and they made from it
a specific prediction : that the vertex lines in superfluid A phase of He3 will

annihilate by pair. Later, but independently, Volovik and Mineev made a similar work.

Three slightly different schemes are introduced by the authors of table 1; to
present them to you I label them provisorily a, b, c in chronological order ; their

correspondance in the reference table is as follows :
ain[1] , bin[2, 4, ¢, 9] , cin[3, 5] (1)
([7) and [ 87 are in fact independent from the chosen scheme).

I will present first scheme c¢ that I believe is the most general. To the
two dozens of you who attended my last lecture of the Montreal summer school asso-

ciated with the previous colloquium, I beg to excuse my repetition.
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Déc. 1976
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38 L 195 (1977).

Gérard TOULOUSE "Pour les nématiques biaxes" J. Phys. Lettres
38 L 67 (1977).
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process and homotopy groups'" J. Phys. Lettres, 38L 199 (1977).
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((1977).
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Consider an ordered media and forget for a while about its boundary i.e.

assume it extends indefinitly ; it can be a magnetic material, a crystal, a liquid

crystal, a superfluid liquid, etc... ; every one of you can think of its pet exam-

ple. Assume moreover that it is in a perfect state, which is a broken symmetry state.
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In the example of isotropic magnetic material, there is a spontaneous
magnetisation B , constant everywhere in space, which breaksthe rotational
(= 80(3)) 1invariance G . More generally, in all examples, the symmetry is broken
from G (the symmetry group of physical laws)into H , subgroup of G , the in-
variance group of the state (SO(2) for the magnetisation B so G/H = s, )
For instance G is E(3) =0(3) 0 T , (O = semi-direct product) the 3-dimensional
Euclidean group and for crystals, H belongs to one of the 230 crystallographic
classes, while for nematics H contains all translations T and is the semi-direct

product Dmh O T . For superfluid He4 , G is U(1) the group of phases and
H=1

To summarize, the perfect state of our pet medium is represented by a point of
the orbit G/H . By the action of G (e.g. by rotating or translating the crystal)
you produce any other "similar" state (e.g. it is the same crystal, but in a diffe-
rent position) representable by a point of the orbit G/H . When the medium is not
in a perfect state, you may still recognize a local state (representable by a point
of G/H ) and this local state varies from place to place. This dependence can be
described by a function ¢ , defined in our 3-dimensional space and valued in the
orbit G/H . This function is not defined outside the volume V occupied by your
pet medium ; there might be also points inside the volume where & is not defined
they corresponds to defects ; those might be isolated points or they may form lines,
surfaces (we will also say "walls") or any subdomain of V. Look at Fig. 1 and 2

which idealizes two 2-dimensional ordered media with defects.
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The very existence of defects requires energy. But we will not discuss here

their stability from possible energy barriers. It is our aim to study topological
stability. By definition, if it is possible to extend continuously the function &
over a defect, it is said topologically unstable. There is a mathematical theory
which study the obtructions to such a continuous extension of function : this is
homotopy theory. For instance a constant function can always be continuously ex-

tended (with the same value) every where. If necessary the reader is refer to the
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appendix for the definition of homotopic functions. If on a 2-dimensional sphere

S
2 3
tend it inside the sphere and there must exist at least a point defect. Similarly

the function $ is not homotopic to a constant, it is not possible to ex-

if & 1is not homotopic to a constant on a circle ( = one dimensional sphere S1 ),
this circle must surround a line defect. More generally, for a d dimensional or-
dered media (in [ 2] Toulouse and Kléman did consider models of arbitrary dimension
in statistical mechanics) the knowledge of & on a sphere Sn of dimension n

yield information on the d' dimensional defects with

d' = d-n-1 . (2)

¥

Homotopy is doing more for us: for each n > 0 , the homotopy classes of functions
from Sn to G/H form a group usually denoted nn(G/H) . This allows us not only

to classify defects, but also, as we shall see, to study how they coalesce and if

eventually they can cross.

