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Introduction.

One can read in the scientific books written fifty years ago,
that our whole universe is made up of three constituents : protons,
electrons, and photons. This elegant view was destroyed in 1930 by one
experiment performe& in this town by Rasetti (1] : the measurement of

the spin and statistics of the N14 nucleus.

The following year four more particles were predicted : the
neutrino by Pauli (2] , the antiproton and the antielectron by Dirac[ ]
and the neutron which was expected by several groups. The last two were
discovered after one year (41,05] , the first two, twenty five years
later [6]’[7] . The rate of discovery of particles has risen so sharply
in the sixties that an exact count is at present uncertain. If you add
to the photon, 8 leptons, 48 mesons, 111 baryons, and the corresponding
antibaryons you reach a provisional total of 279, However, some physicists
have not given up the hope of simplicity, and expect to build our universe

with three quarks and their antiquarks.

To others, the simplicity appears today in the small number of
interactions among this crowd of different particles. As you all know

there are in nature only four or five different interactions

- gravitational, electromagnetic, nuclear or strong, weak and

perhaps CP violating.

Gravitational effects are so negligible at the miscroscopic scale



that we shall not discuss them here. It is not yet clear whether the
CP-violating interaction, discovered only five years ago and observed
only in K-meson decay is a new interaction -which has then to be super

weak- or a peculiar manifestation of the known ones.

The strong, the electromagnetic and the weak interactions differ
by their intensity, their range and their properties with respect to the
transformations of the internal symmetry group. In this lecture we will
however focus our attention not on these differences but on the striking
similarity in the way the three interactions break the underli;ing
symmetry (e.g. SU(3) x SU(3)). We will show that the directions defined
in the internal symmetry space by both the electromagnetic and the lepton
fields have simple and unique geometrical properties. The situation is more
complicated for the strong interaction breaking. There exists several
interesting approximations for its symmetry property : some of them have
the same type of characteristic geometrical behaviour as the electromagnetic

and the weak interactions.



Strong Interaction Symmetry.

Strong interaction alone does not allow us to distinguish between
baryons or mesons with different electric charge which belong to the same
isospin multiplet. This reflects the property of the strong interaction
to be invariant under a group G larger than the Poincaré group 83 .

g

The group G  is the direct product G = X U(2) . The U(2) symmetry

is broken by the electromagnetic and weak interactions.

In the recent years, larger and larger broken symmetry groups

have been proposed for the physics of hadrons. They form the lattice

of fig. 1.
SYMMETRY GROUPS and their Dimensions.
SU(6,6) 143
A
SU(6) x Su(6) 70
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SU(3) SU(2) x Su(2) x u(l) 8
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Fig. 1. Lattice of internal symmetry groups used in hadronic physics ;

—> means injection as subgroups.



The larger is the internal symmetry group, the

coarser is the approximation in which this symmetry is exact.

Here we will consider the symmetry corresponding to SU(3) x SU(3)
and its subgroups. SU(3) x SU(3) is the smallest group vhich couples in
some way Poincaré invariance and internal symmetry. In the limit where the
symmetry is exact, the full symmetry group is indeed the semi direct

product (denoted by @ )

g 5 {su@) x su3)), z,1= (P, x su0) x SU(‘%))D» 2

where E?o is the connected Poincaré group and 22 is the two element
cencrated by the space inversion P which acts on 530 by an outer

automorphism and permutes the two factors of SU(3) x SU(3)

The Breaking of U(2) symmetry by the electromagnetic and weak

interactions.

‘We can understand this breaking by analogy with the Zeeman effect.
When an atom (which is a physical system with a rotational symmetry) is
placed in a magnetic field B , one must add to the Hamiltonian the

interaction term

H =df E.a(x) d3x (1)

where a(x) is the vector operator representing the magnetic moment
density. Of course g.a is invariant under rotations, but the rotational

symmetry is broken because the magnetic field marks a preferred direction.



Similarly, we can say that the electromagnetic interaction marks a

preferred direction q in the vector space of the Lie algebra of Us(2).
The W(2) Lie algebra is a direct sum U(1) & SU(2) : the U(L)
corresponds to the hypercharge y , the SU(2) is spanned by three
orthonormal isospin vectors ty (i =1, 2, 3) which are chosen by a
traditional convention. The direction q singled out by the electromagnetic
interaction is

- 1
q ty - 5 Y (2).

