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The group of continuous automorphisms of the Poincaré group is
generally known to physicists. The aim of this paper is to show that
every automorphism of the Poincaré group is a continuous automor-
phism. To prove it we use two theorems, one of Zeeman,1 one of
Wigner® established without topology.

Notations

We denote by a, b, ¢ ... the elements of ‘r the translation
group. Let G, gpo= -911= -922= -g33=1, g,3=0 where o#B, be the
metric tensor of Minkowski space. We denote by £" the group of
homogeneous linear transformation which preserves this metric, i.e.,

AeJL"@AGAT:G (1)

where AT is the transpose of A,
We can consider 7~ as a Minkowski space, we denoteg Aa the
transform of a by A, and we denote the Minkowski scalar product by

(2a)? = (Aa-Aa) = a.a = a2. 2)

Lorentz transformations such that Aooi 1 form a subgroup of index two
£'" of £". This group {' is the Lorentz orthochronovs group. For the
connected Lorentz group £ (subgroup of index two of {') the A's also
satisfy detA =1,

We define the correspondir}g Poincaré groups ‘P, P', p“ as
semi-direct product of the corresponding ¢, £', {£" byj/; i.e., we
have the multiplication law

(a,A) (b,B) = (a + Ab, AB). (3)

We define a dilatation by a number X>0, as
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(a,A) —> (\a,A). (4)

The dilatations form a group /) isomorphic to the multiplicative group
of positive real nwubers. Since every dilatation N commutes with
every Lorentz transformation A, we can consider the direct products

G <prL G g P 0

THEOREM:

Autp = Aut/D' =' AUtP"= g..

(where Aut p means the group of automorphisms of the "abstract”
group p, i.e., neglecting its topology).

PROOF OF THE THEOREM: Recently, E. C. Zeeman! proved the
remarkable theorm that &' is the group of all transformations on
Minkowski space preserving the causal order relation. He also gives
an equivalent formulation:

THEOREM Z: The group g" is the group of all transformations
which transform light vectors into light vectors.
We shall need the following lemma:

LEMMA 1: Given a light vector b there is a A ¢f£ such that
Ab=ab with «o>0.

Let t be the unit time vector, then b=S(t+n) where n is a
unit space vector: t2=1= --n2 , t-n=0. The skew symmetric tensor
t An has a matrix tuny - nyty with zero trace. Hence the matrix
e-a(tAn) has determinant 1. It is a Lorentz transformation which
satisfies our conditions:

e—a(tAn) -a(tAn)

e L, e b = ab. (6)

The translation group’ris the only proper invariant subgroup of
An automorphism of a group transforms an invariant proper sub-
group into an invariant proper subgroup. Hence Tis a characteristic
subgroup of p , i.e., it is transformed into itself by all automor-
phisms of .3 Therefore, in order to define an automorphism @ of

P " (or ’P or p') we need three mappings:
T__f-> i, £n -"‘g_PT £n ___G_? £|| (7)
which d}efine the image of the elements (a, 1) and (0, A) offj "

®@,1) = (f(a), 1) (8)

Il

o(1,A) (g(®), G@A). (9)



From the unicity of the decomposition of every element of ?
(@,n) = (a,1)(0,n) (10)
since ® is an automorphism, we obtain from (3)
o(a,r) = (f(a) +g(®),G®). (11)
The transformation of the group law (3) by the automorphism @ yields
f(a) + g(d) + G(A)[f(b) + g(B)] = f(a + Ab) + g(AB) (12)
G(A) G(B) = G(AB). (13)
Equation (13) shows that G is an automorphism of the Lorentz group

£", Equation (12) is equivalent to the three following equations ob-
tained with the respective choices A=B=1, a=b=0; a=0, B=1

f(a) + f(b) = f(a + b) (14)
g(A) + G(2) g(B) = g(AB) (15)
G(2) f(b) = f(ab) (16)

Equation (14) shows that f is an automorphism off

Let us first study Eq. (16). We choose an arbitrary light vec-
tor b and we choose a Lorentz transformation A such that Ab=2b.
Then (16) reads

G(a) f(b) = 2f(b); (17)
indeed f(Ab) = £(2b) = f(b + b) = 2f(b) since fe Aut7. So £=f(b) is a
proper vector of the Lorentz transformation G(A) with proper value 2.

It is a light vector ((Zﬂ)2 =442 =42 g2-= 0). Hence f transforms
any light vector into a light vector and by the Zeeman theorem,

fe "p" X [ C Autf. (18)
This determines all possible f's.
Equation (16) can also be written as a relation among automor-
phisms ofj.’/: GA)of=foA or
G@A) = fohof . (19)

This fixes completely G(A). If fe/), then G is the identity automor-
phism of £", If fel" then G(A) is the inner automorphism of L"
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induced by f. (Note that Int {" = {' when Int means group of inner
automorphisms.)

We are left with the study of Eq. (15). Without using the
topology of the Poincaré group Wigner, in his fundamental paper on
the Poincaré group4 has shown (with a slight and nonessential change
in its proof) that every mapping £--g-~>f]/ which satisfies (14) is of
the form

g(d) = g -G(B)g = (1 -G(@A)g (20)

where g is a fixed t:ranslation.5 This form corresponds exactly to
the inner automorphism of P " induced by (g,G); indeed

-1 - -
(9,G) (a,A) (g,G) "= (Ga+(1-GAG Vg, cac™h) (1)
If we consider that (respg') is characteristic subgroup of ¥J) ' and
p“ (resp. /p "), this ends the proof of ourrtheorem.

The Wigner2 and Zeeman! results and their consequence that
every automorphism of the Poincaré group is continuous must be sig-
nificant for physics, The reader who does not wonder at these results
should consider for one moment the huge group of automorphisms of £
orf both (~ permutation group of a set whose power is the con-
tinuum) one obtains when their topology is forgotten!6
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NOTE ADDED IN PROOF

The proof given here is incomplete, because Theorem Z' is not correctly quoted.
What is needed is an unpublished equivalent of the theorem "The group g” is the
group of all permutations of space-time which preserve the nature of separation,
time-like, space-like, light-like, of two points.'" 1t is easy to show that
f € Aut 7 in equation (16) is of such a nature,

Since this manuscript was written, the author has ecstablished a more direct
proof of the theorem. It will be published in the lecture notes of the Brandeis
Summer School 1965,



