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Introduction

I wish to present here several ideas, some mathematical tools
and a new mathematical theorem related to the breaking of physical
symmetries. I will first give examples, then the general theorem,
and its application to the breaking of the SU(3) symmetry, to which
an increasing number of papers have recently been devoted.

I want to stress that all the original content of this lecture is
the result of a collaboration with Luigi Radicati. Part of this common
work has been published in the Proceedings of the Fifth Coral Gables
Conference (January 1968)‘.1 More will be published later.

Broken Symmetry

Since every direction of the three dimensional space can be
transformed into any other by the group SO(3), of rotations around the
origin, a function f(f) invariant under rotation depends only on r? and
is constant for instance on the unit sphere ? =

Although the theory of magnetism is invariant by rotation, it
might happen that the lowest energy state of a homogeneous magnetic
material in the vacuum (not in the earth magnetic field!) has a magne -
tization pointing in a well defined direction so the SO(3) invariance is
reduced to SO(2) for this system.

Similarly, the interactions between ions are invariant under the ‘
Euclidean group E(3), but the symmetry group of a crystal is only a
subgroup of E(3).

In both cases the SO(3) and E(3) symmetry is broken: the equi-
librium state corresponds to a solution of lesser symmetry than that of
the equations. This breaking is called spontaneous. (The particular
state is generally induced by inhomogeneities which may be suppress-
ed afterward.) By applying the invariance group (respectively SO(3)

tPresented at the THEORETICAL PHYSICS INSTITUTE, Uniilersity of
Colorado, Summer 1968.
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or E(3)) to the particular solution one obtains a full set of similar
solutions in both cases considered. May I remind you that might
not always be the case. Consider for instance a lithium atom in

the fundamental state s®p. Let us neglect the spjn of tlhe js) elalect ron
to simplify the argument. The atom can be ina P1 or Po or P; state,
which are invariant by SO(2) only. Note that rotations of SO(3) can
transform the P; state into the P, but not into the P, .

The symmetry breaking I want to consider is of a different na-
ture and I would like to call it "dynamical breaking"” although it is
often also called spontaneous. A dynamical breaking is that obtained
for instance from a bootstrap formalism (see for instance Cutkosky and
Tarjannez)) or from a variational principle (for example Domokos and
Suranyi;”de Mottoni and Fabri.?)But the type of solution found by
these different physical approaches is in fact imposed only by the
geometrical aspect of the problem and is independent of the detailed
dynamics. This was first suggested, I believe, by R. Brout,s) but it
seems to me that he did not find the true geometrical nature of the
problem.

Some Mathematical Facts

Consider a group G acting on a space ( = set of points) M. For
each point a € M one can define Gg . the little group of a (also called
the isotropy group of a) which is the set of elements g € G which i
leave a fixed: g[a] =a. For each a € M we can also define the orbit
of a: it is the set of all points g[a] transformed of a by all elements
of the group. Two different orbits cannot have a common point so the -
action of G on M partitions M into orbits.

If b belongs to the orbit of a, there is g € G such that b = g[a].
It is easy to verify: Gp =g Gy g"1 . Hence the little groups of two
points of the same orbits are conjugated. Conversely two points m,
n € M whose little groups G, G, are conjugated (3g, Gp, =9 Gng‘l)
are not necessarily on the same orbit. We shall call stratum* any
subset of M made of all points which have the same little group up to
a conjugation. Hence M is partitioned in strata and each stratum is
partitioned into orbits of the same nature. With the partial ordering
defined by inclusion, the subgroups of a group form a lattice. This is
still true if we consider subgroups modulo a conjugation. This partial
ordering induces a partial ordering on the strata of M: we call minimal
strata those which correspond to maximal little groups.

Finally if G is a Lie group acting differentiably on a manifold M
and if G, 1s closed in G, the corresponding orbit is a submanifold of
M. Its dimension is:(dim G - dim Ga).