This is the Gell-Mann-Nishijima relation. (8]
It would make no sense to say that we can recognize a direction

if we were not able to recognize all the others and therefore orient

ourselves in the b(2) space. Two other directions ty and t,

can be recognized with the help of the weak hadronic currents

for pB-decay. The strong mass splitting and the hypercharge conservation

by strong and electromagnetic interactions allow us to recognize the

direction vy .

The analogy with the interaction in a constant external magnetic
field goes even deeper. Indeed according to the assumption of Feynmann
(9] , +
and Gell-Mann the vector part of the weak hadronic currents va (x)
and the electromagnetic current ju(x) are three components of the same,
U(2) vector operator v(x) . In analogy to (1) , the electromagnetic

and weak interaction terms of the Hamiltonian can be written :



H o= e | A% ¥ 0 d° x (3)
em u
G f 1 -(¢e) 3 \
H = — PN L (x) . v (x) d'x 3"
w \3 & e=t1 (e) l

where Ié;(x) are the charged + leptonic currents which single out the

directions t

1 of the complexified vector space of \L(2) in

+ it
- 2
the same way as the electromagnetic field AM(x) distinguishes the

direction q .

Thus even though we can not change the directions of the external
fields (as we could do for the magnetic field of our example) we can
nevertheless orient ourselves completely in the W(2) space since the
vectors vy , q; > t1 and t2 span the whole space of the W(2) Lie

algebra.

Currents as tensor-operators.

Let us recall the definition of tensor-operators, these fundamental
tools for the expression of group invariance in quantum mechanics. Given
a Lie group G represented by unitary operators € Jb (%ﬁ) acting on
the Hilbert space }é of states, an é ~tensor operator is an intertwinning
operator between the vector space 8 of a linear representation of G
and the space Jl(?é) . If ?} is the real vector space of the Lie algebra
of G , there is a remarkable tensor operator F whose image is the set
of self adjoint "group generators". They form a representation up to a

factor i of the Lie algebra



Va,b ¢ ‘f} , [F@),F()] = iF(a , b) (4)

where A denotes the Lie algebra law. Let the representation of i;,

on & be : a ~~> D(a) ; an g-tensobr operator g L £(M)

can be equivalently defined by the relation
vae g s vreé , [F@,1@]=i10@D ()

As we have seen, electromagnetic and hadronic weak vector currents

are the images in the directions q and t1 + i t, of the same

%} -tensor operator where %, is the Lie algebra of (2) . We will
. 1 . .
thus write : vu(x,q) and Vi vu(x,tl + i t2) for the electromagnetic
and weak vector currents respectively. After the extension of the strong

(10]

interaction invariance group from UL2) to SU(3) Cabibbo's

hypothesis[ll] extended the variance of these currents. They became
octet-operators where the octet-space is the eight dimensional space

g g ©f the Lie algebra of SU(3) . With the Cartan Killing form this
is an euclidean space and from now on, we shall use only unit length

vectors (belonging to the unit sphere 87 c 863.)

Explicitely,

electromagnetic currents = é% vu(x,q) (6)
weak vector currents = 7%= vu(x,cli ic2) (6")
weak axial vector currents = j% au(x,cli ic,) (6")

Indeed Cabibbo also assumed that the axial vector and weak vector

currents are two different octet operators, but in the same directions



cl and c2 . These directions are different from t:1 and t2 in order

to take into account the hypercharge violating weak transitions ; they
make an angle © (=Cabibbo's angle) with the former directions. The total

hadronic weak current that we denote by
hu(x,ci) = v“(x,ci) - au(x,ci) (7

is therefore another octet-operator.

In the next section we will show the geometrical properties of

the physical directions appearing in (6) (6') and (6")

Some geometrical concepts. Their application to the SU(3) octet.

