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Abstract : 

We treat here the case of all irreps (irreducible representations) on the reals 

of the 32 point groups. For each point group these irreps are irreps with wave vec- 

tor k = 0 of the corresponding space groups. Landau model of second order phase 

transition can be applied to those irreps with no third degree invariants : one has 

to look for minima of a bounded below fourth degree polynomial which is not minimum 

at the origin, and determine the little groups (= isotropy groups) of these minima ; 

they are the subgroups into which the symmetry can be broken in the transition. By 

an efficient strategy we reduce the study of the 153 equivalence classes of irreps 

to few cases (6). Moreover we do not need to study the minima of invariant polynomials, 

we simply apply Morse theory to find the possible little groups of minima. 
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Landau theory [I] [2] of second order phase transitions in a crystal with space 

group G , yields a prediction for the symmetry breaking which occurs. It is given 

by the subgroup H (given up to a conjugation in G ), little group of a minimum 

of a "Landau polynomial" defined on the space of a real irrep (= irreducible repre- 

sentation) of G with finite image. We call here "Landau polynomial" a G-invariant 

polynomial which has only second and fourth degree terms, is bounded below and has 

a maximum at the origin. We do not consider the Lifschitz condition [2,3]. A general 

strategy for the determination of these subgroups H could be the following. 

a) List for the 230 space groups all real non-equivalent irreps with finite image, 

giving also their kernels and their images. 

b) These irreducible images are finite subgroups of O(m), the orthogonal group in 

m dimensions, with i < m < 12 . Classify them up to a conjugation in O(m) . 

c) For each class of images compute the number of linearly independent invariant 

homogeneous polynomials of degree three and four. For the active representations, 

i.e. for those without 3rd degree invariants, determine a basis for the quartic 

invariants. 

d) Consider all possible Landau polynomials and find the little groups of their mi- 

nima. 

In a) and c) we shall use the simplified approach (k-equivalence technique) 

proposed in [4]. 

As an illustration of this strategy we study here all irreps of the point groups. 

They correspond to irreps of the space groups with wave vector k = 0 . Since the 

kernel of an irrep is contained in all subgroups H of symmetry breaking, the cor- 

responding phase transitions have no change of translational symmetry. Although the 

results of this paper surely exist scattered in the literature, we think that the 

method used here to obtain them is new and powerful. The answer to a) is contained 

in table I : 32 points groups, the~ 153 equivalence classes of irreps, the corres- 

ponding images and kernels. In table I the symbols of irreps are the same as in 

[5] § II. The answer to b) is very simple and well known. Indeed~the two real one 

dimensional irreps are i + (trivial one that we omit in table I) and i- (two 

elements) ; the only finite subgroups of 0(2) which occur as images of two dimen- 

sional irreps are C and C with n = 3,4,6 . The only finite subgroupS of 
n nv 

0(3) with irreducible vector representation are T , T d , T h , 0 , O h , Y , Yh 

but the last two cannot appear as homomorphic imagesof space groups. Total 

2+6+5 = 13 classes of image&.The answer to c) is given in table 2. Only 1+4+3 = 8 

active images. Moreover the three 3-dimensional ones have the same Landau polynomials 

and form only one case from our point of view. 

Invariant polynomials of vector representations of point groups are known [6]. 

However, to answer d) we do not need explicitly the Landau polynomials and we avoid 
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the computation of their minima. Instead, we decompose the active irrep spaces into 

orbits and strata (see section 3 , this decomposition depends only on the image) 

using a systematic geometrical approach ; we then select the possible orbits of 

minima by application of Morse theory. 

Table 4 gives the little groups of the active images and Table 5 contains all 

our results, listing the point groups H , subgroups of the point groups G , 

respected by the symmetry breaking, for the 103 active irreps of the point groups 

G 

These little groups H , as rightly pointed out by J.L. Birman [7], [8] are 

subduced subgroups for the irreps but we do not study here a strategy which could 

be based on J.L. Birman's criteria ; those are not completly equivalent to minimi- 

zation of Landau polynomial. However we think they could be used for devising a bet- 

ter strategy for points c) and d). We begun this study with Professor J.L. Birman. 