*The concept of strata on M used here is a very simple example of the
notion of stratified manifold defined by R. Thom (Ensignement mathe-
matique 1962).
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Examples _
1. SO(3) acting on the 3-dimensional real vector space €(3). There are

two strata: the origin 0, which is minimal stratum and ¢(3)-0,
decomposed into sphere Sz as orbits (the corresponding little
group is SO(2)).

2. Lorentz group £ acting on the 4 dimensional real vector space
e(4). There are 4 strata: the origin 0, minimal stratum, little
group &£ and three maximal strata,

(1) the light cone-0, (one orbit only and little group E(2))

(ii) the inside of light cone (orbits = 2 sheeted hyperboloids and
little group O(3))

(111) the outside of the light cone (orbits = 1 sheet-hyperboloids,
little group O(2,1)) .

3. S0(2) acting on the unit sphere S, < £(3). There are two strata:
minimal stratum being made up of two fixed points (the two poles)
and little group SO(2); the other stratum being the union of orbits
=81 (= circles) and little group 1, unit of SO(2).

This third example is an illustration of the theorem of D. Mont-
gomery and C. T. Yang. If a compact Lie group G acts differentiably
on a compact manifold M, there is one stratum (the "generic" stratum)
which is open dense in M. Radicati and I conjecture the following
theorem: Consider a real valued differentiable function f defined on
the compact manifold M and invariant by the differentiable action of
the compact Lie group G on M. Then f has at least one extremum
(grad f = 0) on each connected piece of each minimal stratum.

To our knowledge this theorem was not in the mathematical
literature. A sketch of the proof was given to us by A. Borel. I shall
not’ give it here. However, I shall prove this theorem for the example
we shall now study: G = SU(3), M is S7 the unit sphere of the octet
space&(8)(= vector space of the Lie algebra of SU(3) with the Killing-
Cartan bilinear form as Euclidean scalar product).

Note that a function on M, invariant under G is constant on
every orbit of G, so it has also orbits of extrema. We will first prove
that SU(3) acting on S_ divides it into the generic strata (open dense
in S7) and a special stratum made of two orbits of dimension four.
The directions in ¢(8) corresponding to the points of this minimal
stratum have remarkable properties and our theorem predicts that they
will very likely be preferred solutions in any SU(3) invariant theories
on the unit vectors of the octet space using a variation principle.
This geometrical result is independent of the detailed nature of the
expression (for example, Lagrangian) to be minimized.
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Application to SU(3)

We want to study the action of SU(3) on £(8), the octet space of
of the adjoint representation.

7 (8) can be realized as the real vector space of the 3 x 3 her-
mitian (x = x*) and traceless (tr x = 0) matrices. The action of
u € SU(3) on x is given by

X=-Uuxu* =uxu
This action leaves the Euclidean scalar product
(x,y) =% tr xy

invariant (~ Cartan-Killing form of the Lie algebra).
The Lie algebra of SU(3) is realized by the law

X AY =:2L(xy-yx) = -2[x,vy]

There is also a symmetric algebra which has SU(3) as automor-
phism group: (I = unit matrix)

XVYy =%(xy + yx) - LI tr 2y=%{x.y} - 2(x,y)I

To relate this to a notation familiar to physicsts, consider the
trilinear invariant forms

[x.y,2] = (xAy.2) = ,yAz) =[y,z,x] = -[z,y,2]
and:
{x,y,2} = &kvy,2) = &,yvz) = {y,z,x} = {z,y,x}
If we choose an orthonormal base of mat_rices:

(xalxb)':&ab (alb=1,oo-/8)
then Dh Ay ] =f o I g ) =d, .

What Are the Orbits of SU(3) on ¢(8)?
The transformation x — u x u~! does not change the eigenvalues,
or equivalently the characteristic polynome of the matrix

x? - xyx) -ukx) =0 (1)
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where v(x) = (x,x) u) =5k xx)=2{x,x,x) (2)
Since x is hermitian, it has 3 real eigenvalues, so

4y (x)? > 27 ux)? (3)

Since any hermitian matrix can be diagonalized by a unitary
(unimodular) conjugation x - u X u™!, the orbits are exactly labelled
by the two invariants vy (x), u(x) satisfying (3).