The SU(3) linear action in the octet space 8.8 distinguishes
some directions.Elz] When a group G acts on a set M , the set of all
transforms of a given point p € M is called the orbit G(p) of »p
and the set of all group elements leaving p fixed is a subgroup Gp c G
called the little group or the isotropy group of p . Two points of a
same orbit have conjugated little groups. We call stratum the set of all
points with the same little group up to a conjugation and the orbits of a
stratum are said of the same type. To summarize, by the action of G ,
the set M is partitionned into strata which are partitionned into orbits
of the same type. When G is a compact Lie group acting differentiably
on the compact manifold M , there is a stratum (called generic) which

is open dense. For example in the action of SU(3) on the unit sphere



-9 -

S7 (e 8 g the generic stratum is a one parameter set of 6 dimensional
orbits, whose little groups are the Cartan subgroups (~U1 X Ul) of

SU(3) . There is one more stratum composed of two four~-dimensional orbits.
Their elements will be called exceptional vectors ; they have a larger
little group : Lb(2). The hyperclarge end elzoiric charge directions

y and gq are such exceptional vectors. Their little groups are denoted

by quy(Z) and QLq(Z) and their semi-simple part su%z)ﬁﬂafzjare called
the isospin and u-spin groups in the physics litterature. The orbits

of exceptional vectors have the following properties

1°  they are critical ; this means : consider a differentiable

real function f on M , invariant by G (i.e. constant on the orbits).
Its differential dfp at p 1is an element of the dual of the vector

space Tp (M) , the plane tangent to M at p . An orbit of G on M

is critical if for all G-invariant real differentiable functions f on M ,
df = O on the orbit. In table 1 we list all examples of critical orbits

which we discuss here.

2° their vectors are idempotents of the canonical symmetrical

algebra ; consider a compact Lie group G and an irreducible linear
representation D on 8 . If in the reduction of the tensor representation
D®D on g ® g , the irreducible representation D appears once

and once only in the symmetrical part of the tensor product, the
corresponding intertwinning operator V (defined up to a multiplicative

c \ \
factor) g ®& ¢ —> & defines a symmetrical algebra

Vx®y)=x _y=y x (8)

V
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which has G as group of automorphisms. Such a canonical symmetrical
algebra exists [or the adjoint representation of the classical simple
Lie groups only for the SU(n) , n = 3 . That of SU(3) has been studied

by Gell-Mann who denoted by dijk its structure constants. -

An idempotent vector of this algebra satisfies

X X = )\X (9)

This equation is obtained in all SU(3)-invariant bootstrap

models that we have seen published.[l3]

Properties 1° and 2° are not unrelated. For every real irreducible
linear representation of a compact Lie group G , there exists an
invariant euclidean scalar product. For a representation of C , on ,Z; s

which possesses a canonical symmetrical algebra, one can define :

{X:Ysz} = (x V YsZ) (10).

This is a trilinear invariant, completely symmetrical under the
permutation of x , y , z and any differentiable function £(w

with M= {x,x,x} defined on the unit sphere (x,x)-1 =0 ; is G-
invariant. In order to find its extrema, one has to vary the function
£({x,x,x}) = A'"(1-(x,x)) where \' 1is a Lagrange multiplier. This

yields equation (9) with ) = % )\'(df/dp.)_l .

Since we have been interested only in the directions of the
vectors of 8 g we should probably consider, instead of the unit sphere

S, , the real projective space P which is the set of directions of
7 7 8
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(P7 is obtained from S7 by identifying the two points of each diameter).

In the action of SU(3) in P, there are 3 strata : the generic one
(little group U(1l) x U(1)); another one consisting of the critical
orbit of exceptional vectors (defined up to a sign, little group
W)?(?>) and finally the stratum which contains the orbit of the
root-vectors of the SU(3)-Lie algebra (little group (U1 X UZ%J ZZ)'
This orbit is also critical, but equation (9) defined on 8’8 , does
not apply to its vectors. It is remarkable that the physical directions

¢, and <, belong to this new critical orbit.