I. Images of the real irreps of point groups. 

Let G be a finite group. 

i.) All irreducible linear representations of G on a complex vector space are 

equivalent to a unitary irrep ; such an irrep might be equivalent to a real repre- 

sentation and therefore to be an orthogonal irrep ; if the complex irrep g > A(g) 

is not equivalent to a real representation, then D(g) = A(g) • ~(g) is ; moreover 

it is irreducible on the real number field. For each real irrep we denote by g 

the real carrier space, by (x,y) the unique, up to a factor, invariant non dege- 

nerate orthogonal scalar product, and by g > D(g) the orthogonal representa- 

tion : D(g) T = D(g -I) 

2.) The set of distinct matrices D(g) of an irrep is called the ~ of the 

irrep ; it forms a group Q , isomorphic to the quotient G/K where K is the 

kernel of the irrep, i.e. the set of g E G such that D(g) = I 

3.) Given an orthogonal representation of G on g , one should consider : 

i) the orbits : x,y E g are on the same orbit ~ ~ (there exists) g E G , 

y = D(g)x 

ii) the little group = isotropy group = stabilizer G x of each point x : 

it is the set of elements of G such that D(g)x = x . Points of the same orbits 
-I 

have conjugated little groups GD(g)x = gGxg . Orbits which have conjugated 

little groups are of the same type and conversely. A stratum is the union of all 

orbits of the same type. We denote by G the set of conjugation classes of subgroups 
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of G . It carries a partial order by inclusion, up to a conjugation, of the sub- 

groups of G , and each possible orbit or stratum is labelled by an element of 

4.) Theorem : For every orthogonal representation of G on ~ , there is a 

minimal little group E ~ ; it is the kernel K of the representation and the cor- 

responding stratum is open dense. 

Proof : K = x~g Gx is the kernel of the representation ,- let gg be the 

eigen-subspace of D(g) for the eigen-value I ; when g ~ K , it is a strict closed 

subspace of g . The union of this finite number of strict subspaces is closed and 

its complement is dense ; this is just the stratum of K . We call it the "generic" 

stratum. 

5.) If g > D(g) is an irrep of G and ~ is an automorphism of G (i.e. 

E Aut G) then g > D(~(g)) is an irrep of G . It is equivalent to D(g) 
-I 

if ~ is an inner automorphism (~ E In Aut G) i.e. ~(g) = a g a with a E G ; 

hence there is an action of Out G = Aut G/In Aut G on G the set of equivalence 

(~) classes of irreps of G . Two non equivalent irreps on the same orbit of 

Out G are said to be quasi-equivalent (~) 

6.) The carrier spaces g and g' of two equivalent irreps have the same com- 

position into strata and orbits of given types. If the two irreps are only quasi- 

equivalent, there is a bijective map (i.e. on to one onto) between the strata and 

the orbits of g and g' respectively. The corresponding orbits have the same number 

of points but they might be not of the same type because their little groups might 

be not conjugated. 

7.) Kernels and images of all the real irreps of point groups are listed in 

table I , where the irreps are denoted in the same way as in [5] § ii. (See also 

Appendix). 
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Table i. - Kernels and images of the irreps of point groups. 

! : . ] ~ p ,  r I 
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t "  i , - i "  c,s s 4 q 4 s~,~ q C ,  6~ %!~ ~ s~ 4- E 2 q q, 
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G=point group, Ir=irrep, Ker=kernel, Im=image. wlc~ k 
B E R ± ~ ~+ - , . .=.~.~., dim A=dim B=I, dim E=2, dim F=3 ; 

Bi, j-Bi~Bj 1,j i J I-={I,-I } . 