I wish to make several remarks on the observation of the function 4 . As is
clear for a (axial-) vector density B not only its direction, but also its magni-
tude can vary between some limits ¢y < fﬁ' < ¢y - Then the domain of values of
$ 1is really the topological product Sé = 82 X [co,c1] but, as is recalled in the
appendix, this has same homotopy as the sphere S2 . More generally we can always
add an "intensive" values which cannot vanish, to each point of G/H . This trans-
forms the orbit into a  homotopically equivalent topological space. One can also
say that the domain of value of § is the orbit G'/H when G' = G x R~ where
R+ , the multiplicative group of the reals is a scaling group. For crystal we sim-
ply recall that the crystallographic class of H is defined up to a conjugation
into the general (connected) linear group : this does include dilations. Since a
crystal and more generally matter are essentially discrete (built from atoms) it
is obvious that continuity of functions has to be defined correctly; every physicist
knows intuitively how to do it so I will not be more formal here (e.g. looking at
a head, the hair define a vector field on the skull if you consider the right scale
length, not if you look at it with a miscroscope!).

Let us first give the classification of defects for crystals [57. Let EO be the

connected component of the Euclidean group E(3) and Eb its universal (double-)
covering ; let us denote by EO ~—Q—> EO the corresponding group homomorphism
(Rer § = Z,

can deduce from the appendix or read in [5] :

, generated by the "rotation of 27 ") and H, = HF\EO . Then, as one

0

_ [ 2, if H=H -1 -
for crystals HO = { 72 o , I, =0 (HO) =H

0 otherwise

I, =0 (3)
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This means that there are no point defects (nz = 0) ; the elements of ™ which
correspond to translations class the dislocations while those corresponding to ro-
tations are called disclinations. Of course there are many more corresponding to

the product of rotation and translations, although they are more difficult to ob-
serve since they need higher energy excitation. Finally when H = Ho , (i.e. the
point group of H contains no reflections) U is not trivial and is isomorphic

to 22 ; the non trivial element corresponds to wall defects : they are the twin boun-
daries (twin by reticular merihedry in the terminology of G. Friedel) : indeed, ac-

cording to the abelian group law of Z2 , they annihilate by pair.

When 11 is not abelian, the line defects are classified only by its conju-

1
gation classes (see appendix). The product of their conjugation classes contains se-
veral conjugation classes, but the knowledge of the function & allows to find which

one is obtained by the coalescence of two line defects.

It is time that I explain the difference between this approach and that of
scheme a) and b) of (1). D. Rogula [ 1] considered only crystals ; for him
G = Aff(3) , the affine group in three dimensions, acting transitivelly on the set
of all lattices.The little group of such a lattice is H = Z, x [SL(3,Z)DZ3]=Z2xHO
(consider a basis of three vectors generating this lattice). The author does not com-
pute the homotopy of GO/HO . We can do it from the appendix : if 50 is the uni-
versal (double -) covering of G, and § : CO £ Gy —>1 , then
nl(Go/Ho) = e—l(HO) = ﬁo : it is huge and independent of the symmetry class of crys-
tal. Of course m, = 0 and Mo = 0 (he misses the twin boundaries). As you see I
disagree with this author, but you have to form your own opinion. Scheme b, that of
Toulouse and Kléman is general and can be applied to many media : the space of in-

ternal states which play the role of the orbit G/H in their scheme is the set of

values of the "order parameter" ; it is the same parameter, also called Landau para-
meter, that one considers in phase transition from the disordered (isotropic phase)
to the ordered phase of the medium we consider. (The order parameter considered in
Professor Birman's lecture [10], is used for second order transition from a less or-
dered, but non isotropic phase ; it should not be used here). In many cases this
scheme b is a particular case of scheme c ; this is obvious for nematics, (2,5,9)

indeed

G/H =E(3)/(>_ O T) = 0(3)/D , = P(2,R) , (4)

h

the real projective plane, while the order parameter is a line element (i.e. the

axis of the aligned molecules). The homotopy is



My = {0} mo=2Z, , Ty, =1 . (5)

The line singularities annihilate by pair. There are an infinite number of classes
of point defects. However, as Volovik and Mineev emphasized in [ 9], since T 22
acts on M, = Z by the non trivial automorphism of Z , isolated point defects
are classified only by non negative integers ; but when they coalesce, one

can observe their relative sign.