1

Given a unit root-vector s , then VE' s S is a unit
exceptional vector. The exceptional vector z defined by the weak
interaction :

Z(Ci’cj) =\3 ;v cj (11)

with

i,j =1, 2, 3; cy =c c (12)

is sometimes called the direction of the weak hypercharge. It is
possible that this direction can be observed physically. Indeed the most

commonly proposed form of non leptonic weak interaction is

= G o} 3
i T2 X T (x,e) + 1 e)) b (xyep- 1)) d7x (13)

with the drawback that HN.L. is the image of a reducible tensor

operator with some component in the "27" irreducible representation

of SU(3) . The AT = % rule for the weak transitions with |Ay| =1
suggests that this 27 component is negligible compared to the octet component.
According to the proposal of one of us¥14] the non-leptonic Hamiltonian would

instead be
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Hy | = % J(hu(x) y hu(x)) (z) a3x , (14)

i.e. 1t would be (le conpornenc alon,

o the weak uypercharge z of an
irreducible octet-tensor operator. It is compatible with the known
experimental data.

Let us finally note that y and z define q :

q(l - (y,z)) = \[; yvz+%(y+ z) (15)

where

(v,2) = 1 -g sin © (151).

The SU(3) x SU(B_)U Z, symmetry. [15]

The SU(3) x sU(3) symmetry becomes an exact symmetry of the
hadronic world when the masses of the octet of pseudo scalar mesons are
neglected. Remark that it is not much more drastic to neglect these
masses than to neglect their differences as it is already implied
by SU(3) . As a matter of fact a much milder approximation than SU(3)
is to neglect only the r-meson mass (only 140 MeV which is smaller than
mass differences within the octet of pseudo scalar mesons). This corresponds
to considering a SU(2) x SU(2) x U(1) subgroup of SU(3) x SU(3)

The SU(3) discussed in the previous section is the diagonal subgroup of
SU(3) x SU(3) . The two SU(3) factors are called the chiral SU—=(3)

~

The vector space & of the Lie algebra of SU(3) x SU(3) 1is a direct

16

sum of two octet spaces

B (+) < (=)
216« 88 ® G (16)
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whose vectors we denote by

+ - (17).

"~
a=a @a

On this space there is a SU(3) x SU(3) invariant euclidean scalar

product
@,5) =5 @b + 1 (a7, (18).
The Lie algebra is
~ ~ “+- + — -
= 1
a b (a/\b)@(a/\b) (19)

and the canonical symmetrical algebra is

a b= (a", b")@ (@, b7 (20).

The electromagnetic current, the vector part and the axial part of
the weak hadronic currents are all in the image of the same 616~tensor

operator h(x,a) for the directions :

E =q@q for the electromagnetic current
Eli i Nz,with ?:Ji =08 c; for the weak current
and zZ =08z is the direction of the weak hypercharge.

The symmetrical algebra has only two different types of idempotents

and ?f and Zz are two examples of these two types.

The orbit of z on S1s is critical for the SU(3) x SU(3)
action, whereas the orbit of q is not. It becomes critical when the
group is extended to (SU(3) X SU(B))D Z, .i.e., as we have seen.when one

takes into account space reflexions.
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When we 40 to the projective space P15 » two new types of critical
orbits appear.
- One corresponds to the root vectors of SU(3) x SU(3)

and the physical directions Ei and Eé are illustrations of this case H

- The other type can be represented by the orbit of unit vectors

(up to sign) such as

s ®+ s

where s 1is a root vector of SU(3). This orbit contains vectors of

opposite parity. #*

The Breaking of the (SU(3) x SU(B))D Z, by the Strong Interaction.

In the paper in which he introduced this larger symmetry,
Gell-Mann [10] proposed that the breaking of SU(3) x SU(3) due to

the strong interactions occurs through a tensor operator of the

(3,3) & (3,3)

representation,

* For instance the image of this orbit by the current, h (x,a)
u
contains both vectors (3 =+ s ®s) and pseudovectors (a =+ s @ - 3)

which are transformed into each other by SU(3) x Su(3).
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This 18-dimensioned representation, which is irreducible for
(su(3) x su(3)), z, , appears naturally in the quark model and SU(3)
(the diagonal subgroup of SU(3) x SU(3)) 1is then the little group
of the direction of 8’18 along which the symmetry is broken in the

SU(3)=-approximation. In a more recent paper Gell-Mann, Oakes and

1
1]