452 

II. Invariant polynomialS of the real irreps of the point groups. 

The representation g > D(g) of G on g defines an action of G on the 

real valued polynomials on g .(See (6] for the results in sections 8 and 9). 

8.) A polynomial p(x) on g is G-invariant if for all g E G and all x E 

p(D(g)x) = p(x) (I) 

Sums and products of invariant polynomials are again invariant polynomials so the 

set of G-invariant polynomial on g form a ring %G which is a subring of the 

ring ~ of polynomia~ on g 

9.) An integrity basis of ~G is a minimal set of homogeneous polynomials 

which generate it. Such a basis contains at least m = dim g algebraically indepen- 

dent polynomials. It contains exactly m polynomials iff (=if and only if) the 

real representation D(g) is generated by reflections, i.e. by matrices with all 

eigen/values 1 except one which is -i (ref.[9]). There is some ambiguity in the 

choice of the polynomials 81 , 82 ,... 6 m of the integrity basis, but their de- 

are well defined ; we need here only to know that they satisfy the re- grees d k 

lations : 

m m 
~k=l dk = I GI ~=i dk = m + I GII 

where IGI is the number of elements of G and IGI[ 
2 

Of course for the m dimensional irrep, @i = =i Xk 

is the number of reflections. 

is the lowest degree polyno- 

mial of the basis. Finally, every polynomial of ~G is of the form P(61,@2,...,6 m) 

where P is an arbitrary polynomial of m variables. 

Among the list of Table i, the following images are generated by reflections : 

I- , C3v , C4v , C6v , T d , O h (2) 

All other irrep images are invariant subgroup of index 2 of one of the image 

of the preceeding list, explicitly : C < C T < T d 0 < O h 
n nv ' 

Consider an image D(G) generated by reflections that we denote 

(x) = 0 the linear homogeneous equation of the hyperplane of the by r ; let I a 

reflection r . If H is a subgroup of G such that the restriction of D to H 

has an image D(H) which is subgroup of index 2 of the image D(G) , then one proves 

that ~H is a two-dimensional module on ~G i.e. every H-invariant polynomial is of 

the form 

where P and 

P(@I,62,...,Gm) + ~(x)Q(81,82 ..... 6 n) 

Q are arbitrary G-invariant polynomials and 

~(x) = ~ .~ (x) and 2 6 
r "~ D(G) 
r~ ~D(H) 

(3) 

(4) 
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Similarly to the table of reference [6], we give here in Table 2 the integrity basis 

of the ring of invariant polynomials for the real irreps of the point groups (see 

section 7). 

Table 2 : Integrity basis of the ring of invariant polynomials for images of the 

real irreps of points groups : 

Image 81 82 

22 2 2  
C 3 Xl+X 2 Xl(Xl-3X 2) 

2 2 22 
IC 4 Xl+X 2 XlX 2 

2 2 6 42 24 6 
C 6 Xl+X 2 Xl-15x1x2+15XlX2-X 2 

2 2  2 2  
C3v Xl+X 2 Xl(Xl-3X 2) 

2 2 2 2  
C4v xl+x 2 x lx  2 

2 2 6 42 24 6 
C6v Xl+X 2 Xl-15XlX2+15XlX2-X 2 

2 2 2 4 4 4  
T Xl+X2+X 3 Xl+X2+X 3 

2 2 2 4 4 4  
T h Xl+X2+X 3 Xl+X2+X 3 

2 2 2 4 4 4  
T d Xl+X2+X 3 Xl+X2+X 3 

2 2 2 4 4 4  
0 Xl+X2+X 3 Xl+X2+X 3 

2 2 2 4 4 4  
O h Xl+X2+X 3 Xl+X2+X 3 

83 

XlX2X 3 

222 
XlX2X 3 

XlX2X 3 

222 
XlX2X 3 

222 
XlX2X 3 

2 2 
X 2 (3x l-x 2) 

2 2 
XlX2 (Xl-X 2 ) 

22 2 2 
XlX2 ( 3X1-2 ) (X1-3X2 ) 

number of 
linearly 
independent 
invariants 
of 

3r~ 4thdeg.  