The equivalence of scheme band ¢ is also obvious for the still to be observe
biaxial nematics :the order parameter space is that of unequal axis quadrupole and
G/H = O(3)/D2h - It is also true for smectics [26]. It is not clear for choleste-
rics.Table 2 summarizes the results. Th; first seven examples correspond to the
breaking of Euclidean invariance, the last four correspond to the gauge breaking in

superfludity. You are welcome to work out more examples.

TABLE 2. Classification of defects by homotopy groups for several 3 dimensional

ordered media.

Medium Ref G/H wall defects linendefects point defects
or parameter space 0 1 2
isotropic = |, g4 50(3)/50(2)=8, {0} (1} z
ferromagnetism
crystal 5 E(3)/H H/H0={O}or22 ﬁo {01
nematics 2,5,9| EQ/(0,, o =08/, 2P@,2) {0} z, z *
2
smectics A [26 [E(3)/(D_0(ZxR)) {0} 720z [z}
4
smectics C 26 E(3)/(C2hD(ZxR2)) fo} Z°0oZ {0}
cholesterics 9 O(3)/D2h {0} Q fo}
biaxial
nematics 3,6 10(3)/D,y {o} Q o}
He 2,9 |U,/{1}=R(R,1)=S, {0} z {0}
He SA { 2,9 |S0(3)/{11=P(R,3) [0} z, {0}
(S0(3) x S013)) /(5 01xZ,)

) {9 *4 {0} z, Z

He B 9 UyxS013)[43f = 5, xP(R,3) {0} Z,%z {0}

Notations and notes : EO(3) = connected component of 3 dimensional Euclidean group
E(3), its universal covering is EO ——§—> EO —> , H = symmetry group of crystal

H, = B_I(HO) with H_ = H/EO . Q= B-I(DZh) is the quatermonic group (generated

0 0
by iiTk where T, are the Pauli matrices), # Mo 22 acts non trivially on Z |
ref [T9] ; + when the volume is small enough new typesof defects appear!

P(R,n) 1is the real projective space in n dimensions.
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0f course topological stability is only the first logical step for the study of sym-
metry defects ; we will soon see how fruitful it is. When is topological stability
no longer valid? We already noted that the orbit G/H or the space of internal
states has to be thickenby a scalar (intensive) parameter, the Landau parameter
n>0 . This parameter is a function of T which vanishes at the critical tempe-
rature TC of phase transition to the isotropic phase. As pointed out in [5]. when
the temperature T is increased enough, although still below Tc , the local fluc-
tuations of rn to the value 1= 0 can no longer be neglected and the space of

states Uy _ n < ﬂl(G/H)(n) becomes contractible so its homotopy becomes trivial, and

the topological stability of defects dissapears. This is the annealing process for

crystals.

I already pointed out how homotopy classes of defects combine when the defects
coalesce. In [9] Poenaru and Toulouse ask the question : can two defects cross!
Their answer for line defects is yes when, and only when, they correspond to commu-

ting elements of ™ (this is always the case when . is abelian). For higher di-

1
mensions they wrote a following paper [11] in which they use the Whitehead product

on the homotopy groups (it defines a super algebra)for answering this question.
[

As you may know, homotopy theory has already been used in physics for the
classification of t'Hooft-Polyakov magnetic monopoles (”2 of the orbit of the
Higgs field [12,137]) and the classification of instantons by T3 of the gauge
group [14]. It is most appropriate to mention here the pioneer work of Finkelstein
on kinks ten years ago [15]. In a preprint [16] , this author, with Weil, study the
relevance of kinks of the magnetic field for non resistive plasmas and to the problems
of galaxy formation : the dynamical equationsrequire that the magnetic field va-
nishes nowhere in space so, as in the first line of Table 2, n2=Z ; this classi-

fies the kinks. m, and Ty are also useful to classify solitonms.

It seems to me that topological classification of defects (and of solitons)
is a first step in a right direction and may become soon a classical chapter of
physics. But do not forget that it is somewhat a crude analysis of the physical
phenomena and it cannot replace the beautiful work done and to be done on the
physics of defects. However the topological classification has some predictive
power and it givesa new insight into the subject. Let us hope that this approach
will be fruitful. In any case it seems to me an easy guess to predict that appli-
cations of homotopy to physics will be a lively subject in the near future and be

one of the topics of the VIIth Colloquium two years from now.
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APPENDIX. - Short tourist guide on homotopy.