Remmer [16] have suggested that the direction of the breaking in é;18
is in fact closer to the direction invariant under
SU;(Z) X SU;(Z) X Ui(l) (where d means diagonal). On the space

5518 of the (3,3) @ (3,3) representation there exists a symmetrical

canonical algebra with two kinds of idempotents,

X o x= A x (21).
One kind of unit vector solution (X==VC§ ) corresponds to two critical
orbits (see table I) of (SU(3) x SU(3))UZ2 on S, with little group
sud(3) x Z, -
The other kind () = O, nilpotent elements) corresponds to a

critical orbit with little group

-+ -
(sU_(2) X SU (2) x U, (1)) 52y

These two solutions of (21) are parity conserving and correspond to the
two physically interesting breakings of SU(3) x SU(3) with approximate

SU(3) or SU(2) x SU(2) x U(l) invariance for the strong interactions.
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Open Problems.

The Cabibbo angle +« establishes the relative orientation of the
frames in the spaces of the two representations : the adjoint representation
(1,8) ® (8,1) and the (3,3) ® (3,3) . Probably © is a projective invarian
built with the vectors which are singled out in these two spaces by the
different interactions. We do not expect however that the value of @

could be obtained from purely geometrical considerations.

The nature of the (P-violating interaction is another open question.
It might be a new interaction or, as in many models that have been
proposed, it may correspond to a small T-violating term of the weak or
electromagnetic interactions. It may even be that C(CP-violation is, as
- 1o n (17] ;
Good, Michel and de Rafael have proposed, a collective effect of
the three interactions (weak, electromagnetic and strong) which disappears

when some parts of any one of them is turned off.

In any case one expects that the CP-violating transitions will
also single out some direction of a SU(3) X SU(3) representation space.
As we have seen, all the critical orbits of (SU(3) x SU(B))ﬂ 22 on P15
except for one, correspond to the breakings of SU(3) x SU(3) by the
eleotromagnetic and the weak interactions. It might be that the CP-violating

transitions choose the unused type of critical orbit listed in table 1
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Conclusion.

The breakings of (SU(3) x SU(3))4 Z, induced by the coupling
of hadrons to the electromagnetic field and to the lepton currents occur
respectively in the directions H and E& s ?2 of the space 2316 of
the adjoint representation ((8.1) & (1.8). We have shown that in the
action of (SU(3) x SU(3)), Z, on the corresponding projective space
P the orbits to which the above directions belong are critical. In

15

the same space P15 there are two other critical orbits. One of them

contains the weak hypercharge direction 7%z and one of us has suggested[l4]
that it could be associated with the non-leptonic weak interactions. We
wonder if the preferred direction which appears in the CP-violating

interaction might not belong to the remaining critical orbit as suggested

by the model of ref. 17.

On the unit sphere 817 € 818 (the space of the (3.3) & (3.3)
representation) the action of (SU(3) x SU(3))y Z, creates two types

of critical orbits* . Their little groups (up to a conjugation) are SUd(B)
and SU;(Z) X SU;(Z) X U;(l) . They correspond to the two interesting
approximations for the breaking of SU(3) x SU(3) by the strong interaction.

The actual direction of the strong breaking is in between those two and

its determination is probably related to that of the Cabibbo angle.

* One more type of critical orbit appears when one goes to the

corresponding projective space P17 . It corresponds to

2
given in a forthcoming paper.

(Uy(Z) X 22)D Z invariance. More details on this case will be



- 18 -

In our opinion the notion of critical orbit is very important
for understanding the breaking of symmetries. For hadronic physics this
notion appears only when one enlarges the isospin group. Indeed in the
three dimensional space all directions are transformed into each other

by the action of the rotation group.

As we have seen critical orbits appear naturally in a bootstrap
model or in a model blending a variational principle with group invariance.
The success or the failure of such models will then be independent of
dynamical details but rest only on the physical choice of the invariance

group and of the space on which it acts.

In conclusion, we believe that the qualitative mathematical concepts
which appear in the study of group action on manifolds have helped us to
formulate the empirical laws of the breaking of the internal symmetry
in an aesthetical and concise form. This formulation might prove to be

well adapted to a future more fundamental explanation.
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