0 1 

2 1 

0 1 

0 1 

1 1 

0 2 

0 1 

2 

2 

2 

2 

2 2,, 2 2~ 2 2 
Xl-X2)kx2-x3J(x3-x I ) I 

2 2,~ 2 2, 2 2 
Xl-X2J tx2-x3J(x3-x  1) 0 

i 

, 2 2 , ,  2 2, 2 2 
x ix2x3~xl -x2J tx2-x3~(x3-Xi  )0 

0 

The explicit from of 82,83, ~ depends on the choice of coordinate~for the represen- 

tation (e.g. change x I into x 2 and x 2 into -x I) . There is also some arbitra- 

riness in 82 and some times 83~ e.g. when degree 82 = 4 , one can replace @2 
o 

~8~ + ~82 ; but the degree of the 8's are fixed. The most general invariant by 

polynomial is P(81,82,83 ) + ~Q(81,82,83) (see sec£ion 9). 

Remarks : In ref.[2] (footnote near the end of § 138) the conjecture is made that 

there can never be more than one third degree invariant for real irreps of space 

groups. As this table shows for C 3 , this conjecture is wrong. It is true for 

complex irreps as shown in [i0]. 
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i0.) We can five the stratum decomposition of each irrep. As we noted in section 

6, this decomposition depends only on the image of the representation. We note that 

the irreps of table 2 are faithful representations of some point groups for a real 

irreducible component of their vector representation : 

I- C 3 C 4 C 6 C3v C4v C6v T T h T d 0 O h (5) 

For the same irrep image and different groups, the little group of each stra- 

tum depends only on the kernel of the representation. 

Ii.) All irreps of (5) have at least two strata : the origin, O , which is the 

only fixed point, and the generic stratum (see 4 ) which is open dense and whose 

little group is trivial. 

The irreps I-,C3,C4,C 6 , have no other strata. 

The irreps Cnv , n = 3,4,6 have another stratum, the reflectuon planes, and 

the corresponding little group is Z2(r ~) , the two element group generated by the 

corresponding reflexion. Note also that the two invariant polynomials e I and e 2 

satisfy : 

2 3 2 2 6 
A 3 : e 2 ~ e I , 44 : 4e 2 ~ e I , 46 : 62 ~ e I (6) 

4 22 4 
(for 44 if we had chosen @2 = Xl - 6 XlX 2 + x 2 ; we would have also more general- 

n . 2 2.n. 
ly chosen for ~i : 62 = Re(xl+ix2 )n ' then e j e I = iXl+X 2) ). The equality in 

(6), together with e I > 0 , defines this exceptional stratum of little group 

Z2(r) 

There is a general method for the decomposition into strata and orbits of a 

representation generated by reflections ; as an example we work it out explicitly for 

F1 , the vector representation of O h . This is the syrmmetry group of the cube 

(centered at the origin with edges parallele to the coordinate axes) and the octahe- 

dron (whose vertices are at the center of the faces of the cube). The group O h is 

generated by the nine reflections through the syrmmetry planes of the cube ; they 

fall into two families : 3 symmetry planes, each containing 4 middles (m) of edges 

and 4 centers (n) of faces - 6 symmetry planes, each passing through 4 vertices (r) 

and 2 (center of face) and containing two edges - , these two types of symmetry 

planes correspond to two conjugate classes for the 9 reflections r generating O h . 

These 9 symmetry planes divide the 3 dimensional space £ into 48 triangular cones, 

each one of them can be considered as an orbit space. The interior of these cones is 

the generic stratum ; the decomposition of the cones into their geometric elements 

correspond to the stratum decomposition which is given in details in Table 3 . 
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Table 3 : Decomposition into strata and orbi~ of F1 , the vector representation of O h . 

