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In the quantum mechanical study of a physical system S pos-
sessing a symmetry group G , one has a unitary representation of
G in the Hilbert space 1l of state vectors of S, i.e, a homomorp-
hism f : G- U(H) of G into the unitary group of 1. General=

ly, f has a non-trivial kernel Lker f y SO its image Im £ =

= {f(g) H gefG}»: f(G) is isomorphic to the quotient group G/Kerf.

One says that (G does not act effectively in H and that it acts

' on the state vectors only through the image f(G} « SO the physical

pPhenomena of S depend only on ;(G>. The memory of the kernel
her £ 1is lost,

Let us note that if the dimension of i is finite then f(G}
is just the set of matrices which appear in the representation f
of G,

Two n-dimensional iwmages f1(01> and f2<Gz> are called equi-
valent (we write f,(Gi)ﬁsz(G2>) i’ they are conjugated subgroups
in the group GL(n,wﬁ ol mon=-singular mnx1n wmatrices, 1ln other

)'Vr (G,) it and ounly il there exists a matrix

words, 11<G APy
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HesGL(n,C) such that Wf1(G1>w'1 = f2<G2>, i.e, the whole image
f1<G1) is transformed onto the whole image fz(G2>‘ Let us note that
this equivalence condition is weaker than the usual equivalence of
representations when G1=G2=G , namely the usual equivalence (denoted
by ® ) means that WT1(g)w-1 = fz(g) for every ge G. That is why
the relatibn ~ will be called a weak equivalence.,

The weak equivalence relation ~ was proposed in [1] , [2] .
The equivalent images of different space group representations have
the same invariants, [1] . Such invariants are computed, for example,
in Landau’s theory of phase transitions,

It is natural to classify the lattice-vibration representations
by the weak eqﬁivalence, too, [3]. In this context, the equivalence ~
is also motivated by the fact that the polarisation vectors can be
related to the eigenvalues of matrices appearing in the corresponding
lattice=vibration representation of the group Gk of' a wave vector
k (little group of k), [4] .

All images Dk(Gk) of allowed irreducible representations. D,
of Gk groups (high-symmetry wave vectors k) are listed and discuse
sed in [5],[6] . The images Dk(Gk) have the following properties;

1. Dk(Gk) = TQ">BK, whe?e T£m> = fe'ikt; te'rj , T 1is the trans-

. co(m) (m)
lation subgroup of G m denotes the order of T ’($k /is

k’
a cyclic group if k is a high-symmetry wave vector) and Bk
is a group of nxn matrices (n = dim D, )

2. l'or a few thousands of single-valued allowed irreducible repre-
sentations of Gy (high-symmetry wave vectors) there are only
25 weak equivalence classes of the Bk groups

3. bkvery is either a unitary reflection group or is a proper

k
subgroup of such group (unitary reflection groups are defined
and discussed, for exauple, in [7],[8],[9] ).

In the context ol property 3 one can note that the lattice vib=
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ration representation L of G can be written in the form

IJk=

tations, P

and
the

the

k k
FKQDPK where Q@ denotes the tensor product of group represen-
K is the vector representation of the point group of Gk’
Fy (defined by the formula (9.16) in [10] ) is a subgroup of
unitary reflection group G(m,p,n), [8],[9] y When m denotes

order of T£m> » and n is the number of atoms in the Wigner-

-Seitz cell, [3] .
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