Physicists are not yet expected to be fluent in homotopy.So I wrote this ap-
pendix to complete my lecture and make it intelligible. This cannot replace the
serious study of a good mathematical book ; this is rather easy to the motivated
physicist (I hope that this lecture has strenghthened yourmotivation!). The 24
pages of § 15, 16, 17 of Steenrod's book [17] are the best adapted to our need.
Books [18], [197, [20], [21] could be useful ([19] is condensed : few pages to read
for the proofs of this appendix, but the special case of Lie group is not studied,

[21] is a teaching book in the modern style).

Fy

We consider topological spaces and continuous functions between them (children
in 9th grade at Berkeley will tell you that we use a category). Two functions f, g
from T to X are said homotopic if one can pass continuously from one to the other.
Technically, & (= there exists) a continuous X-valued function F(t,)) defined on
T x I with I the closed segment [0,1] of the real line, such that F(t,0)=f(t) ,
F(t,1) = g(t) . To be homotopic is an equivalence relation between functions : we
denote it by f~g . We choose for T the n dimensional cube :
T, = {ti , 0<e, <1, 1<1< n}; and we denote by ol its boundary (one
ti =0 or 1 ). We consider the continuous functions from Fn ——£—> X such that
f(arn) =x, 4 fixed point of X . A cube Fn with all points of its boundary iden-
tified is homeomorphic to a sphere Sn (this must be obvious to you for n = 1 ;
every Japonese woman knows it for n = 2 : instead of a handbag they use a square

scarf with a special knot taking the whole brim of the scarf), so we really consider

continuous maps Sn —> X . Mathematicians define the following composition law
between two functions
f(2t1,t2,...,tn) , 0< £ <1/2
£ % g (t ,t ,...,t ) = . x
1°72° ! o £
g(2t:l 1,t2,...,tn) ,1/2_<_t1_<__1

(For n =1 this means that you run successively in X through

the two closed pathsfirst f(t) , then g(t) with a double. speed, so
this is again a closed path travelled in the unit interval Fig. 3
time).

As an exercise prove that * isagroup law: the inverse of f is the same function
but with the other orientation of Sn , and the neutral element e 1is the cons-
tant function. Since f ~ f' , g g' == f¥g ~ f'#g' the % defines a group on the

homotopy classes of functions Sn -—£—> X ; they are traditionnaly denoted by
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nn(xO,X) . If n > 2 make a rotation of w in the 2-plane tl,t2 ; it is homoto-

pic to the identity Th -1—9 Tn and it changes f ¥ g into g ¥ f so for n > 2

the homotopy groups are abelian. What happens if we change the base point from Xy to

X, in X connected? Using a closed path Xy to X and to Xq again we see that
nn(xo,X) and nn(xl,X) are isomorphic butthis isomorphism depends on the chosen
closed path. Technically : nl(X) acts on the nn(X) ; in particular it acts on

itself by inner automorphisms.

Examples of homotopy groups

. . n . .
X 1is contractible e.g. R , so every function is _, to a constant, hence

nn(x,X) = {e} i.e. trivial homotopy.

X =5 =R’ - {or, m =2 (and we will see later m, = {e} for n>1) A(D)

1
R? - {0} - {0"} ™

X free group of 2 generators (infinite, non abelian)

X

s, > k<n m =fe},n =z . AC2)

One could have defined no(X) : it is not a group but a set = set of connected com-

ponents of X . If nl(xo,X) = {e} , the connected component of X containing
X is simply connected. We are especially interested here when X is a topological
group G ; its connected component Go containing {e}] 1is an invariant subgroup and

ﬂo(e,G)is now a group isomorphic to G/G0 . We denote nn(e,G) simply by ﬂn(G)

(= nn(GO) for n >0) . We give here the proof that nl(G) is abelian : convention
£f(t) = e = g(t) when t ¢ J0,1[ ; comsider H(t,)) = £((1+)t).g((1+3)t-1) where
is the group law in G . Then H(t,1) =(f % g(t) , H(t,0) = f(t).g(t) ; then con-
sider K(t,)) = g(Ht).£(t).g(t).g(1t) " and note that K(t,0) = £(t).g(t) and
K(t,1) = g(t).£(t) . So nl(G) does not act on itself. One also proves that

nl(G) acts trivially on 1 (G) when G is a Lie group. However m,(G) acts on

nn(G) and this action might be non trivial. We now consider two topological spaces X,
Y and a fixed continuous map X —ﬁ——> Y; to each f : Sn ——£€> X corresponds