3 2k , 2 2~, 2 2,, 2 2~ 
Notation @k = ~i=l xi k = 1,2,3 , ~ = x I x 2 x 3 , ~ = ~Xl-X2}~x2-x33tx3-xi} 

then 6~ 2 = 8~-38182 + 283 , 6~ 2 = -18e~ + 36838281 - 8838 ~ + 38~- 218281 2 2 + 98281_81 4 6 . 

Let n ,r, m be respectively a center of face, a vertex and a middle of edge in the 

same face of the cube -i ~ x i ~ 1 . The triangular cone C whose edges are the 

half lines containing On, Or, Om and faces Onr, Onm is an orbit space : it cuts 

each O h orbit in one point. 

equation, description of stratum, nb of points in little group 
each orbit 

~>0 92 >0 

Z =0 ~2>0 

~>o ~ =o 

8~=28182=483 > 0 

8~=3ele2=983 > 0 

3 
@1=@182=@3 > 0 

81 = @2 = @3 = 0 

inside of the cone C, 
generic stratum 

inside of face Onr 
of C 

inside of face Onm 
of C 

inside of edge Om 
of C 

inside of edge Or 
of C 

inside of edge On 
of C 

vertex of cone C 
(origin) 

symmetry 
48 [I] plane 

24 C Onr 
s 

24 C' Onm 
s 

n-fold axis 

12 C2v Om 

8 C3v Or 

6 C4v On 

I O h 

It is easy to study now the index two subgroups O , T h , T d ; similar study 

Can be carried for T d , generated by reflexions and its index two subgroup T 

( T is the symmetry group of the tetrahadron whose vertices are four vertices 

of the cube). All these results, and those obtained in section ii are summarized 

in Table 4. 
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Table 4 : Strata Of images of the Irreps of Point Groups. 

For each stratum we give its dimension, its little group, the number of points of 

each orbit. The origin is omitted as a stratum• 

Image [ dim. 

I- 1 

C3 2 

C4 2 

C6 2 

C3 v 2 

C4 v 2 

C6 v 2 

T 3 

r h 3 

T d 3 

0 3 

O, 3 
n 

I C 2 6 

I C2v6 

!l C2v6 

i C 4 6 

i C4v 6 

r 4 1 C 3 

I C~ 8 

I C~v 4 

I 

I C~v 8 

I C m 12 
s 

m 

i C 2 12 

I C TM 12 
2v 

I Z2(r ~) 4 

i Z2(r ~) 6 

2 C' 12 
s 

2 C' 24 
s 

I Z2(ra)3 

I Z2(r~)4 

I Z2(ra)6 

2 C 12 
s 

2 C 24 
s 

generic 
stratum 

i {I] 2 

2 {I} 3 

2 [i} 4 

2 {I} 6 

2 {i} 6 

2 {i} 8 

2 [I} 12 

3 {I} 12 

3 {I} 24 

3 {i} 24 

3 {i} 24 

3 {I} 48 

Note that for C the 2n reflections are in two conjugated classes• We 
2n, v' 

denote arbitrarily by Z2(r a) and Z2(r ~) the 2 element group generated by one 

reflexion of each family For the notation C' C r C TM C r C TM see appendix. 
• s ' n ' n ' nv ' nv 
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III. Symmetry breaking predicted by Landau model of second order phase transitions 

in the irreps k = 0 of the crystallographic groups. 