Generic Stratum

If 4y (x)® > 27u(x)?, x has three distinct eigenvalues; the little
group in SU(3) of such a diagonal matrix is u(l) x u(l). It has dimen-
sion 2, so the orbits are of dimension 8 - 2 = 6. The stratum is
then a 2 parameter-family of 6 dimensional orbits, the parameters |
being v (x) and y(x).

Special Stratum

One param ter family of orbits with 4y (x)® = 274 (x)?: It con-
tains x with a d ible eigenvalue. So they satisfy a second degree
equation whicl s easily found to be

X VX =nx) x (4)
1
with nx' -~ uWkx)/2)3 4")
The 10st general unitary unimodular matrix u commuting with:
a 0 O U ’ 0
x=10 a O isu=
=1
0 0 -2 0 ] (det U)

where U is a 2 by 2 unitary matrix. So the little group for this spe-
cial stratum is U(2). We will call the elements of this special stra-
tum charges . It can be easily verified indeed that they are also cha-
racterized by the following properties: their eigenvalues ) in the
octet (i. e. for the eigen 3 x 3 matrix a given by xva =)a), are pro-
portional to 0, 1, -1. This is the case of Y, Q and C the hyper-
charge, electric charge and Cabibbo charge operators respectively.
This last charge is defined as follows: let C, [ = (\_ + ixz) cos O+
(\ , £ ix5) sin 8 in the customary basis] be the directions o the weak
hadronic currents coupled to leptons in the octet; then /3C = CyvC,
= C.vC_. The little group of Y is generated by isospin and hyper-
charge gauge transformations; the littlegraup o Q isgenerated by u-
spin and electric gauge transformations. The little group U(2) of Y,
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Q and C are respectively the invariance group of hadronic semi-
strong, electric and maybe weak interactions. Of course the origin
x = 0 is @ minimal stratum with SU(3) itself as little group.

SU(3) Invariant Function on the Octet

Let f be an infinite differentiable function on £ (8) invariant
under SU(3), i. e.,:%Wu € SU(3), f(x) =f(u xu™*). It can be shown
that f is a function of x only through the invariants v (x) and u(x),
i.e., f(x) = f(yx), ux)). Let us compute grad f:

grad £&x) =2f x + 2 wux 5)
Yy AU

Sograd f =0, if x = 0. There are also two other cases where
grad f = 0:
1) x is a charge ; it satisfies (4), then

grad f(x) = oa—g—i n) +§-—&= 0.

2) x is such that of x) =0 =i (%) .
Ay A
To satisfy these last two equations is "more difficult" than to satis-
fy the one of case 1.
All physics papers I read, which study the breaking of SU(3)

from the octet find solution 1). Itis really independent of the model.)

Let us assume now that f depends only on the unit vectors
(yx) = 1). They form the sphere S,. The function f depends only
on B(X)' The generic stratum is made of one parameter family
(-25/3 < u < 25/3) of 6 dimensional orbits. The minimal stratum

is made of the two four-dimensional orbits y(x) = + 2‘2‘/3 of normalized

charges. grad f is tangent to S.7: x - grad f(x) = 0. So

grad f = (xvx - yux) x)%‘& .

Then grad f does vanish on both orbits of the minimal stratum of S7.
This proves our theorem in this particular case.

Nature of the Equilibrium

From this purely geometrical study, can we say something
about the nature of the equilibrium? The answer is yes. We can al-
ways choose in a neighborhood of x on the manifold M (here S7) a
local coordinate system ut (4 =1, ..., dim M) with origin in x.
Then if grad f(x) = 0
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Ly o 3%f  4r
flx +u’) =fx) + 7 u’u + terms of the third degree in the u's

du du

2
If -a—f*—/_a%l? ¥ 0 for some 1, r, the extremum will be called quadrgtic;
it will be callkd regular if det—ﬁ— f 0i.e.,the quadratic form—2-f uj"ur
dutaul aulaf
is nondegenerate. As is well known, it is always possible to choose
the coordinate system such that the quadratic form is diagonal. Then
the number of positive elements , p, and the number of negative ele-
ments, g, are independent of the choice of coordinates; q = n will
correspond to an absolute maximum and p = n to an absolute mini-
mum. Letr=n-p - y. In the general case we will say that an
extremum is a p times stable, a g times unstable and a r times neu-
tral equilibrium.
For a SU(3) invariant function on S, an extremum on the spe-
cial stratum has r = 4, on the generic stratum r = 6. (More generally,
r = dimension of the orbit.) So, for the generic stratum an extremum