Sn o £ Y and this correspondance induces a correspondance

ﬁn(xO,X) _ﬁf;_> ﬂﬁ(yO’Y) where y = e(xo) . One proves that 6, 1is a group ho-
momorphism. Obviously if Y =X and § 1is the identity map, then 6, 1is the iden-
tity isomorphism ; it is also obvious for some 9th grader that each U is a functor
so to every commutative diagram of continuous maps between topological spaces cor-

responds the same diagram of homomorphisms between the corresponding T, - For
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instance to the diagrammatic definition of the IX Tpx
topological product (Fig. 4) corresponds the X L3 XxY > Y
same diagram of homomorphisms between the ™ X 1i py

with two identity maps, i.e. Yy A

Y y Fig.4

nn((xo,yo),x X Y) = nn(xo,x) X nn(yo,Y) (A1)

:the homotopy groups of a topological product &e direct products of the homotopy
groups of the factors. Let us apply it to a semi-simple real Lie group G

Using the Iwasawa decomposition G0 = K.A.N. where K 1is maximal compact, while

A (abelian and N (with a nilpotent Lje algebra), have a topology R™ (so trivial
homotopy) and where the dots mean both group law and topological product; we obtain

k>0, ﬂk(G) = ﬂk(K) e.g. (a semi-direct product of groups is a topological product)
wk(O(n)) = m (6L(n,R)) =, (Aff(n,R)) (A2)

where Aff is the affine group (inhomogeneous G.L.). Stewart [22] generalized

this decomposition to the group of diffeomorphisms proving that
nk(Diff n) = nk(O(n)) (A3)

E. Cartan proved [237 that for any compact Lie group K , nz(K) =0 , so for any

real Lie group G , m,(G) = {0} (A4)

I let you translate for all Lie groups the result of Bott [24]
K compact simple Lie group n3(K) =7 . (A5)

How does the results (Al) for topological product i.e. for trivial bundle X x Y
over base Y (and fiber X ) extends to non trivial bundles? Instead of splitting
short exact sequences for each n , one obtains a long exact sequence of homomor-
phisms (exact means:the Image of a homomorphism is the Kernel of the next one) that
we write explicitly for the particular case of a real Lie group G considered as
bundle over the homogeneous space (= orbit) G/H where H , the fiber, is a closed

subgroup of G : (see e.g. 17)

9W3(H)¢ﬂ3(G)»ﬁ3(G/H)»w2(H)»ﬁZ(G)»ﬂZ(G/H)aﬁl(H)»ﬂl(G)+w1(G/H)»nb(H) (A6)
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It will be useful to consider a vocering group G of G : G —BE> ¢ —>1 , so

that

G/H ~ G/H (~ = homeomorphic) where H = pnl(H) . Then we have two equi-

valent long homotopy sequence.

%W3(H}+ﬂ3(é)ﬁﬂ3(é/ﬁ)ﬁﬂz(ﬁ)ﬁﬂ2(6)+ﬂ2(é/ﬁ>9ﬂ (H)-r1, (G)om

1(§/ﬁ)+ﬂo(ﬁ)

L e P A A S

ﬁﬂE(H)aﬂB(G)»n3(G/H)»nz(H)éﬂz(G)enz(G/H)enl(H)enl(G)eﬂl(G/H)»nO(H)

which break with {1}'s : ™, (G) = nz(é) = m,(H) = nz(ﬁ) = {0} ; if furthermore

G is simply connected (one says that G 1is the universal covering of the con-

nected G) ﬂl(é) = 0 . Moreover when H 1is discrete, H is discrete and

k>0, m(H =m (H) =0 so n>1 m (G/H) = 1 (G) = 71 (&) (A8)
k k n n n
for n =1, we have in this case(see e.g. Wolf [257 section 1.8)
m (G/H) = m (G/H) = n (B) = & (A9)
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