Landau theory of second order phase transitions is explained in chapter XIV 

of Landau and Lifschitz book on Statistical Mechanics, [2] . Although the Landau 

theory does not give the good critical exponents (for that it has to be quantized 

and reinterpreted), it seems that it predicts the good selection rules for the 

symmetry breaking which occurs in the transition 

In order to exclude first order phase transitions, the considered irrep must 

have no third degree invariants. According to table 2, this excludes the irreps 

whose image is C3,C3v,T,T d . The others will be called active irreps ; their list 

is : 

Imag~of active irreps : I-,C4,C6,C4v,C6v,Th,O,O h (7) 

Then we have to find the minima of a G-invariant fourth degree polynomial Pwhich for 

Ix[ ---> ~ goes to +~ and is not minimum at the origin. Since the gradient dP/dx 

has to be G invariant at x = 0 , dP/dx(O) = 0 the origin is an extremum ; more- 

over, at the origin the Hessian d2p/dx 2 is invariant by the irrep of G : it has 

to be a multiple of the operator I and therefore P has a maximum at 0 . Hence 

P must have at least a G-orbit of minima at x ~ O and Ix I < ~ . The little group 

H ~ch an orbit gives the symmetry breaking from G to H . Working first with 

the image of the irrep we will determine the nature of the orbit (or orbits) of 

minima without writing explicitly the possible P's and differentiating them. We 

study successively each image of the list (7). 

Images I C4,C 6 . Outside the origin they have only one stratum, the generic one ; 

so any orbit of minima is in the generic stratum and H = [i} 

For the other irreps we will apply Morse theory ; let us recall here the main 

results. 

12.) A smooth function f on a compact m dimensional manifold M is called 

a Morse function if for each of its extrema the Hessian is not degenerate (its de- 

terminant is ~ O ). The number k of negative eigenvalues of the Hessian is called 

the Morse index of the extremum (there are m-k positive eigen values). Let c 
k 

be the number of extrema of f with Morse index k (c o is the number of minima, 

c that of maxima). The c k satisfy the Morse relations : 
m 

n < m , ~ l(-l)n-kck > ~ (-l)n-kb equality for n = m (8) 
. . . .  i k ' 

b k is the k th Betti number 

For instance if M is the m dimensional sphere Sm,b ° 

otherwise. 

-- b = 1 a n d  b = 0 
m n 



458 

13.) If we compactify the space g by adding the point ~ at infinity the 

G-invariant polynomial P is then a smooth function on S (m = dim g ) with at 
m 

least two maxima, one at 0 , one at ~ and more than one minimum (see table 4) , 

SO 

~ 2  , c m -- >2 (9) 

When the irrep has at least two linearly independent homogeneous fourth degree in- 

variants (e~ is one of them), in a dense subset of the domain of its coefficients 

P is a Morse function. (See Appendix in [ii]). In that case (dP/dx)=O is a system 

of m polynomial equations of the third degree with a set of roots of dimension 

zero ; the number of real roots is at most 3 m and if we count the point ~ : 

c O + C i + ... + Cm --< 3m + 1 (I0) 

Image C4v . The Morse relations give for m = 2 : 

c O ~ I , c I > -i + c o , c o - c I + c 2 = 2 (ii) 

with equation (I0) for m = 2 they imply 

c 0 + (c2-2) = c I J 4 (12) 

With (9) this excludes the 8 point orbits of the generic stratum ; and with the 

use of table 4, we find a unique solution for C4v : 

e 0 = 4 , c I = 4 , c 2 = 2 (13) 

This proves that, except for exceptional polynomials, the minima of the possible 

P's are on a four point orbit with little group C = Z2(r a) 
S 

2 2 22 
Image C6v. The only fourth degree homogeneous invariant is e I = (x I + x 2) so any 

fourth degree inhomogeneous invariant polynomial P is also invariant under the 

orthogonal group 0 (2) , whose orbits are the spheres centered at the origin. As 

explained in [2],footnote after equation 136.7 , one must consider the sixth degree 

invariant polynomials : they are Morse functions and (~) , (ll) apply while (I0) is 

changed into 

c o + c I + C 2 ~ 52 + i = 26 (14) 

SO 
Co+ e2-2 = c I ! 12 (15) 

This no longer implies that there are no minima of P in the generic stratum. In 

this rather exceptional case we have to verify it by a direct computation. Indeed, 

in polar coordinates 0,~ : 

p6 p4 _2p2 
P = T (X + a cos 6oJ) + ~ -~- % >lal (16) 