is of the type
porg=1l,r=6

To study the nature of an extremum at x on the special stratum, one
can study the orbits of the little group U(2)_ in the neighborhood of
x. One finds sphere S3. This shows that fhe extremum is of the

type:
porgq=3,r=4

Finally, in the case we are studying we can even give some relations
on the number and nature of orbits of extrema. Indeed the invariant
function for S7 is a function of the parameter y only, defined in the
interval

2
3

wj

2
3

-2
3

<us<

2
whose extremities | = +2°/3 correspond to the singular stratum. So
if f has only quadratic extrema with M and m, M’ and m’ as the
number of maxima and minima orbits, on the special generic stratum
is

M+m=2, M-m+2(M’ -m’)=0
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This is an immediate result of well known properties of one variable
continuous and differentiable functions defined on a compact inter-
val.,**

Induced Dynamical Breaking

We have well understood that in a SU(3) invariant theory all
octet directions (= points of S7) do not play the same role and one
might expect the directions belonging to the special strata (charges)
to give a special, more fundamental family of solutions. The hyper-
charge Y is one of those directions forming the special strata. How
can the direction Y be defined? Is the situation similar to that of
magnetism when an arbitrary small magnetic field can orient the mag-
netization vector ? Cabibbob) has asked the following question: can
the electromagnetic interaction in the direction Q and the weak inter-
actions in the direction C_, C_ destroy the 4-fold neutral equilibrium
of the charge orbit and pict up the Y direction? Indeed a neutral equi-
librium can be destroyed by the smallest perturbation and one could
hope that the 4-dimensional orbit of extrema is resolved by the per-
turbation into a finite number of isolated extrema.

Cabibbo and also Radicati and I have found by a variational
principle that Y must be a solution of the equatioh m €(8):

Bly+82yvy+avy+b=0

where 8, ,8, can be a function of u(y) and a,b are vectors of U(2) ,
the U(2)  Lie algebra being generated by C,., C_, Q. Furthermore,
Radicati and I have proven that this equation (and even a more gen-
eral one with a supplementary term a’A y, with a’ ¢ U(Z)C) cannot
have a charge as solution. So the electromagnetic and weak inter-
actions are such that they displace all the extrema from the U-dimen-
sional charge orbit and none are left!

**There is a full-fledged mathematical theory, that of M. Morse,
which gives the existing relations between the number and the
types of extrema of a real valued differentiable function on M
(with only isolated quadratic regular extrema) and the Betti numbers
of the compact manifold M. There exist also powerful theorems of
the converse type. For instance: if a differentiable real valued
function on the compact manifold M has only two extrema, M is
homeomorphic to a sphere (proven by Reeb in 1952 if the extrema
are quadratic regular and by Milner and also Rosen in 1960 for the
general case ). The extension of Morse theory to invariant func-
tions by a group G acting on M has been made by A. Wasserman,

"Morse theory for G manifolds," Bull. Am. Math. Soc .71,384(1964).
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We could consider the neighborhood of one charge orbit as a
7-dimensional gutter, with 3-dimensional walls and a 4-dimensional
flat bottom. The electromagnetic and weak interaction deform and
tilt this gutter such that the lowest points (few isolated ones) are
now on what was the wall (and not far from what was the bottom).

This has been emphasized by Pais?) The distance from y to @ minimum
can be of the order of the weak coupling constant.

Conclusions

These views on the SU(3)-breaking are probably oversimplified
and too schematic. I feel however that they cannot be ignored by the
physicists interested in this problem. They also cannot ignore the
mathematical tools presented here or those existing in the mathema-
tical literature (see for instance footnote **) for solving similar prob-
lems .
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