DP = 
Then ~ _p6 sin 6~ = 0 requires 

= k~/6 with 0 < k < 12,k integer (17) 
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c O = 6 + 6 = c I 

Image O h In general P 

the Morse relations : 

These values of ~ are the azimuths of the reflection planes ; however the 6 reflec- 

tions of C6v form two conjugated classes (k even and k odd), so the extrema 

of P occur by pair of six point orbits (2 points of the same orbit in each refle- 

xion planes). The extrema of P satisfy 

= 2 H = Cs = Z2(ra) (18) 

is a Morse function with the number of extrema satisfying 

c O __> i , c 3 - c 2 = c o - c I _< i c 3 + c I = c o + C 2 (19) 

With (9) and (i0) for m = 3 we obtain : 

c o > 2 , c I __> I , c 2 _> i , c 3 _> 2 c 3 + c I = c O + c 2 < 14 (20) 

This excludes the orbits of 24 or 48 points ; since the smallestorbit has at least 

six points, c O > 6 , c I __> 6 , c 2 __> 6 and the only solutions are : 

c o = 6 , c I = 12 , c 2 = 8 , c 3 = 2 H = C4v (21) 

c o = 8 , c I = 12 , c 2 -- 6 , c 3 = 2 H = C3v (22) 

Images Th,O. From table 2 we see that their fourth degree invariant polynomials P 

are the same that for the irrep O h . So P is in fact invariant under a larger 

group than that of the image of the irrep ; when P is a Morse function this group 

is O h . So the C k are again given by (21),(22); then according to table 4, for these 

two irreps, each type of extrema constitute one orbit of respectively 6, 8, 12 

points and the little groups of the minima are, instead of (21), (22) 

i: 2v 0 (23) 
c o = 8 Th C 3 H = C 3 

Thus we have determinedthe possible orbits of minima. Each of them is charac- 

terized by a little group (up to a conjugation), subgroup of the image D(G) 

When the irrep is not faithful, the inverse image in G of this subgroup is the 

subgroup H into which the symmetry is broken. In table 5 we list all 

active irreps of the point groups and the possible subgroups H of symmetry 

breaking. 
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Table 5.- Active irreps of point groups G and subgroups H of residual symmetry 
in second order phase transitions. 

(a.L o .  r~ 

c~ ~ cZ 

v _ g  v 
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No active irreps for CI,C3,T • For details of notation ~;3 
see Appendix. 
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APPENDIX. 

We use Sch~nflies notations for the point groups : note some variations in the 

literature : C.i for $2,C3i for $6, C s instead of Clh . The explicit form of in- 

variants (e.g. table 2) depends on the position of the rotation axes and symmetry 

planes of these groups. They are fixed here according to the following rules. The or- 

thonormal coordinates are Xl,X2,X 3 o The implementation of the cubic groups is given 

in table 3 by a cube -I ~ x i ~ I of center 0(0,O,0) ; r(l,l,l) is one of its ver- 

tices and m(l,l,O) is the middle of an edge. For the Cn,D n groups and those of the 

same family : Cnh,Cnv,S2n,Dnh,Dnd , the n-fold rotation axis is the vertical axis 

Ox 3 . Let ~ and E' be a set of n straight lines through 0 in the horizontal 

plane Xl,X 2 , whose azimuths are respectively 2~k/n for E , 2~( + ~) for 

with 0 < k < n . Then ~ is the set of the n two fold axes of the D groups ; 

the vertical symmetry planes of Cnv,Dnk contain ~ while those of Dnd contain E'. 

In table 5 the subgroups H into which the symmetry G is broken are defined 

up to a conjugation by G . To precise the position of one of them, we indicate the 

direction of the n-fold axis by an upper index x,y,m,r for OXl,OX2,Om, Or when it is 

not Ox 3 . We also put a ~ when the role of ~ and ~' are exchanged. 


